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We investigate the thermopower of single molecules weakly coupled to metallic leads. We model the
molecule in terms of the relevant electronic orbitals coupled to phonons corresponding to both internal vibra-
tions and to oscillations of the molecule as a whole. The thermopower is computed by means of rate equations
including both sequential-tunneling and cotunneling processes. Under certain conditions, the thermopower
allows one to access the electronic and phononic excitation spectrum of the molecule in a linear-response
measurement. In particular, we find that the phonon features are more pronounced for weak lead-molecule
coupling. This way of measuring the excitation spectrum is less invasive than the more conventional current-
voltage characteristic, which, by contrast, probes the system far from equilibrium.
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I. INTRODUCTION

The physics of electronic transport through single mol-
ecules has gained much interest in recent years, both experi-
mentally and theoretically. Experiments with molecules
ranging from H2

1 to DNA2 have shown various interesting
effects occurring in two-terminal1–4 and three-terminal5–9

molecular devices. The spectrum includes Coulomb
blockade,7,9 negative differential resistance(NDR),4 phonon
influences,6,8,9 and the Kondo effect.7,9 The ultimate goal of
these efforts is to realize the vision of molecular
electronics.10 While the possibilities of concrete applications
remain to be seen, the question of transport in the molecular
regime is of fundamental physical interest.

Recently, there has been considerable theoretical effort to
calculate current-voltagesIVd characteristics of single-
molecule devices, and effects such as NDR,11–13 influences
of phonons and dissipation,13–17 and contact-geometry
effects18,19 have been studied intensely. Roughly speaking,
present approaches separate into two main directions:(1)
Work based on a detailed modeling of the molecule and the
contact region via the density functional theory(DFT).18,19

For a recent discussion about the validity of equilibrium DFT
for transport through single molecules(cf. Ref. 20). (2) Ap-
proaches based on a parametric modeling of relevant mo-
lecular levels.11–17 This type of approach has the advantage
that it enables the investigation of additional degrees of free-
dom including, e.g., mechanical, and magnetic degrees of
freedom leading to phonon and spin dynamics. The present
paper follows this second approach.

In this paper, we investigate the thermopower of single-
molecule devices. The thermopower is defined as the ratio of
voltageV and an applied temperature differenceDT under
the condition that the current vanishes,

S= − U lim
DT→0

V

DT
U

I=0

. s1d

For quantum dots the thermopower for pure sequential tun-
neling has been investigated theoretically by Beenakker and
Staring21 and experimentally by Staringet al.22 The cotun-

neling regime23 and the crossover have been studied by
Turek and Matveev.24 In the case of a quantum dot strongly
coupled to one lead, the thermopower of quantum dots has
been investigated by Matveev and Andreev.25

Here, we extend these considerations to transport through
single molecules, where experimental work6,8,9 indicates that
phonons may play an important role. In our model, we con-
sider transport through relevant electronic orbitals and incor-
porate Coulomb interaction by a Hubbard-like term. These
electronic orbitals are coupled to both oscillations of the
molecule relative to the leads and internal vibrations. The
coupling of the molecule to the leads is represented by a
tunneling Hamiltonian. Employing the rate-equation ap-
proach valid for weak molecule-lead coupling, we compute
the thermopower as a function of gate voltage, temperature,
and electron-phonon coupling.

We find that the thermopower contains information on the
electronic and phononic excitations of the molecule. This
way of measuring the molecular excitations in linear re-
sponse[cf. theDT→0 limit in Eq. (1)] may have advantages
over the more conventionalIV characteristic. The latter nec-
essarily involves nonequilibrium effects, which are difficult
to interpret. Moreover, a large applied voltage may affect
symmetry and structure of the molecule itself.

In leading order perturbation theory for the molecule-lead
coupling, electrons tunnel from a lead onto the molecule or
vice versa(sequential-tunneling contributions). For pure se-
quential tunneling we find that the thermopower as a func-
tion of gate voltage develops a sawtooth behavior in the low
temperature limit with steps due to electronic and phononic
excitations. Step sizes and their dependence on the electron-
phonon coupling strength are analyzed.

Moreover, we find that in a wide range of parameters
so-called cotunneling contributions from next-leading order
perturbation theory for the molecule-lead coupling are
important.26 In this case, the electron only virtually occupies
molecular levels. We investigate the cotunneling contribu-
tions and the full crossover between the sequential-tunneling
and the cotunneling regimes. We find that elastic cotunneling
does not show any significant phonon structure, and discuss
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under which conditions sequential-tunneling phonon features
are retained in the total thermopower.

The outline of this paper is as follows: Sec. II introduces
our model for a single-molecule device with mechanical de-
grees of freedom. In Sec. III we review the rate equations
approach and address the issue of regularization of the co-
tunneling contributions. Our calculations for the ther-
mopower are described in Sec. IV and the results are pre-
sented in Sec. V. We summarize our findings in Sec. VI.
Some calculational details including the results of the cotun-
neling regularization are relegated to appendices.

