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General localization lengths for two interacting particles in a disordered chain
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~Received 1 July 1998!

The propagation of an interacting particle pair in a disordered chain is characterized by a set of localization
lengths that we define. The localization lengths are computed by a new decimation algorithm and provide a
comprehensive picture of the two-particle propagation. We find that the interaction delocalizes predominantly
the center-of-mass motion of the pair and use our approach to propose a consistent interpretation of the
discrepancies between previous numerical results.@S0163-1829~99!13501-X#
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The problem of interacting electrons in a disordered
tential is one of the important unsolved problems
condensed-matter physics. This has been emphasized
by the recent observation1 of a metal-insulator transition in
two-dimensional~2D! systems that was not anticipated the
retically. Some time ago, Shepelyansky2 proposed that it
would be worthwhile to consider the simple case of two
teracting particles in a random potential. By an approxim
mapping of the problem to a random banded matrix mod
he predicted that unexpectedly, such a particle pair co
propagate coherently over distancesj2 much larger than the
single-particle localization lengthj1 as long as the two par
ticles are withinj1 from each other. After Shepelyansk
many authors3–7 have tried to obtain more rigorous result
However, at the present stage, there exists a controversy
only over the expression3–6 for j2 but even over the exis
tence of the enhancement effect itself.7,8 Our purpose in this
paper is to present a more comprehensive picture of the
particle propagation by defining and computing a set of
calization lengths. We unambiguously show that the eff
exists and propose a resolution of the controversy in the
vious studies.7,8

Specifically, Shepelyansky obtained for the two-parti
localization length

j2;~U/W2!2, ~1!

whereU denotes the interaction strength andW the disorder
strength. Sincej1;1/W2, Eq.~1! implies an enhancement o
the localization length for weak disorder. Since Shepely
sky’s original argument involved several uncontrolled a
sumptions for the single-particle eigenstates, a numbe
~mostly numerical! attempts3–7 to refine the result followed
afterwards. Imry3 rederived Shepelyansky’s result, Eq.~1!,
by an extension of the Thouless block scaling picture. Fra
et al.4 computedj2;W23.3 using the transfer-matrix metho
~TMM !. von Oppenet al.5 introduced a Green’s function
approach, allowing one to project the problem on the s
space of doubly occupied sites, and concludedj2;U/W4.
Subsequently, Song and Kim6 treated the idea of von Oppe
et al. rigorously using the recursive Green’s function meth
and foundj2;W22.9. Recently, Ro¨mer and Schreiber7 sug-
gested from the TMM result that the enhancement eff
doesnot exist.
PRB 590163-1829/99/59~1!/46~4!/$15.00
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It is currently not clear whether these ideas have any
evance to the degenerate finite-density Fermi gas. It app
to be the most promising direction to consider the locali
tion properties of quasiparticle pairs. There have been a n
ber of studies3,9,10 of whether quasiparticle excitations delo
calize relative to single-particle ones. While a numeric
study for a one-dimensional~1D! system showed delocaliza
tion only for unrealistically high excitation energy of the pa
~of order of the bandwidth!,9 both arguments3 and numerical
studies10 in higher dimensions suggest the possibility of
new pair mobility edge close to the ground state.

The two-particle problem in one-dimension is describ
by the Hamiltonian

H5H1^ 111^ H11U(
m

um&um&^mu^mu, ~2!

wherem labels theN sites of the 1D lattice andH1 is the
usual single-particle Anderson Hamiltonian

H15(
m

@emum&^mu1t~ um&^m11u1um11&^mu!#. ~3!

em is a random-site energy, drawn from a box distributi
with 2W/2<em<W/2, and U the on-site interaction. The
hopping matrix elementt is set to unity throughout this work
A convenient quantity to study the localization properties
the pair is the two-particle Green’s functionG5(E
2H)21. The two-particle localization lengthj2 on which
previous studies have focused is defined in terms ofG as5

j2
2152 lim

un2mu→`

1

un2mu ^^ lnu^m,muGun,n&u&&, ~4!

where the double bracket denotes the disorder average.
In this paper, we discuss general localization lengths t

provide a much more comprehensive picture of the locali
tion properties of the particle pair. First, we consider a g
eral center-of-mass~CM! motion by defining

j2,a
2152 lim

un2mu→`

1

un2mu ^^ lnu^m,m2auGun,n2a&u&&.

