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We investigate the thermopower of single molecules weakly coupled to metallic leads. We model the
molecule in terms of the relevant electronic orbitals coupled to phonons corresponding to both internal vibra-
tions and to oscillations of the molecule as a whole. The thermopower is computed by means of rate equations
including both sequential-tunneling and cotunneling processes. Under certain conditions, the thermopower
allows one to access the electronic and phononic excitation spectrum of the molecule in a linear-response
measurement. In particular, we find that the phonon features are more pronounced for weak lead-molecule
coupling. This way of measuring the excitation spectrum is less invasive than the more conventional current-
voltage characteristic, which, by contrast, probes the system far from equilibrium.
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[. INTRODUCTION neling regimé® and the crossover have been studied by

Turek and Matvee? In the case of a quantum dot strongly
oupled to one lead, the thermopower of quantum dots has
een investigated by Matveev and Andréev.

Here, we extend these considerations to transport through
single molecules, where experimental woitR indicates that
bohonons may play an important role. In our model, we con-
sider transport through relevant electronic orbitals and incor-
porate Coulomb interaction by a Hubbard-like term. These
electronic orbitals are coupled to both oscillations of the

these efforts is to realize the vision of molecular lecul lative to the lead d int | Vibrati Th
electronics'® While the possibilities of concrete applications molecule relative 1o the leads and internal vibrations. 1he
oupling of the molecule to the leads is represented by a

remain to be seen, the question of transport in the molecule{(f' i Hamiltoni Emploving th A i
regime is of fundamental physical interest. unneiing mamiftonian. Employing the rate-equation ap-

Recently, there has been considerable theoretical effort tt ro"’tﬁh valid for weak Toletgule-llceadtcoupl)tllng, v;/e comptute
calculate current-voltage(lV) characteristics of single- € thermopower as a function ot gate voltage, temperature,

molecule devices, and effects such as NBR? influences and electron-phonon coupling. o .
1217 We find that the thermopower contains information on the

of phonons and dissipatid;’” and contact-geometry electronic and phononic excitations of the molecule. This

effectd®1® have been studied intensely. Roughly speaking P )

present approaches separate into two main directids: way of measuring the molecular excitations in linear re-

Work based on a detailed modeling of the molecule and thgponse[cf. theAT—0 I|r_n|t in Eq. (1] mz_:ly_have advantages
contact region via the density functional theqiyFT) 1819 Over the more convention®V characteristic. The latter nec-

For a recent discussion about the validity of equilibrium DFTessanIy involves nonequilibrium effects, which are difficult

. to interpret. Moreover, a large applied voltage may affect
for transport through single moleculéd. Ref. 20. (2) Ap- symmetF;y and structure of thge mopl)gcule itself?q y

proaches based on a parametric modeling of relevant mo- In leading order perturbation theory for the molecule-lead

1-17 i
lecular levels~' This type of approach has the advantagecoup"ng, electrons tunnel from a lead onto the molecule or

that it enables the investigation of additional degrees of free-. . . o
. : : h ice versa(sequential-tunneling contributiong=or pure se-
dom including, e.g., mechanical, and magnetic degrees of

recdom Ieaing o phonon and Spi cynamics. The presefuc i LTSI U T al e ermoponer o & e
paper follows this second approach. 9 9 P

I s paper e investgate th themopauer of single STREIALTE T Wi seps due o elecionic and phoncnie
molecule devices. The thermopower is defined as the ratio ot ' P P

voltageV and an applied temperature differens& under ph(lz/lngrr:ag\(/)grp“\/r\]/g Sf;[:]?jn?rt]gtairs gn\?vligzee(:én e of parameters
the condition that the current vanishes, ’ 9 P

so-called cotunneling contributions from next-leading order
) perturbation theory for the molecule-lead coupling are
S=- Al'll'mOE- : (1 important?8 In this case, the electron only virtually occupies
- 1=0 molecular levels. We investigate the cotunneling contribu-
For quantum dots the thermopower for pure sequential tuntions and the full crossover between the sequential-tunneling
neling has been investigated theoretically by Beenakker andnd the cotunneling regimes. We find that elastic cotunneling
Staring* and experimentally by Staringt al??> The cotun-  does not show any significant phonon structure, and discuss

The physics of electronic transport through single mol-
ecules has gained much interest in recent years, both expe
mentally and theoretically. Experiments with molecules
ranging from H! to DNA? have shown various interesting
effects occurring in two-termin&l* and three-terminat®
molecular devices. The spectrum includes Coulom
blockade’® negative differential resistang®DR),* phonon
influences®° and the Kondo effect? The ultimate goal of
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under which conditions sequential-tunneling phonon featurethe leads. It is assumed that relaxation in the leads is suffi-
are retained in the total thermopower. ciently fast so that at any time these distributions have the
The outline of this paper is as follows: Sec. Il introducesform of Fermi functions
our model for a single-molecule device with mechanical de- _
grees of freedom. In Sec. lll we review the rate equations fa(E) = {exfl(E + eVy)/kgTa] + 1}, (5
approach and address the issue of regularization of the co- e distinguish two types of phonons, which we term vi-
tunneling contributions. Our calculations for the ther-prations and oscillations: Vibrations are internal phonon
mopower are described in Sec. IV and the results are pranodes of the molecule, for which the center of m@as!) of
sented in Sec. V. We summarize our findings in Sec. Vlthe molecule is at rest, while oscillations involve movement
Some calculational details including the results of the cotunof the molecule as a whole. Vibrational phonons are annihi-
neling regularization are relegated to appendices. lated(createdi by b (b'). For oscillations we use the momen-
Il MODEL tum and position operatogs andz of the CM displacement.
In the case of physisorbed moleciffethe coupling to the
We consider a three-terminal single-molecule device, conleads is weak, so that these two phonon types typically in-
sisting of a molecule weakly coupled to two metallic leadsvolve different energy scales: Vibrations, which are associ-
serving as source and drain electrode, respectively. The thirgted with strong intramolecular bonds, will have consider-
electrode only influences the molecule by electrostatic interably higher energies than oscillations. The two phonon types
action and serves as a gate electrode. In order to measure thlso differ in the nature of coupling: Vibrations directly
thermopower of the device, it is necessary to control thecouple to the electric charge on the molecule, described by
electrostatic potentials and temperatures of the source aritle term~ny(b™+b), whereas the coupling for oscillations

drain electrodes individually. occurs through displacement-dependent tunneling matrix el-
The model we apply in order to investigate the ther-ementst; z(2).
mopower has previously been used in analysd¥atharac- (a)Oscillations—Sincet arises due to tunneling processes

teristics, see, e.g., Refs. 14 and 15. The Hamiltonian can beetween the leads and the molecule, we assume an exponen-
divided into a part describing the electronic and phononiaial falloff of t with increasing distance between lead and
features of the molecule, a part modeling the leads, and molecule. For a symmetric molecule of length #&tween
tunneling term that couples molecule and leads;H,,,,  two leads with a separation distance, 2his yields

