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General localization lengths for two interacting particles in a disordered chain
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The propagation of an interacting particle pair in a disordered chain is characterized by a set of localization
lengths that we define. The localization lengths are computed by a new decimation algorithm and provide a
comprehensive picture of the two-particle propagation. We find that the interaction delocalizes predominantly
the center-of-mass motion of the pair and use our approach to propose a consistent interpretation of the
discrepancies between previous numerical resi#8163-1829)13501-X]

The problem of interacting electrons in a disordered po- It is currently not clear whether these ideas have any rel-
tential is one of the important unsolved problems inevance to the degenerate finite-density Fermi gas. It appears
condensed-matter physics. This has been emphasized againbe the most promising direction to consider the localiza-
by the recent observatibrof a metal-insulator transition in tion properties of quasiparticle pairs. There have been a num-
two-dimensional2D) systems that was not anticipated theo-ber of studie$®° of whether quasiparticle excitations delo-
retically. Some time ago, Shepelyandkyroposed that it calize relative to single-particle ones. While a numerical
would be worthwhile to consider the simple case of two in-study for a one-dimensionélD) system showed delocaliza-
teracting particles in a random potential. By an approximateion only for unrealistically high excitation energy of the pair
mapping of the problem to a random banded matrix model(of order of the bandwidti® both argumentsand numerical
he predicted that unexpectedly, such a particle pair couldtudies® in higher dimensions suggest the possibility of a
propagate coherently over distandgsmuch larger than the new pair mobility edge close to the ground state.
single-particle localization length, as long as the two par- The two-particle problem in one-dimension is described
ticles are withing; from each other. After Shepelyansky, by the Hamiltonian
many authors ' have tried to obtain more rigorous results.
However, at the present stage, there exists a controversy not
only over the expressidn® for &, but even over the exis-
tence of the enhancement effect its&lfOur purpose in this a/yherem labels theN sites of the 1D lattice ané, is the

paper is to present a more comprehensive picture of the tw al sinale-particle Anderson Hamiltonian
particle propagation by defining and computing a set of |p-Usual single-part titon

calization lengths. We unambiguously show that the effect
exists and propose a resolution of the controversy in the pre-  Hy= >, [ ep|my(m|+t(|m)(m+1|+|m+1)(m)]. (3)
vious studies:® m

Specifically, Shepelyansky obtained for the two-particlee  is a random-site energy, drawn from a box distribution
localization length with —W/2<e,<W/2, andU the on-site interaction. The
hopping matrix elemerttis set to unity throughout this work.
£~ (UIW2)2 1) A convenient quantity to study the localization properties of
' the pair is the two-particle Green’'s functioG=(E

i i . —H)~ 1. The two-particle localization lengthi, on which
whereU denotes the interaction strength atwthe disorder previous studies have focused is defined in term6 @

strength. Sincé; ~1/W?, Eq.(1) implies an enhancement of

the localization length for weak disorder. Since Shepelyan- 1 ] 1

sky’s original argument involved several uncontrolled as- & == lim m((ln|(m,mlG|n,n>|)>, 4
sumptions for the single-particle eigenstates, a number of In=m|—e

(mostly numerical attempts™ to refine the result followed where the double bracket denotes the disorder average.
afterwards. Imry rederived Shepelyansky's result, Ed), In this paper, we discuss general localization lengths that
by an extension of the Thouless block scaling picture. Frahnprovide a much more comprehensive picture of the localiza-
et al* computeds,~W~ 33 using the transfer-matrix method tion properties of the particle pair. First, we consider a gen-

(TMM). von Oppenet al® introduced a Green’s function era| center-of-mas€CM) motion by defining
approach, allowing one to project the problem on the sub-

space of doubly occupied sites, and concludee U/W*. 1 i 1

Subsequently, Song and Kfrtreated the idea of von Oppen  §2a=—_ lim m((lnl(m,m—a|G|n,n—a>|)>.

et al. rigorously using the recursive Green’s function method In=mj—e 5
and foundé,~W~2°, Recently, Rmer and Schreibérsug- ®
gested from the TMM result that the enhancement effeciWe find that, surprisinglyé, , is essentially independent of
doesnot exist. the particle distance, even ifa exceeds the single-particle

H=H,;@1+10H+U>, |m)|m)(m|(m|, 2
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localization lengthé;. We also study the behavior @& for =1
relative motion at fixed CM, as characterized by 3 2 N.N)
& T=— I|mﬁ(<ln|<m+n,m—n|G|m,m>|)>. (6)
n—o .
V2E,
Finally, we consider the propagation of one of the particles

with the other held fixed, as described by

. 1 TN
&= lim —((In|(m,m+n[G[m,m) )). @) A P

n—oo .