~5!

We find that, surprisingly,j2,a is essentially independent o
the particle distancea, even if a exceeds the single-particl
46 ©1999 The American Physical Society
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localization lengthj1 . We also study the behavior ofG for
relative motion at fixed CM, as characterized by

j r
2152 lim

n→`

1

n
^^ lnu^m1n,m2nuGum,m&u&&. ~6!

Finally, we consider the propagation of one of the partic
with the other held fixed, as described by

j f
2152 lim

n→`

1

n
^^ lnu^m,m1nuGum,m&u&&. ~7!

As opposed toj2 andj2,a , we find that the latter two length
are only very weakly affected by the interactionU. Never-
theless, it will turn out that these lengths are indispensa
for obtaining a more comprehensive picture of the tw
particle propagation and for understanding the discrepan
between previous numerical results.

While j2 could be computed by projecting the problem
the subspace of doubly occupied sites, this is no longer p
sible for the generalized localization lengths defined abo
For this reason, we introduce a new decimation algorith
which allows us to compute these localization lengths e
ciently. As opposed to the projection method forj2 used in
Ref. 5, this algorithm is numerically exact. We briefly d
scribe the procedure for computingj2 . Adaption to the other
lengths defined above is straightforward. Since the inte
tion acts only on symmetric states, we specify to~spinless!
bosons. Using a symmetrized basis

umn&5H um&um& if m5n,

~1/A2!~ um&un&1un&um&! if mÞn,
~8!

and interpreting (m,n) as sites of a 2D square lattice, th
Hamiltonian of Eq.~2! can be interpreted as describing
single particle on the 2D lattice shown by the thin solid lin
in Fig. 1. The off-diagonal elements ofH are nonzero only
for nearest-neighbor bonds and equal toA2 ~1! if one ~none!
of the nearest-neighbor sites is a doubly occupied state.
goal is to compute the Green’s functionG(E) that is the
inverse of a sparse matrixD5E2H of linear size;N2.
Clearly, a direct manipulation of the whole matrix is inef
cient both in terms of time and storage, and becomes for
ding forN.100. To circumvent this problem, we recursive
decimate the irrelevant matrix elements of the Green’s fu
tion. We start by decomposing Hilbert space into subspa
i, each of which is spanned by the states along one of
dashed lines in Fig. 1~a! and which are labeled by their d
mensions 1< i<N. We denote the projection ofD onto these
subspaces asDi . Clearly, D couples only neighboring sub
spaces~i! and (i 11), and we call the corresponding@ i 3( i
11) dimensional# coupling block in the HamiltonianVi .
Finally, we define vectorsxi

(n) with elements

~xi
~n!! j5^N2 i 1 j , j uG~E!unn&, ~9!

given by matrix elements of the Green’s functionG between
a doubly occupied siteunn& and the states in subspacei.
Since only neighboring subspaces are coupled, one rea
derives fromDG51 the set of coupled linear equations
s

le
-
es

s-
e.
,
-

c-

ur

d-

-
es
e

ily

D1x1
~n!1V1x2

~n!50,

Vi 21
T xi 21

~n! 1Dixi
~n!1Vixi 11

~n! 50, 2<i<N21,
~10!

VN21
T xN21

~n! 1DNxN
~n!5en ,

where en is the N-dimensional unit vector with (en)m
5dn,m . Solving these equations, we obtain

xN
~n!5GNen , ~11!

where theGi can be computed recursively from

Gi5~Di2Vi 21
T Gi 21Vi 21!21 with G15D1

21 . ~12!