+Hleads+Hmix= where

t r(2) =toexd - (d -1+ 2)/z]. (6)
Hmol = (& —€Vg)ng + %nd(nd - 1) + Mwyp(b" + b)ng The parameteg, fixes the length scale of the exponential
falloff of the electronic wave functions outside the leads and
P21, the molecule.
+hayip(b™o + 1/2) + om EM%SCZZ' 2 (b)Vibrations—For the vibrational electron-phonon cou-
pling there exists a procedure which eliminates the coupling
term by a canonical transformation of the Hamiltont&A?
Heass= > > Gngngapm (3)  This yields a renormalization of the parametemsndU, and
a=LRp,o of the lead-molecule coupling(z) — t(z)exd—-\(b"-b)].
Henceforth, for the sake of notational simplicity, we will
Hox= 2 2 (ta(z)c;pgd[ﬁ h.c). (4)  refer to the renormalized parameterseaand U. (Alterna-
a=L,R p,c tively, one can diagonalize the Hamiltonian for each occupa-

In the following, the common Fermi energy of the leads att'ogntgymbemd and calculate Franck-Condon matrix ele-

vanishing bias voltage is chosen as the zero point of energ)r).q In the following, we restrict ourselves to considering one

For simplicity, we assume that only a single spin-degenerate ! o .
orbital of the molecule with one-particle energygontributes phonon type at a time. Whenever the specific phonon type is

to the current(A generalization towards more orbitals is not irrelevant we will skip the subscripts “vib” and “osc.
difficult.) For double occupancy of the molecule, Coulomb
blockade is taken into account via the charging endugy

The operatord, (df) annihilates(create$ an electron with We consider the weak-coupling regime for the molecule-
spin projections on the moleculeny==,d’d, denotes the |ead coupling. In this case the energy broadenjngf mo-
molecule occupation-number operator. The whole system décular levels due tél,, is the smallest energy in the prob-
molecular levels can be shifted by means of applying a gateem. In particular, we assume<kgT,%w, which allows for
voltageV,. a perturbative treatment fo ;.

The leads are described as a non-interacting Fermi gas of |n the absence of coupling to the leads, the eigenstates
electrons with a constant density of states. Hegg, (c},,)  of the molecule can be written aso,q), wheren denotes
annihilates(createg an electron in lea@ (a=L,R) with mo-  the number of additional electrons on the molecule gnd
mentump and spin projectiorr. The potentiaV, and tem-  gives the number of excited phonons. The spin orientation
peratureT, of the left and right lead are taken into accounto=1,] is only relevant for the singly-occupied molecule.
through the probability distributions for state occupation inSince we consider a spin-degenerate orbital and spin-

Ill. RATE EQUATIONS AND TRANSITION RATES
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FIG. 1. Sequential-tunneling processes, here schematically e 8) ! b)

emplified for tunneling between the molecule and the left lead.

FIG. 2. Cotunneling processe@) Elastic cotunneling angb)

independent tunneling matrix elemerifsy(z), cf. Egs.(2) inelastic cotunneling.
and (4), there exists a symmetry between the two states
[17,9) and |1],q). This allows for a notationally more
simple treatment without reference to specific spin states by nggn:;) = é"_’(”ﬂ)%pa(Eg)ﬂ) - E2)|Mg:g7;+al)|2- (11)
introducing appropriate spin factors into the transition rates,
which account for the multiplicity of the=1 level, cf. Ap-  Here, p, denotes the density of states in leadand s"~™
pendix A. denotes the spin factor, cf. Appendix A. In our calculations

The operatorH,, introduces transitions between the we assume, =pg=const. We note that due to our choice of
eigenstatedn, q), for which the rates are calculated via Fer- symmetric tunneling matrix elements(z)=tg(-2), cf. Eq.
mi's golden rule in the next subsection. Subsequently, thesgs) g ratesfg_’f;ﬂ) are de factoindependent of the lead

are used to formulate the rate equations and the expression . n—(nx1) .
for the steady-state current. index a. The matrix element.Q/I(Hq,;a car.1 be e>.<pressed in
terms of Laguerre polynomials and their detailed form de-
A. Transition rates pends on the phonon type, see Appendix B.

. o Next-leading order perturbation theory generates cotun-
We abbrewatg the total rate for a transitign, ) neling process%s with z‘f virtual intermedia):egmolecule Sfate.
—[n",q") by W5, These total transition rates can be writ- Cotunneling leaves the electron number on the molecule un-
ten as a product of a Fermi factéy or (1-f,), which gives  changed. By contrast, the phonon state can be changed, and
the probability for the availability of electrons or holes at thein this case the process is called inelastic cotunneling. If
appropriate energy in lead, and a “bare transition rate” initial and final state of the molecule are identical, one
factorl“gjgi calculated by Fermi's golden rule. We denote speaksl ofdelasticdcptannegng,hcf. Fir?- 2|- In addition t?c thed

- examples depicted in Fig. 2, where the electron is transferre
the energy of the molecule in the statea) by from the left to the right lead, there are also contributions for
the reverse process and for processes which involve tunnel-
ing back and forth between only one lead and the molecule.