As opposed t@, andé&, 5, we find that the latter two lengths
are only very weakly affected by the interactibh Never- (1,1 00 N D
theless, it will turn out that these lengths are indispensable
for obtaining a more comprehensive picture of the two-
particle propagation and for understanding the discrepancies
between previous numerical results. —
While &, could be computed by projecting the problem on
the subspace of doubly occupied sites, this is no longer pos- V2 e,
sible for the generalized localization lengths defined above. £
For this reason, we introduce a new decimation algorithm, AR /
which allows us to compute these localization lengths effi-
ciently. As opposed to the projection method #grused in \\ ,/
Ref. 5, this algorithm is numerically exact. We briefly de- V2 &,
scribe the procedure for computigg. Adaption to the other N
lengths defined above is straightforward. Since the interac- |
tion acts only on symmetric states, we specify(¢pinles$
bosons. Using a symmetrized basis b)) U> U

FIG. 1. Sketch of the two-dimensional latti¢enin solid lines

- 8 and the wave-function profilé&hick solid lineg. The dashed lines
(12)(Jm)|n)+|ny|m)) if m#n, (dotted line} represent the index scheme for the calculation of

) ] ] ) &2 (&). Lengths are measured in terms of the lattice consiant

and interpreting ifi,n) as sites of a 2D square lattice, the The factor.2 arises becausé and ¢, are defined in units of the

Hamiltonian of Eq.(2) can be interpreted as describing a giagonal length of the smallest square of the lattigBd) while &
single particle on the 2D lattice shown by the thin solid linesis defined in units of its edge lengthl.

in Fig. 1. The off-diagonal elements &f are nonzero only

|my|m) if m=n,

Imn)

for nearest-neighbor bonds and equal/®(1) if one (none D x{"+VxV=0,

of the nearest-neighbor sites is a doubly occupied state. Our

goal is to compute the Green's functig®®(E) that is the VXM +DxM+ V(P =0,  2<isN-1,
inverse of a sparse matri® =E—" of linear size~N?2. (10)
Clearly, a direct manipulation of the whole matrix is ineffi- VL,le\‘“lﬁ DNXf\,”)=en,

cient both in terms of time and storage, and becomes forbiqivhere e is the N-dimensional unit vector with &)
ding forN>100. To circumvent this problem, we recursively _ S Solving these equations, we obtain m
decimate the irrelevant matrix elements of the Green's func- ~™™" '

tion. We start by decomposing Hilbert space into subspaces xM=Gye,, (12)
i, each of which is spanned by the states along one of the

dashed lines in Fig.(® and which are labeled by their di- Where theg; can be computed recursively from

mensions ¥i=<N. We denote the projection &f onto these —n T -1 ; _n-1
subspaces aB;. Clearly, D couples only neighboring sub- Gi=(Di=Vi-1bi-aVi-1) with 6;=D; " (12
spaceqi) and (+1), and we call the correspondifigX (i Finally noting that &{"),= (11 |G(E)|nn), we can now com-
+1) dimensiondl coupling block in the HamiltoniarV, . pute the localization lengté, from Eq.(4). This reduces the
Finally, we define vectorxi(“) with elements calculation to manipulations of matrices of sizes from 1
to NXN. It is worthwhile to point out that at the final stage
(xi(“))j:<N—i+j,j|G(E)|nn>, (90  of the iteration, the calculation is formally reduced to an

effective 1D model for a single patrticle. It is straightforward
given by matrix elements of the Green’s functiGrbetween to generalize the algorithm to compute the other localization
a doubly occupied sit¢gnn) and the states in subspate lengths defined in this paper. For exampje,is calculated
Since only neighboring subspaces are coupled, one readilyy decomposing Hilbert space according to the dotted lines
derives fromDG=1 the set of coupled linear equations of Fig. 1(a).
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For &,, we setn=1 in the above algorithm and obtain 25 - - - T T - -
t; 1= ((In[(ll|G[1D)|)) with 1<I=<N for each parameter set
(W,U). We find thatt, ; depends linearly oh, implying an 4 - . -
exponential decay of the Green’s function. To eliminate W=25 .
finite-size effects nedr=1 andl=N, we fitt, ; in the range
N/5<1<4N/5 to 15 .
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4
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4