Finally noting that (xN
(n)) l5^ l l uG(E)unn&, we can now com-

pute the localization lengthj2 from Eq.~4!. This reduces the
calculation to manipulations of matrices of sizes from 131
to N3N. It is worthwhile to point out that at the final stag
of the iteration, the calculation is formally reduced to
effective 1D model for a single particle. It is straightforwa
to generalize the algorithm to compute the other localizat
lengths defined in this paper. For example,j r is calculated
by decomposing Hilbert space according to the dotted li
of Fig. 1~a!.

FIG. 1. Sketch of the two-dimensional lattice~thin solid lines!
and the wave-function profile~thick solid lines!. The dashed lines
~dotted lines! represent the index scheme for the calculation
j2,a (j r). Lengths are measured in terms of the lattice constand.
The factorA2 arises becausej r andj2 are defined in units of the
diagonal length of the smallest square of the lattice (A2d) while j f

is defined in units of its edge length (d).
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For j2 , we setn51 in the above algorithm and obtai
t l ,15^^ lnu^ll uGu11&u&& with 1< l<N for each parameter se
(W,U). We find thatt l ,1 depends linearly onl, implying an
exponential decay of the Green’s function. To elimina
finite-size effects nearl 51 andl 5N, we fit t l ,1 in the range
N/5< l<4N/5 to

t l ,152
l

j2
1c ~13!

with c a constant. We find that for chainsN>200, our results
for j2 are essentially independent of system sizeN, suggest-
ing that finite-size effects onj2 are rather weak. Simila
procedures are performed for the other localization lengt

Our main results are presented in Fig. 2. All data ha
been obtained for system sizeN>200 and for the center o
the bandE50. In view of the special nature of the doub
occupied sites due to the on-site interaction, it is natura
ask whether the definition for the two-particle localizati
lengthj2 correctly captures the CM motion. To answer th
question, we plotj2,a for interaction strengthU51.0 as
function of a in Fig. 2~a!. We find thatj2,a remains un-
changed up to rather largea, implying that j2 is indeed a
good description of the CM motion. In fact,j2,a remains
independent ofa even fora.j1 . Hence, as opposed to th
previous beliefs2,5 the interaction affects the two-particle mo
tion even if the particle distance exceedsj1 . This can be
understood in terms of single-particle propagation in the
lattice of Fig. 1.j2,a is associated with the transition prob
ability along the dashed line a distance;a from the diago-
nal. We recall that when̂m,m2auGun,n2a& is expanded
in powers of the hopping matrix elementt, it is given by a
sum over all possible paths fromun,n2a& to um,m2a&. If
the distance between these two sites,;um2nu, is much
smaller thana, the effect of the interaction would be negl
gible. However,j2,a is defined by the limiting behavior o
um2nu→` with a finite, cf., Eq.~5!. In this case, the con
tributions of paths that are sensitive to the interactionU are
no longer negligible andj2,a remains influenced by the in
teraction even thougha.j1 .

In Fig. 2~b!, we show our results forj r ~symbols! that
describes the decay of the Green’s function with relative d
tance. For comparison, we also plotj2 ~lines!. At U50, the
two lengths are equal within the numerical accuracy, i
j2.j r . As U increases,j r remains nearly constant whilej2
shows a pronounced enhancement in qualitative agreem
with Shepelyansky’s prediction.2

In Fig. 2~c! we plotj f ~symbols! andj2 ~lines!, where the
former describes the range over which one particle mo
with the other one fixed. AtU50, we find thatj f approxi-
mately equals to 2j2 . As already seen in Fig. 2~b!, j2 shows
a strong increase withU. By comparison,j f shows a much
weaker increase. Hence, there exists aUc(W) beyond which
j2 exceedsj f .