Leading order perturbation theor ields se uentiaI—Thus’ we abbreviate the total cotunneling rates by
g P y Y d won wherea andb denote eithet or R for the left

Eq=n(s —eVy) +Un(n-1)/2 +hw(q+ 1/2). )

tunneling processem,q)— |n+1,q’), cf. Fig. 1, with the 40’ ;a—b’
total rates and right lead.
In order to obtain the total rates, one needs to sum over all
(1) _ (+1) _ mnypen—(n+1) lead energieg® weighted by Fermi functions for occupancy
Wgﬂq’ - agR fa[Eq’ Eq]rqﬂq’;a ' ®) probabilities in the appropriate leads
—nN n—n
o= | dlp(NF (L =T (T (D)
(- - (- g—q';a—b f Pale)la b 4—q’;a—b\€ /s
Wo g = 2 (-flE- BN gn - (@)
a=LR (12
The bare transition rateE are obtained by using Fermi's Where €’=e*+Ej-E;, as required by energy conservation.
golden rule The bare cotunneling rates are given by
n—n — h— n n
| s"ﬂ(”_l)z—qTPa(En -ETY) Tqqriab(€)=S"""27/h py( €~ Eg+Ey,)
a—ana h @ M D (D=0 e (=D areD)—n | 2
X (= 1,0, €l Hpyln,q, 02 x| | e T, Taath Tdda
S IR o\ E+E-En Eq - € -Ep’
(1) 2T -1 —(n-1
=SBy By DM g I’ (10 (13

Here, the first term in the sum represents cotunneling pro-

and analogously cesses with an electron virtually tunneling from a lead into
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the molecule and out again. Conversely, the second term d

. . e . _9%5n_ (N=1)\ p (N-1)—n (n+1)y 5 An+1)—n
contains those cotunneling processes in which an electron 0= MPE—E [Py va]’—>q + Py Vv((]’—>q
virtually tunnels out of the molecule and another electron a
tunnels back in subsequently. Again, the symmetry of the

. . _ — —(n+1) —(n-1)
tunr?erllng matrix ElenmentsL(zn) —ntR(—z), leads tol'y 0, ¢ - PoWog  —PW gy ]
=Ty grocandly "o =l R

It has been pointed out previously in the literature that due + > [pglv\/’;f”q - pgv\/rg/]

to the singularities of the bare transition rat&8) for cotun-
neling, the integrals (12) for W diverge at finite
temperature$*?8 Physically, this problem arises since we 1
have assumed a well-defined energy for the intermediate vir- - —{Pg - quz Pg,] , a7
tual state. In reality, due to higher order tunneling effects, T q

this intermediate state gains a finite width which leads to

a regularization of the integrals. In the lindit—0 one can where we have included an additional term, which takes into
derive a regularization scheme analogous to that presentegtcount relaxation of the phonons in the relaxation time
by Turek and Matveev in Ref. 24. This scheme consists ofpproximation with relaxation timer. P:q:e_qﬁ“’/kBT(l

two steps: First, introduce finite width3 of the intermediate —e«/ksT) s the equilibrium probability distribution for the
states by adding an imaginary part in the energy denominghonons alone. The various cotunneling contributions have
tors. Second, in order to avoid double counting, subtracheen abbreviated by introducing

terms scaling as 1J, which correspond to sequential-

tunneling contributions. In thd,— 0 limit, the remaining W g = > > Wi b (18
integrals can be written as Cauchy principal-value integrals. a=L,R b=L,R '

Formally, this scheme can be extended to our case including, stationary-state rate equations in conjunction with the
phonons. However, this turns out to be a rather awkwar

’ h ical f the | ormalization conditiorEn,ngzl form an inhomogeneous
procedure concerning the numerical treatment of the Inteéystem of linear equations whose solution gives the station-
grals. Instead, we find it useful to transform the integrals sQ, y probability distributionP” for a given voltage bias or
that a power series expansion of the expressions with reSpef%{mperature difference q
to I'; is feasible. After the subtraction of all [ terms, the '

o S Th ionar rrent is given
I';— 0 limit can be evaluated explicitly and we can express € stationary current is given by

a’'#q

our results in terms of polygamma functions, cf. Appendix C. =3 P”[V\/‘“mg)—\/\/‘“(“‘é)]
a-" a—q’; —q';
B. Rate equations na.q’ a a
In the weak-coupling regime and for nondegenerate + > pw! . L_V\/1—>n - (19)
a-""g—q’;R— g—q";L—R!"

eigenstates of the molecule, it can be shown that the off-
diagonal elements of the reduced density matrix of the mol-
ecule py,o are negligibly smalt*2° Therefore, the general- The first sum comprises all sequential-tunneling contribu-
ized master equations obtained via a density matrix approadiPns, the second sum the cotunneling contributions.

na.q’

reduce to simple rate equations. Writinng(t) Calculations oflV characteristics based on this approach
=(n,qlpma(t)|n,g) for the probability that the molecule is in Show phonon steps in thév curve for the sequential-
the staten, q) at timet, one obtains tunneling regime and phonon stepsdiydV for the cotun-

neling regime at low temperatur&s!® The relaxation time
PYa= > D [p“:\/\/“:ﬂ“_ pnv\pﬁn:]_ (14)  approximation provides a means of analyzing situations be-
O ngaq 04 S tween the two extremes of equilibrated and non-equilibrated

_ _ . _ phonons studied by Mitrat all4
We consider the leading and next-leading order contribu-

tions to the transition rates derived in the previous subsec-
tion. Generally speaking, sequential tunneling is the domi-
nant process close to the Coulomb peaksdindV, i.e., IV. THERMOPOWER
whenever alignment of a molecular level with the Fermi en-

ergies of the leads permits tunneling, The thermopower, Eq(l), is calculated by considering

keT = minleV,—&-mU|. (15  the current through the molecule in the linear response re-
m=0,1 gime, which is

Cotunneling plays the dominant role in the Coulomb valleys [(V,AT) = GV+ G;AT + O(V2, AT VAT), (20)
and for sufficiently low temperatures, i.e., when
whereG denotes the conductance a@4 the thermal coef-

KgT < anE)”JeVg —e-my. (160 ficient. Hence, the thermopower can be written as
Using the results for the transition rates, one obtains for the S= Gy — GY+GY (21)
stationary case G G+ G’
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where sequential tunneling and cotunneling contributions
have been separated. We investigate sequential-tunneling and
cotunneling contributions to the thermopower and obtain ex-
pressions valid in the full crossover regime by means of the
regularization schem@\ppendix O.

In order to obtairG andGy, we expand the curreiit9) in
the bias voltage/=V, -Vg and the temperature difference
AT=T, —-Tg between the source and drain electrodes. Since
V andAT are in principle infinitesimal, we can conveniently
choose the right electrode to have zero potential and tem-
peratureT. Accordingly, the left electrode has potentil
and temperaturd +AT. When expanding the current, one
has to expand both the probabilitiéﬁ and the transition

—n’
ratesWy .