4

4 1:—I—+C (13 1 v |
' &
with ¢ a constant. We find that for chaits= 200, our results 5k W=35
for &, are essentially independent of system $\zesuggest- (a)
ing that finite-size effects o, are rather weak. Similar
procedures are performed for the other localization lengths. 0 0 20 80 10 s0 e 70 a0
Our main results are presented in Fig. 2. All data have a
been obtained for system side=200 and for the center of
the bandE=0. In view of the special nature of the doubly
occupied sites due to the on-site interaction, it is natural to (b) P
ask whether the definition for the two-particle localization 4r T
length &, correctly captures the CM motion. To answer this R T W=20
guestion, we ploté,, for interaction strengthU=1.0 as ok 50 o+ i
function of a in Fig. 2(@). We find thaté,, remains un- 35
changed up to rather largg implying that¢, is indeed a SO
good description of the CM motion. In fac,, remains 2o} . e e
independent of even fora>¢,. Hence, as opposed to the 4 P
previous belief$® the interaction affects the two-particle mo- PN PSRRI Sl ==

. . . . . 10 4 a 0= 4
tion even if the particle distance exceefls This can be T . N R — -

50 T T T T T T T

‘22: ér

understood in terms of single-particle propagation in the 2D a 4 ¢ . . d . . T
lattice of Fig. 1.&,, is associated with the transition prob- 0 ! ! ! L L ! !
ability along the dashed line a distanee from the diago-
nal. We recall that wheim,m—a|G|n,n—a) is expanded
in powers of the hopping matrix elementit is given by a
sum over all possible paths from,n—a) to |[m,m—a). If
the distance between these two sites;m—n|, is much 100
smaller thana, the effect of the interaction would be negli-
gible. However,¢, , is defined by the limiting behavior of 80
|m—n|—o with a finite, cf., Eq.(5). In this case, the con-
tributions of paths that are sensitive to the interactibare
no longer negligible and,, remains influenced by the in-
teraction even though>¢; . 40
In Fig. 2(b), we show our results fo€, (symbolg that
describes the decay of the Green’s function with relative dis- 20 k-
tance. For comparison, we also plgt (lines). At U=0, the [
two lengths are equal within the numerical accuracy, i.e.,
&,=¢&, . As U increases¢, remains nearly constant whitg 0 02 04 06 08 1 12 14 16
shows a pronounced enhancement in qualitative agreement U
with ShepelyanSky’S pred'cn(ﬁ' . FIG. 2. (a) &,, as function ofa. (b) &, (lines) and¢, (symbolg
In Fig. 2(c) we plot¢; (symbol3 and¢, (lines), where the as function ofU. (o) &, (lines) and &; (symbolg as function ofU.

former describes the range over which one particle Moveg| gata have been obtained for system size 200<300 and for
with the other one fixed. AU =0, we find thaté; approxi- g=q.

mately equals to &,. As already seen in Fig.(B), &£, shows
a strong increase withl. By comparisong; shows a much that £,(U=0)+&,/2, as was pointed out in Ref. 6. Since
weaker increase. Hence, there existd §W) beyond which  both ¢, and &; are determined by the limiting behavior for
&, exceedsl;. diverging distance between the particles, one does not expect
At U=0, the two particles move independently and thethem to be strongly influenced by the interaction. This ex-
propagation of a given particle is not affected by whether theplains the rather flat dependences of both length&lon
other is moving in the reverse&) or in the same direction With the additional information fronf, and &, we can
(&2), implying é.=¢,. Moreover, sincet, measures two- now construct a wave-function picture in the 2D lattice rep-
particle propagation, whilé; the single-particle motion, one resentation of the problertFig. 1). At U=0, this implies
expects that the transition probability fés is given by the that the wave-function profile is described by a square as
square of that fog;, so thaté,=§&:/2. We note in passing shown by a thick solid line in Fig.(&). As U increases, the
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length of the edge associated wigh increases while that results of the present paper. We suggest the following expla-
associated withg, remains essentially constant. Faf nation for the numerical results of Ref. 7. The argument of
>U., the wave-function profile becomes highly anisotropicRef. 7 is based on TMM data forw,U)=(3.0,0) and
and we find that it can be well described by an ellipse ag3.0,1.0 (restricting attention to short-range interactioRor
shown by the thick solid line in Fig. (b). The elliptical  (w,U)=(3.0,1.0), we findthat the largest length i