II. MODEL

We consider a three-terminal single-molecule device, con-
sisting of a molecule weakly coupled to two metallic leads
serving as source and drain electrode, respectively. The third
electrode only influences the molecule by electrostatic inter-
action and serves as a gate electrode. In order to measure the
thermopower of the device, it is necessary to control the
electrostatic potentials and temperatures of the source and
drain electrodes individually.

The model we apply in order to investigate the ther-
mopower has previously been used in analyses ofIV charac-
teristics, see, e.g., Refs. 14 and 15. The Hamiltonian can be
divided into a part describing the electronic and phononic
features of the molecule, a part modeling the leads, and a
tunneling term that couples molecule and leads,H=Hmol
+Hleads+Hmix, where

Hmol = s« − eVgdnd +
U

2
ndsnd − 1d + l"vvibsb† + bdnd

+ "vvibsb†b + 1/2d +
pz

2

2M
+

1

2
Mvosc

2 z2, s2d

Hleads= o
a=L,R

o
p,s

epcaps
† caps, s3d

Hmix = o
a=L,R

o
p,s

staszdcaps
† ds + h.c.d. s4d

In the following, the common Fermi energy of the leads at
vanishing bias voltage is chosen as the zero point of energy.
For simplicity, we assume that only a single spin-degenerate
orbital of the molecule with one-particle energy« contributes
to the current.(A generalization towards more orbitals is not
difficult.) For double occupancy of the molecule, Coulomb
blockade is taken into account via the charging energyU.
The operatords sds

†d annihilates(creates) an electron with
spin projections on the molecule,nd=osds

†ds denotes the
molecule occupation-number operator. The whole system of
molecular levels can be shifted by means of applying a gate
voltageVg.

The leads are described as a non-interacting Fermi gas of
electrons with a constant density of states. Here,caps scaps

† d
annihilates(creates) an electron in leada sa=L ,Rd with mo-
mentump and spin projections. The potentialVa and tem-
peratureTa of the left and right lead are taken into account
through the probability distributions for state occupation in

the leads. It is assumed that relaxation in the leads is suffi-
ciently fast so that at any time these distributions have the
form of Fermi functions

fasEd = hexpfsE + eVad/kBTag + 1j−1. s5d

We distinguish two types of phonons, which we term vi-
brations and oscillations: Vibrations are internal phonon
modes of the molecule, for which the center of mass(CM) of
the molecule is at rest, while oscillations involve movement
of the molecule as a whole. Vibrational phonons are annihi-
lated(created) by b sb†d. For oscillations we use the momen-
tum and position operatorspz andz of the CM displacement.
In the case of physisorbed molecules31 the coupling to the
leads is weak, so that these two phonon types typically in-
volve different energy scales: Vibrations, which are associ-
ated with strong intramolecular bonds, will have consider-
ably higher energies than oscillations. The two phonon types
also differ in the nature of coupling: Vibrations directly
couple to the electric charge on the molecule, described by
the term,ndsb†+bd, whereas the coupling for oscillations
occurs through displacement-dependent tunneling matrix el-
ementstL,Rszd.

(a)Oscillations.—Sincet arises due to tunneling processes
between the leads and the molecule, we assume an exponen-
tial falloff of t with increasing distance between lead and
molecule. For a symmetric molecule of length 2l between
two leads with a separation distance 2d, this yields

tL,Rszd = t0 expf− sd − l ± zd/z0g. s6d

The parameterz0 fixes the length scale of the exponential
falloff of the electronic wave functions outside the leads and
the molecule.

(b)Vibrations.—For the vibrational electron-phonon cou-
pling there exists a procedure which eliminates the coupling
term by a canonical transformation of the Hamiltonian.14,27

This yields a renormalization of the parameters« andU, and
of the lead-molecule couplingtszd→ tszdexpf−lsb†−bdg.
Henceforth, for the sake of notational simplicity, we will
refer to the renormalized parameters as« and U. (Alterna-
tively, one can diagonalize the Hamiltonian for each occupa-
tion number nd and calculate Franck-Condon matrix ele-
ments.)

In the following, we restrict ourselves to considering one
phonon type at a time. Whenever the specific phonon type is
irrelevant we will skip the subscripts “vib” and “osc.”

III. RATE EQUATIONS AND TRANSITION RATES

We consider the weak-coupling regime for the molecule-
lead coupling. In this case the energy broadeningg of mo-
lecular levels due toHmix is the smallest energy in the prob-
lem. In particular, we assumeg!kBT,"v, which allows for
a perturbative treatment forHmix.