PHYSICAL REVIEW B0, 195107(2004)

1 n M () —(n-1)
=2 2 (ATOG+VPYIW, gir ~ Wy g
n,a.q’

+ an~>(n—l) _ anﬂ(r'ﬁ'l)]

q—a’;L a—q’;L

1 J—
= n n—(n-1) _  n—(n+l)
+ ZnE’ PVlvg gL ~VamqiL

1 Dn n—(n-1) _ .n—(n+1)
+Enq2q’ PRATIy g ~to g 1- (25)

Here, the first term remarkably vanishes due to the symmetry
n—(ntl) _  n—(ntl)
q—a R~ g-q’iL

Therefore, one obtains the following

We write the expansion for the transition rates and prob_sequential-tunneling contributions to the thermal coefficient

abilities as Gt and the conductande:
! ’ ’ ! 1 —
—n _ n—n n—n n—n sq_ — n n*}(n_l)_ n%(n+1)
V\f]qﬂq, =Wy g TATt o + Vo o (22) Gy'= > > Palty qriL ~to gL 1 (26)
na,q’
and 1 —  e(n-1 (el
GN=2 3 Plog g ~vg g - (27)
na.q’

Pa=Pg+ OAT+DgV + - (23

Here,ﬁ]zzﬁlvn exp(—Eg/kBT)/Z denotes the grandcanonical

probability distribution, andZ:Enqu‘sl-n exp(—EglkBT) is the

corresponding partition functionThe additional factor of

2%.1 takes the spin degeneracy of the levetl into ac-
count) The normalization condition for the deviations IBE
from its equilibrium value is 0, ;07=3, ,Pg.

We point out that the so-obtained conductance and thermal
coefficient do not depend on the probability deviati

anddbg any more. This is an important result since it allows
for an analytic expression of the thermopower not involving
an explicit solution of the rate equations, cf. Appendix D.
[Expansions of, and |k alone lead to expressions f@*¢

and G3% which do involve®; and ®;. We have also carried
out calculations based on this approach by solving the rate

equations for the probability deviations and find agreement
with the results from Eqg26) and(27).]

(b) Cotunneling contributions-The cotunneling contribu-
tions to thermal coefficient and conductance are

GP= 2 Pilty_qroL ~to g r) (28

By substituting the expansior@éZ) and(23) into the rate
equationg17) and retaining only terms linear M and AT,
one obtains a new set of rate equations for the deviaﬁ)j]ws
and CI)E, see Appendix D, Eq(D1). These, in conjunction
with the normalization conditions fd® and®, represent an
inhomogeneous system of linear equations, whose solution

yields the deviation® and ®_. na.q’
Finally, the curren{19) can be expanded in terms AfT co_ Sn, n—n _..n—>n
andV y ( ) p G*= 2, Pq(UQHq’;RHL Uq*)q’;L—PR)' (29)
na.q

= > (AT3+V<I>g)[m/;:gr)fé)—\/\/;:g)fé)] In principle, any set of rate equations involving phononic
na.q’ ' ' excitations yields an infinite system of linear equations. In

numerical calculations one makes use of the fact that transi-

BN n—n n—n
+ 2 {PIAT(tg g rt ~toqi g tion matrix elements involving highly excited phonon states
na.g’ are typically very small. This allows for the introduction of a
+ V(vgjg,;R_)L - vg:g,;LﬁR)]}_ (24)  cutoff phonon number.

We find that the linear response quantit@sand G; do
not depend on the relaxation time Mathematically, this
Note that the terms proportional @3 andcpg in the expan- corresponds to the result that the conductance and thermal
sion of the cotunneling contributions are absent since thegoefficient do not involve the probability deviatior@ and
come with the coefficien[vvg:g,;%l_—WS:EHLHR], which @%, cmp. Eqs(26)—(29). '!'he physical reason for this is the
vanishes due to the SymmeﬂZ:gha_»b(f):Fg:rc;/-b_»a(f)- following: In thgl—>0 limit the average time needed for one

' ’ electron tunneling through the molecule becomes large com-

(a) Sequential-tunneling contributions-In Eq. (24) it  pared to the relaxation time. Consequently, the initial state
was chosen to expand in V andAT. Due to the steady-state for any tunneling process corresponds to an equilibrium pho-
propertyl=1g=I,, an expansion i, gives the same result non state.
and it turns out to be convenient to expand the expression By substituting back Eqg26)—29) into Eq.(21), we ar-
I=(I_+1g)/2, which gives for the sequential-tunneling con- rive at the following analytical expression for the thermo-
tributions power:
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pnrin—(n=1) _ ;n—(n+1) n—n _ ~h—n
S= 2n,q,q’ Pq[tqﬂq’;L by gt +2t<qﬂq’;RﬂL thﬂq’;LﬂR] (30)
N E E[ n=(n-1) _ n—=(l) | 5 n—n — "N ]
nag " alg-gil T Vgsail T “VgmgiRoL T “VgogliLoR

This equation is our central result. It shows that even in thenentially away from the Coulomb peak. At gate voltages
presence of phonons the thermopower can be expressed améose tovg, their behavior can be estimated by

lytically through the equilibrium probability distributioﬁg X X

and the expansion coefficients of the transition rates evalu- G¥~ exd - e(Vy — &)/kgT]coshe(Vy - Vy)/ksT], (31)
tated at vanishing source drain voltage and temperature dif-
ference. In the following section the implications of Eg0)

will be discussed. Gyl~ exti - e(Vy — e)/ksTIsinH e(V, — Vg)/ksT]. (32)

V. RESULTS Consequently, the sequential-tunneling thermopovet
A. Sequential tunneling :Gi‘j/GSq_behaves as%an[[e(vg_—vg_)/kBT] in _the vicinity
) . . . of V, which develops a discontinuity in the limit— 0.