At U50, the two particles move independently and t
propagation of a given particle is not affected by whether
other is moving in the reverse (j r) or in the same direction
(j2), implying j r5j2 . Moreover, sincej2 measures two-
particle propagation, whilej f the single-particle motion, one
expects that the transition probability forj2 is given by the
square of that forj f , so thatj25j f /2. We note in passing
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that j2(U50)Þj1/2, as was pointed out in Ref. 6. Sinc
both j r and j f are determined by the limiting behavior fo
diverging distance between the particles, one does not ex
them to be strongly influenced by the interaction. This e
plains the rather flat dependences of both lengths onU.

With the additional information fromj r and j f , we can
now construct a wave-function picture in the 2D lattice re
resentation of the problem~Fig. 1!. At U50, this implies
that the wave-function profile is described by a square
shown by a thick solid line in Fig. 1~a!. As U increases, the

FIG. 2. ~a! j2,a as function ofa. ~b! j2 ~lines! andj r ~symbols!
as function ofU. ~c! j2 ~lines! andj f ~symbols! as function ofU.
All data have been obtained for system size 200<N<300 and for
E50.
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length of the edge associated withj2 increases while tha
associated withj r remains essentially constant. ForU
.Uc , the wave-function profile becomes highly anisotrop
and we find that it can be well described by an ellipse
shown by the thick solid line in Fig. 1~b!. The elliptical
shape predicts the relation

j f5
2j2j r

Aj2
21j r

2
. ~14!

We have checked that our data are in good agreement
this expression forU.Uc . This clearly shows that the en
hancement effect is associated predominantly with the di
tion of j2 , i.e., the CM motion of the two particles.

These results allow us to resolve some of the abo
mentioned discrepancies between previous numerical s
ies. We start by noting that the TMM measures the larg
length scale from the N2 Green’s-function entries
^1nuGuNm& with 1<m, n<N.8 According to our results,
there are two competing lengthsj2 andj f . For U,Uc , we
find that the largest length isj f while for U.Uc , it is j2 .
Therefore, the TMM actually measuresj f for U,Uc andj2
only for U.Uc . We first compare our results to those
Frahmet al.4 We find that their results for the localizatio
length are two to three times larger than our result
max$j f ,j2% at given values ofW andU. We attribute this to
large finite-size effects in the TMM, as suggested in Ref
On the other hand, in Ref. 7, any enhancement effect
attributed to finite-size effects and it was suggested that
TMM produces the single-particle localization length for
sufficiently large system size. This is inconsistent with t
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results of the present paper. We suggest the following ex
nation for the numerical results of Ref. 7. The argument
Ref. 7 is based on TMM data for (W,U)5(3.0,0) and
~3.0,1.0! ~restricting attention to short-range interaction!. For
(W,U)5(3.0,1.0), we findthat the largest length isj f

513.260.3, which is close toj1.11.7. Hence, we expec
that the data in Ref. 7 in fact extrapolate toj f , which is
indistinguishable fromj1 within the numerical accuracy o
Ref. 7. Analogous conclusion holds for (W,U)5(3.0,0).
Therefore, we contend that the principal argument of Re
is a misinterpretation of data for a special parameter set
expect that the TMM exhibits the extrapolate toj2@j f
which is indistinguishable from Finally, we find that thej2’s
in Ref. 5 are somewhat larger than those in this paper, wh
we attribute to the approximate treatment of the Gree
function in Ref. 5.

In summary, we have presented numerical results for v
ous newly defined localization lengths of two interacting p
ticles. It turns out that the enhancement effect exists ma
for the CM motion of the particles while both the relativ
motion and single-particle motion are only weakly depend
on the interaction strength. It has also been found that
enhancement effect for the CM motion is insensitive to
distance between the two particles beyond the single-par
localization length. Based on these results, a consistent
planation has been presented for the controversy in prev
numerical studies.
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Schreiber,ibid. 78, 4890~1997!.

9F. von Oppen and T. Wettig, Europhys. Lett.32, 741 ~1995!.
10P. Jacquod and D. L. Shepelyansky, Phys. Rev. Lett.78, 4986

~1997!.