shape predicts the relation =13.2+0.3, which is close ta;=11.7. Hence, we expect
that the data in Ref. 7 in fact extrapolate §o, which is

&= 2626 _ (14) indistinguishable from¢; within the numerical accuracy of
VES+E° Ref. 7. Analogous conclusion holds foxW(U)=(3.0,0).

herefore, we contend that the principal argument of Ref. 7
a misinterpretation of data for a special parameter set and
expect that the TMM exhibits the extrapolate §o> ¢&;

We have checked that our data are in good agreement wit]
this expression folJ>U_. This clearly shows that the en-

hancement effect is associated predominantly with the dire(‘v-vhiCh is indistinguishable from Finally, we find that tiig's

tion of £, i.e., the CM motion of the two particles. in Ref. 5 are somewhat larger than those in this paper, which

Th_ese res_ults aIIovy us to resolve some of the_ aboveg e attribute to the approximate treatment of the Green’s
mentioned discrepancies between previous numerical stu iinction in Ref. 5

ies. We start by noting that the TMM measures the largest |, 5mmary, we have presented numerical results for vari-

5 , . i
length scale hfror<n the<N , Creen‘s-function entrlles ous newly defined localization lengths of two interacting par-
(1n|G|Nm) with 1=m, n<N.” According to our results, icjas It turns out that the enhancement effect exists mainly
there are two competing lengtljs andé;. ForU<Uc, we  ¢5r the CM motion of the particles while both the relative

find that the largest length & while for U>Uc, itis &.  motion and single-particle motion are only weakly dependent
Therefore, the TMM actually measurésfor U<Uc and¢z; o the interaction strength. It has also been found that the
only for U>U.. We first compare our results to those of gnhancement effect for the CM motion is insensitive to the
Frahmet al.* We find that t_he|r results for the localization yistance between the two particles beyond the single-particle
length are two to three times larger than our result forgcgjization length. Based on these results, a consistent ex-

max{ ¢y, &2} at given values otV andU. We attribute this to - pianation has been presented for the controversy in previous
large finite-size effects in the TMM, as suggested in Ref. 7 umerical studies.

On the other hand, in Ref. 7, any enhancement effect was

attributed to finite-size effects and it was suggested that the We thank H. A. Weidenniler for useful discussions. One
TMM produces the single-particle localization length for aof us (P.H.S) has been partially supported by the Korea
sufficiently large system size. This is inconsistent with theScience and Engineering Foundation.

1S. V. Kravchenko, D. Simonian, M. P. Sarachik, W. Mason, and  (1996.
J. E. Furneaux, Phys. Rev. Left7, 4938(1996. 5P. H. Song and D. Kim, Phys. Rev. 55, 12 217(1997.
?D. L. Shepelyansky, Phys. Rev. LeB, 2607(1994; see also O.  ’R. A. Ramer and M. Schreiber, Phys. Rev. Lét8, 515(1997.
N. Dorokhov, Zh. Kksp. Teor. Fiz98, 646 (1990 [Sov. Phys. 8K. Frahm, A. Miler-Groeling, J.-L. Pichard, and D. Weinmann,

JETP71, 360(1990]. Phys. Rev. Lett.78, 4889 (1997; R. A. Ramer and M.
3y. Imry, Europhys. Lett30, 405 (1995. Schreiberjbid. 78, 4890(1997.
4K. Frahm, A. Muler-Groeling, J.-L. Pichard, and D. Weinmann, °F. von Oppen and T. Wettig, Europhys. L2, 741 (1995.
Europhys. Lett31, 169 (1995. 1°p. Jacquod and D. L. Shepelyansky, Phys. Rev. [7t.4986

SF. von Oppen, T. Wettig, and J. Mer, Phys. Rev. Lett76, 491 (1997.