We first consider the results for pure sequential tunneling, |5 aqdjtion to the electronic step, the results show smaller
postponing the discussion of the full thermopower due to)honon steps with a distance b between adjacent steps.
both sequential and cotunneling to Sec. V B. We give nu—, ynderstand slope, temperature dependence, and phonon
merical results for the thermopower and present analytic xsep sizes of the sequential-tunneling thermopower, we turn
pressions for the limiting case — o and T— 0. Represen- i, the casd) — .
tative numerical results are shown in Fig. 3. In the U— o limit, electronic double occupation of the

The dominant feature of the sequential-tunneling theryglecule is forbidden, and the sequential-tunneling ther-
mopower S is a large step at the gate voltagg=(e mopowerSi=GY G reads
+U/2)/e, for which the Fermi energy of the leads lies half- T

way in between thél, 0y and the2, 0) state. This situation is S peqpoo-t IO

depicted in Fig. 4. AlVg=V, the thermocurrenG;AT van-  gsq_ Z0d 9 a-d aa’ _Vg-ele

ishes due to electron—ho?e symmetry. An increagdd- > PP - pLyi0) T

creaseyl gate voltage lowergraises the molecular levels ag’ - 45 Tama 4

with respect to the Fermi level, and therefore current is > ,(Epgqq.ﬁpceﬁ)f{q(E;'_Eg)ﬁw(q' _q)rgf_}q
dominated by electrongholeg flowing from the left to the _ a4 _ _

right lead. Consequentlf; changes sign a¥,=V,. More- TeEq o (POPE+ PP fR(Eq — E9lg,
over, away from the Coulomb peaks, sequential tunneling ’

can only occur through the tails of the lead Fermi distribu- (33

tions due to energy conservation. Therefore, the sequential- ' .
tunneling conductance and thermal coefficient fall off expoa-JrhUS’ we find that the thermopower purely due to sequential

tunneling roughly scales like I/ which is in agreement
with the quantum dot cagé.In the low temperature limit,
the thermopower as a function of gate voltage develops a
characteristic sawtooth behavior. The slope of the linear
pieces is found to be S dV,=1/T.

In the T— 0O limit, one obtains

g
7]
[-‘
> n=2
FIG. 3. ThermopowelS*™ times temperature as a function of - o
gate voltage. The parameters are choser =8, 1w=0.11U. V, n=1
and T S have units ofU/e. Large: Vibrations withA=2. Inset:
Oscillations with&=5. [See text following Eq(35) for a discus-

sion of the choice of parametef3he positions of the correspond- T, =T+ AT Te=T

ing Coulomb peaks iml/dV are marked with arrows. In contrast,

the main features of the thermopower occur between the Coulomb FIG. 4. Electron-hole symmetry for the gate voltagéz(s
peaks. +U/2)/e.
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0—1
q<leVyellfio hwq Foﬂq

lim TS9=V, - e/e-sgrieV,— &)
- 9 9 0—1
=0 e2q<|evg—s|/hw Fog

(34)

where the last term generates the step features by adding up
higher phonon contributions for increasing gate voltages. We
can obtain the phononic step siAg of the Q™" step of TS

in the T— 0 limit from Eq. (34):

— vibrations
----_oscillations

o

3
Q Q Q1 -1 0P S 1
Ag=hulel’s 52 (Q- q>r8:3[EOF8:aEO FS:&] : g
! ! ! (35) FIG. 5. Phonon step siz&g in units ofaw/e for the step num-
bersQ=1, 2, 3.
Here, Q counts the discontinuities off Y starting at
e—eVs=0 with increasing gate voltagé, depends on the |evel, sequential tunneling only occurs via electrofus
step numberQ and on the coupling strengthh or  holeg in the tails of the Fermi distributions in the leads. In
&=2y/\os for vibrations or oscillations, respectively. Here, this case, the sequential-tunneling conducta®¥eand ther-
Nosc= (I Mwosd 2 is the harmonic-oscillator length for os- mal coefficientGS” are exponentially suppressed, and higher-
cillations andM denotes the molecular mass. order processes such as cotunneling may yield important
It is instructive to estimate typical values of the param-contributions. Accordingly, sequential tunneling dominates
eters&, and\ for realistic systems. Faf, we need to com- in proximity to the aligned-levels configuration, and is sup-
parez, to the oscillator length\,s. An order of magnitude pressed most at the gate voltageat which the large elec-
estimate yieldsz,~#/(mW)*/2 Here,W is the work func-  tronic step in the sequential-tunneling thermopower occurs.
tion of the metal leads and is of the order of several electronin the latter range of gate voltages, cotunneling may give the
volts. On the other hand, for a typical experinfeascilla-  dominant contributions to the thermopower. For this reason
tions occur on an energy scale of 1-10 meV. This yieldsve have included the effect of cotunneling processes in the
&0=7Zp/ Mo 1. In this case, displacements of the molecule’srate-equations approach, cf. Sec. Ill. At temperatures
CM are small on the scale @}, and therefore no significant kgT <#Aw inelastic cotunneling can be neglected, and we find
shuttle effects can be expected. that the elastic cotunneling does not exhibit significant pho-
Next we consider the vibrational coupling parameter non structure.
Let r be the normal coordinate deviation from the equilib-  Figure 6 exemplifies the behavior of the thermopower in-
rium valuer,. An additional electron has to lowest order the cluding both sequential and cotunneling as a function of gate
effect of shifting the phonon potential curve by some dis-voltage for several temperatures. Whether the total ther-
tance Ar, so that the potential energy is now%Mwﬁib(r mopowerS shows the sequential-tunneling phonon structure
+nAr)2. Hence, the electron-phonon coupling term is of theor whether it is mainly dominated by cotunneling contribu-
order of magnitude oMwZ,rAr=Ar/\hiayp(b+b’) and  tions without significant phonon features, strongly depends
therefore A = Ar/\y. Here, \yip,=(%/Mw,;p)¥2 is the har- on the choice pf parameters. First, ste_p—like features can only
monic oscillator length corresponding to vibrations. There isP® expected if the sequential-tunneling part develops pro-
not a general rule for how,;, andAr compare so that can ~ hounced steps. As discussed earlier, this depends on phonon
in principle assume values both smaller and lager than 1. tyPe, phonon-coupling strength, and temperature. Only for
Due to the different behavior of the matrix elements for
vibrations and oscillations, the phonon step size turns out to
differ between those two cases as shown in Fig. 5. For vi- 01
brational phonons the electron-phonon coupling becomes .
stronger for increasiny. In the case of electron-phonon cou-
pling for oscillations, the coupling gets stronger for decreas-
iNg &=275/ \osc [decreasingy at fixed A increases the po-
sition dependence of the hopping matrix elemeti®]. ]
Thus, the plausible finding is that in both cases phonon step /
size increases with electron-phonon coupling strength. For o1
oscillations the steps are rather small in the relevant regime , _ , i
of &> 1. For vibrations they may be more pronounced. 0 05 1 L5

TS
)

B. Results for the total thermopower ) )
FIG. 6. Thermopower times temperature as a function of gate

The results for the thermopower discussed earlier arisgoltage for several temperatures. The parameter choices afk:
from considering sequential-tunneling contributions only.zw=0.11U, A=2 (vibrationy, a=10"° [dimensionless coupling pa-
However, if the Fermi levels are not aligned with a molecularrameter defined in Eq36)]. Vy andTSare plotted in units ot)/e.
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e A V= kgT(In ™ - In b/e. (39)

In this approximationVX° increases linearly with tempera-
ture and decreases logarithmically withdi. The number
of phonon stepsif present in the sequential-tunneling con-
tribution) is given byeVy’/fiw.

For the parameter choices of Fig. 7, we find tbahs-
sumes values so that the bnterm in Eq.(39) can be ne-

T R | glected. This leads to the following estimates of the cross-
] e ont0” over gate voltage:V:°~0.1U/e for «=107°, and VX°
S e ~0.2U/e for @=10"° which is in good agreement with the
v, crossovers observed in Fig. 7.

We note that the thermopower attains rather small values
FIG. 7. Thermopower as a function of gate voltage at fixedin the cotunneling regime. This is plausible when reconsid-
temperature. The parameter choices ared, Aw=0.11U, A\=2 (vi- ering the effect of the electron-hole symmetry e%:(s
brationg, T=0.01U/kg. Vg is plotted in units ofU/e, Sin units of  +1y/2). Due to this symmetry, the thermopower must vanish
ka/e. at V;. In the case of sequential tunneling, the exponentially
suppressed curre®3°AT shows the breaking of this sym-
temperatures well beloww/kg one can expect any features, metry for small gate voltage deviations from, rather
as can be seen from the smoothening of the phonon steps fapruptly (leading to the large steps in the sequential-

increasing temperature in Fig. 6. tunneling thermopowe®™ as a function of gate voltageFor
Second, temperature and the dimensionless coupling pgotunneling on the other hand, the thermal current is not
rameter exponentially suppressed, but roughly follows a power-like
2 decrease witlAV,. Therefore, breaking of the electron-hole
a=pty/U, (36) symmetry is not as pronounced so tBaemains small in the

which arises in the rate equations and roughly describes tHfegotunneling region centered aroukigl
relatl_ve strength of cotunneling to sequential tunnefthde- _ V1. SUMMARY
termine where the crossover between the sequential-
tunneling and cotunneling regimes occurs. For illustration, Using a model for electronic transport through a single
Fig. 7 shows the thermopow&ras a function of gate voltage spin-degenerate molecular orbital, and taking into account
at fixed temperature for two different coupling parameters oscillational and vibrational phonons, we have calculated the
as well as the corresponding sequential-tunneling result fothermopower of a single-molecule device in the regime of
comparison. weak molecule-lead coupling. In contrast iid measure-
The crossover between the sequential-tunneling and caments, the thermopower provides a means of extracting in-
tunneling regimes occurs in a rather small gate voltagdormation about electronic and phononic excitations and the
range, cf. Figs. 6 and 7, which allows one to identify cross-nature of the electron-phonon coupling in a linear response
over gate voltage¥:°.33 Our results show that the crossover measurement. Therefore, it may have advantages over the
points roughly scale a g°~TIn a1, which is in agreement more conventionalV characteristic, which necessarily in-
with corresponding results for quantum dots, cf., e.g.volves nonequilibrium effects, and which, at large voltages,
Ref. 24, may even affect symmetry and structure of the molecule it-
This can be understood based on the following estimate dgelf.
the crossover pointvgo. We assume that only a small gate- We have found that sequential-tunneling contributions
voltage region is dominated by sequential tunnelingyield a characteristic sawtooth behavior of the thermopower
vg°<v;. With eAVy=min,, JeV;—e—-mU| being the domi- as a function of gate voltage for low temperatures, which
nant activation energy for either electrons or holes, one cashows structure due to electronic and phononic excitations. It
roughly estimate the sequential-tunneling conductance anlkdas been shown that due to the different nature of electron-
thermal coefficient by an activated behavior dependence phonon coupling for oscillations and vibrations, characteris-
tic differences in the phonon step size arise in the sequential-
G, G~ exp(— eAVy/kgT). (37)  tunneling thermopower. Analytical expressions for the
phonon step size have been derived in the limit of strong
Coulomb blockade, which show that, for realistic param-
eters, phonon steps can be expected to be more pronounced
Yor vibrations than for oscillations.
Away from the Coulomb peaks, cotunneling dominates
over sequential tunneling.By considering cotunneling con-
G,GL ~ ab. (38) tributions obtained by means of a regularization scheme, we
have found that théelastio cotunneling regime does not
Comparison of Eqs(37) and (38) yields as an estimate for show significant structure due to phononic excitations. We
the crossover gate voltage have investigated the crossover regime and have given an

While sequential-tunneling contributions therefore fall off
exponentially withAV, cotunneling contributions only show
a weak power-law dependence on the activation energ
eAVy, and temperatur@. To lowest order they may be ap-
proximated by a constant

195107-8



THERMOPOWER OF SINGLE-MOLECULE DEVICES PHYSICAL REVIEW B0, 195107(2004)

estimate for the gate voltage at which the crossover takemate equations contain an additional spin-flip channel, cf. Eq.
place. It has been shown that the phononic structure exhilfA2), leading to a factor of 2. Therefore, by defining the
ited by the sequential-tunneling contributions is retained incotunneling spin factors by

the thermopower ikgT<%w andkgT In a™*>%w, i.e., (1) . 0-0_ 2.2

the temperature is low enough so that the phononic structure sTi=2, 0=72=4, (A4)

is not blurred out, an@?) the dimensionless coupling param- the rate equations involving spin, EA2), can be trans-

eter a is so small that the crossover gate voltage is hightormed into the set of rate equations in Edj7).
enough to allow for at least one phonon feature in the ther-
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APPENDIX A: SPIN FACTORS My~ = tolg [exel+ Zzo]|a)

In our model we consider transport through one spin- 20 g \Y2( 1 \%% 14 oy _ L
degenerate molecular orbital. Including the phononic excita- =1 —q | + E el gz ™ - g ,
tions, a basis of the corresponding Hilbert space is given by z 0 0
the states (B2)

0.8, (119, [1La), [2.0). (A1) Where gi=miniq,q'}, G;=max,q'}, and &=2o/Aoso Fi-

_ o nally, L;(x) denotes the generalized Laguerre polynomial.
Due to the spin-degeneracy and the spin-independent tunne\iote that there is no dependence on whether the final elec-
ing matrix elements, one can make use of the resulting symyonic state isn+1 orn-1.
metry and obtain a description without explicit reference to  (p) Matrix elements for vibrations—For vibrations one
spin indices. To see this, we write down the rate equationgptains, cf. Ref. 14:
including spin indices

%PSU: E [qu_l)a/quLU/Hng + Pgrl)g'\'/*vgr)ﬂ_;g'ang 2:3:;:):t0<q,|e_>\(bT—b)|q> 2 ]
a0’ =to(qy ! /dlp ! ) oN% ™ /ZLgi %(\?)
- Pgmi:fnﬂ)a, - Pg%i;fn_l)gl] {(_ 1)Q'-q forq’ =q
- 3 PPy b eraa -
q'#q where againg;=min{q,q’}, g,=maxq,q’}. Note that there

+ n7/~ (,)'/—»na'_ novx (HIW' is no dependence on the. I_ead indexThe corresp_onding
2 [Pq Wg —4 quﬂq 1 (A2) matrix element for a transition—n+1 can be obtained by

gt using
where it is implied thato=0 for n=0,2 ando=1,] for n _
Mn—»(n l) - Mn—»(n+l)' (B4)

=1. Here,W denotes total transition rates between specific q—q’;a q'—ga

spin states. . . See Secs. Il and V A for definitions and a discussion of
By defining Pi=PL+PL and W' i=wWED o
y g Pg=PFq *tFq —q’ o the parameters g, Zy, and\.
+valj:),_’“, the sequential-tunneling contributions to the rate

equations can be cast into the form of Efj7). Accordingly, APPENDIX C: REGULARIZATION SCHEME

the sequential-tunneling spin factors are given b o .
quentiai-tu g Sp! g y We sketch the regularization scheme that we apply in or-

si0=gl=2=7 P-l=g~1=p, (A3)  der to extract the cotunneling contributions from the diverg-
- ~ ing next-leading order perturbation theory. The integvals
For cotunneling tfaﬂSitiOﬂﬂ\@i}?O and Wsojjo, one has andv for cotunneling, cf. Eq(22), contain factors of Fermi
to take into account that the virtual intermediate state is novfunctions and their derivatives, energy factors and the bare
spin-degenerate, which leads to a factor of 4 due to the caransition rates. Our starting point is to introduce a finite
herent sum, cf. Eq(13). For cotunneling transitions with ~ width for the intermediate state. The bare transition rates
=1, the intermediate state has no spin degeneracy, but tlieen assume the following form:
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2

- . A By
Lo arash ™ 2( e )
k=0 \ € Ek+|Fk € Ek+lfk
2 2
=E Ak- Bk. +2R622 Ak_ Aq T Bk. Bq_
o || e-E+ily e-Ep+iTy q keql € Ex+ile—Eq—ily e-E+ile-E =il
A, B
+2Re - .
%Ek e-Ec+ile-Ey—iT

Accordingly, we need to consider several types of integrals. In the following, we always evaluate the integrals +aQhe
limit. The notation “<2(1/T")” indicates that terms proportional to I /have been subtracted before carrying out the limit.
These terms correspond to sequential-tunneling contributions, cf. Ref. 15.

1 1
_El_ir16_62+irz

I=fdef(e—E1)f(e—E2)

= 1 {| T+ nB(El - Ez)[_ llf(llz +|ﬂ[E1 - 6]_]/2’77) + I,Z/(llz _|ﬂ[E1 - 62]/277)]

€1~ €
+ng(Ey — Ey)[- (112 +i BLE, — €1]/2m) + Y(1/12 —i BLE, - €,]12m) ]}, (Cy
J= f de f(E— El)f(é— EZ)(ET)z'FFz - O(l/F)
= %{nB(El - Ey)lm yV(1/2 +i B[E - E{]/27) + ng(E, - Ey)Im ¢Y(1/2 +i B[E - E,]/27m)}. (C2

Here, 4/ (x) denotes the polygamma function of ordercf. Ref. 30, anchg(x) =[exp(x/kgT)—1]"* is the Bose function. By
evaluatingl (J) in the limit E,— o, one obtains an expression for the intedrfa(J’) with only one Fermi factor.

1 1
K= | def'(e-Epf(e-E = - Il JE
jde (6 1) (6 Z)E_Gl_iF1€_€2+iF2 Mo b (CS)
, 1
L:jdef (E—El)f(e—Ez)m:—ﬁJ/é’El, (C4
, 1 1
M:jdE(E_El)f (E_El)f(E_Ez)e—e ST e—etil :G+(62_E1)K, (C5)
1 1 2 2
, , 1 1 ,
M Zde(E—El)f (E_El)[l_f(f_Ez)]E_e Tl e e sil =Ralapl’ =M, (Co)
1 1 2 2
1
N:fde(e—El)f’(e—El)f(e—Ez)—(e_E)2+r2—O(l/F):ReG+(E—E1)L, ()

N’ =f de(e—E)f'(e—E)[1-f(e- Ez)];
(e-E

ZrTZ O(1T) = Balapd’ =N, (C8)

G= f def'(e-E)f(e— Ez);_ = i—’BnB(El - Ep) V(112 +iB(E; - €,)/2m)
e—e—il' 2w
+ né(El - E2)[¢f(1/2 +|B(El - El)/27T) - lﬁ(l/z +|B(E2 - El)/27T)] (Cg)

195107-10



THERMOPOWER OF SINGLE-MOLECULE DEVICES PHYSICAL REVIEW B0, 195107(2004)

APPENDIX D: RATE EQUATIONS FOR @7, CI)S; EXPANSION COEFFICIENTS

The rate equations for the deviatiof and @y from the equilibrium probability have the following form:

0= {Py TATH "+ Vol M+ PLATI "+ Vo 0 = PIATE 0 + Vo0 + AT 0

q'—q q’'—q q’'—q q’'—q q—q’ gq—q’ q—q’
a
n—(n-1) n-1 n-1,. . (n-1)—n n+1 n+1y o (n+l)—n n n n—(n+1) n—(n-1)
+Vu, o ]+(AT®q, +V<I>q, )wq,_>q +(AT(~)q, +V¢q, )wq,_>q (AT®q+Vd>q)[wq_>q, Wy g 1
=l n—n n—n, _pn n—n n—n n n —n _ an Ny, , NN
+ 2 [PR AT + Vo, ) = PUATE D, +Vog o) + (ATOY, + Vg wy, T = (ATOf +Vogw, o]
q’'#q

1
- ~[ATO] + VD) - PET (ATOG, +Vap,)]. (D1)
T '
q

By expanding8) and(9) one obtains the following expressions for the expansion coefficients of the sequential-tunneling rates

—(ntl) _ —(ntl),
quw’ _anzﬂq’;a :
—(n+1) _ —(n+1) _ n+l _ =nypn—(n+l)
V\Gﬂq’;L _V\Gﬂq’:R =fr(Ey —ETq g (D2)
—(n-1) _ —(n-1) _ -1 —(n-1)
V"an'm _V\/;aqr):R =[1-fr(Eg- Eg/ )]rg—»qr) , (D3)
to o == (Eg - EDITHR(ED - Epra_ ™, -2 =0, (D4)
n—(n-1) _ n_ n-1 1 en _ =Ny pn—(n-1) n—(n-1) _
ty gl = +(Eq Ey M TR(Eq Ey )anq, tyqr =0, (D5)
n—(n+1) _ retl _ Enypn—(ntl) | n—(n+l) _
q—q’;L ~ +efR(Eq' Eq)I‘qu, ’ Ug—q'R =0, (D§)
e = —efi (B En T Y, vl =0, (D7)
Similarly, the expansion of the cotunneling raté®) yields
ng/;aﬁb = pJ dEfR(E)[l - fR(E+ Eg - Eg,)]FZ:g,;aﬂb(e), (DS)
—> € 1 —
toqLoR= pf de?fR(e)[l — frle+ Eq— Ep)Ig 0 g€, (D9)
n—n €+ Eg B Eg' n \pn—n
— —_ ! n —
tgRoL™ pf deffR(e)fR(e+ Eq~ Eq,)Fq_,q/;R_,L(e), (D10)
n_ gh
{n _ d €+Ey Q’f f! n_pen —ff’ —f n_pen eon
qu/;L*}L_p € R(e) R(E+ Eq Eq’) T R(E)[l R(6+ Eq Eq!)] quI;L*,L(G)y (Dll)
n—n _ n—n —
tqror= 0 Vg_qror=0, (D12)
VgqriL R~ €D f defr(e)[1 —frle+ Eq—Eq) Il a1 _r(€), (D13)
Vg qRL = €P f defr(e)fR(e+ Eq—Eq)Tq (€, (D14)
Vg qiLL = €P f de{fr(e)fi(e+Eq—Eq) ~ fr(e)[1 ~ frle+ EG— Eq) Mg g (6. (D15)

195107-11



KOCH et al. PHYSICAL REVIEW B 70, 195107(2004)

1R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van 2OF. Evers, F. Weigend, and M. Koentopp, cond-mat/0312122

Hemert, and J. M. van Ruitenbeek, Natyt@ndon 419 906 published.
(2002. 21C. W. J. Beenakker and A. A. M. Staring, Phys. Rev4B 9667
2D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature (1992.
(London 403 635(2000. 22A. A. M. Staring, L. W. Molenkamp, B. W. Alphenaar, H. van
3J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and Houten, O. J. A. Buyk, M. A. A. Mabesoone, C. W. J. Beenak-
H. v. Lohneysen, Phys. Rev. Let88, 176804(2002. ker, and C. T. Foxon, Europhys. Let22, 57 (1993.
4J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science?3D. V. Averin and Y. V. Nazarov, Phys. Rev. Le#5, 2446(1990.
286, 1550(1999. 24M. Turek and K. A. Matveev, Phys. Rev. B5, 115332(2002.
5C. Dekker, Phys. Todap2, 22 (1999. 25K. A. Matveev and A. V. Andreev, Phys. Rev. B6, 045301
6H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, (2002.
and P. L. McEuen, Naturd_.ondon 407, 57 (2000. 26At low temperatures the cotunneling terms increase due to higher

7J. Park, A. N. Pasupathy, J. I. Goldsmith, A. V. Soldatov, C.  order contributions that lead to strong Kondo correlations near
Chang, Y. Yaish, J. P. Sethna, H. D. Abrufia, D. C. Ralph, and P. the Kondo temperatur&y. In this paper, we assume tempera-
L. McEuen, Thin Solid Films438-439 457 (2003. tures high compared to the Kondo temperattite,T. The ther-

8A. N. Pasupathy, J. Park, A. V. S. C. Chang, S. Lebedkin, R. C.  mopower forT =Ty can be estimated by substituting the cotun-
Bialczak, J. E. Grose, L. A. K. Donev, J. P. Sethna, D. C. Ralph, neling rate by an effective one, which is renormalized by the

and P. L. McEuen, cond-mat/031116Mpublished higher-order terms, cf., e.g., M. Pustilnik and L. I. Glazman, J.
9L. H. Yu and D. Natelson, Nano Let#, 79 (2004). Phys.: Condens. Mattet6, R513(2004).
10M. A. Reed and J. M. Tour, Sci. Am282, 86 (2000. 27G. D. Mahan,Many-Particle PhysicgPlenum Press, New York,
M. H. Hettler, H. Schoeller, and W. Wenzel, Europhys. L&, 1990, Chap. 4.3.
571(2002. 28D, V. Averin, Physica B194-196 979(1994.
12M. H. Hettler, W. Wenzel, M. R. Wegewijs, and H. Schoeller, 2°K. Blum, Density Matrix Theory and Applicatiori®lenum Press,
Phys. Rev. Lett.90, 076805(2003. New York, 1981, Chap. 7.
13D, Boese and H. Schoeller, Europhys. Leit, 668 (2001). 30Handbook of Mathematical Functionedited by M. Abramowitz
14A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B39, 245302 and I. A. Stegun(Dover, New York, 197% Chap. 6.4, p. 260.
(2004). 31physisorption refers to weak bonding of a molecule to a surface
15V, Aji, J. E. Moore, and C. M. Varma, cond-mat/030222@pub- by van-der-Waals forces or hydrogen bridge bonds, as opposed
lished. to chemisorption, which terms the case of strong covalent bonds
163, Braig and K. Flensberg, Phys. Rev.@8, 205324(2003. between molecule and surface.
7K. Flensberg, Phys. Rev. B8, 205323(2003. 32\\e measure the sequential and cotunneling rates in natural units
18y, Xue and M. A. Ratner, Phys. Rev. B8, 115407(2003. of pt3/# and p?tg(2U), respectively.
19M. Di Ventra, N. D. Lang, and S. T. Pantelides, Chem. P38, 33Strictly speaking, the crossover “point” is a region, and can be
189 (2002. slightly different forG and Gr.

195107-12