In the absence of coupling to the leads, the eigenstates
of the molecule can be written asuns ,ql, wheren denotes
the number of additional electrons on the molecule andq
gives the number of excited phonons. The spin orientation
s= ↑ ,↓ is only relevant for the singly-occupied molecule.
Since we consider a spin-degenerate orbital and spin-
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independent tunneling matrix elementstL,Rszd, cf. Eqs. (2)
and (4), there exists a symmetry between the two states
u1↑ ,ql and u1↓ ,ql. This allows for a notationally more
simple treatment without reference to specific spin states by
introducing appropriate spin factors into the transition rates,
which account for the multiplicity of then=1 level, cf. Ap-
pendix A.

The operatorHmix introduces transitions between the
eigenstatesun,ql, for which the rates are calculated via Fer-
mi’s golden rule in the next subsection. Subsequently, these
are used to formulate the rate equations and the expression
for the steady-state current.

A. Transition rates

We abbreviate the total rate for a transitionun,ql
→ un8 ,q8l by Wq→q8

n→n8. These total transition rates can be writ-
ten as a product of a Fermi factorfa or s1− fad, which gives
the probability for the availability of electrons or holes at the
appropriate energy in leada, and a “bare transition rate”

factor Gq→q8
n→n8 calculated by Fermi’s golden rule. We denote

the energy of the molecule in the stateun,ql by

Eq
n = ns« − eVgd + Unsn − 1d/2 + "vsq + 1/2d. s7d

Leading order perturbation theory yields sequential-
tunneling processesun,ql→ un±1,q8l, cf. Fig. 1, with the
total rates

Wq→q8
n→sn+1d = o

a=L,R
fafEq8

sn+1d − Eq
ngGq→q8;a

n→sn+1d, s8d

Wq→q8
n→sn−1d = o

a=L,R
h1 − fafEq

n − Eq8
sn−1dgjGq→q8;a

n→sn−1d. s9d

The bare transition ratesG are obtained by using Fermi’s
golden rule

Gq→q8;a
n→sn−1d = sn→sn−1d2p

"
rasEq

n − Eq8
sn−1dd

3 ukn − 1,q8,eauHmixun,q,0lu2

= sn→sn−1d2p

"
rasEq

n − Eq8
sn−1dduMq→q8;a

n→sn−1du2, s10d

and analogously

Gq→q8;a
n→sn+1d = sn→sn+1d2p

"
rasEq8

sn+1d − Eq
nduMq→q8;a

n→sn+1du2. s11d

Here, ra denotes the density of states in leada, and sn→m

denotes the spin factor, cf. Appendix A. In our calculations
we assumerL=rR=const. We note that due to our choice of
symmetric tunneling matrix elementstLszd= tRs−zd, cf. Eq.
(6), all ratesG

q→q8
n→sn±1d are de facto independent of the lead

index a. The matrix elementsM
q→q8;a
n→sn±1d can be expressed in

terms of Laguerre polynomials and their detailed form de-
pends on the phonon type, see Appendix B.

Next-leading order perturbation theory generates cotun-
neling processes with a virtual intermediate molecule state.26

Cotunneling leaves the electron number on the molecule un-
changed. By contrast, the phonon state can be changed, and
in this case the process is called inelastic cotunneling. If
initial and final state of the molecule are identical, one
speaks of elastic cotunneling, cf. Fig. 2. In addition to the
examples depicted in Fig. 2, where the electron is transferred
from the left to the right lead, there are also contributions for
the reverse process and for processes which involve tunnel-
ing back and forth between only one lead and the molecule.
Thus, we abbreviate the total cotunneling rates by
Wq→q8;a→b

n→n , wherea and b denote eitherL or R for the left
and right lead.

In order to obtain the total rates, one needs to sum over all
lead energiesea weighted by Fermi functions for occupancy
probabilities in the appropriate leads

Wq→q8;a→b
n→n =E dearaseadfaseadf1 − fbsebdgGq→q8;a→b

n→n sead,

s12d

where eb=ea+Eq
n−Eq8

n as required by energy conservation.
The bare cotunneling rates are given by

Gq→q8;a→b
n→n sead=sn→n2p/"rbsea−Eq

n+Eq8
n d

3Uo
q9
SMq→q9;a

n→sn+1dMq9→q8;b
sn+1d→n

ea + Eq
n − Eq9

n+1 +
Mq→q9;b

n→sn−1dMq9→q8;a
sn−1d→n

Eq8
n − ea − Eq9

n−1 DU2

.

s13d

Here, the first term in the sum represents cotunneling pro-
cesses with an electron virtually tunneling from a lead into

FIG. 1. Sequential-tunneling processes, here schematically ex-
emplified for tunneling between the molecule and the left lead.

FIG. 2. Cotunneling processes.(a) Elastic cotunneling and(b)
inelastic cotunneling.
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the molecule and out again. Conversely, the second term
contains those cotunneling processes in which an electron
virtually tunnels out of the molecule and another electron
tunnels back in subsequently. Again, the symmetry of the
tunneling matrix elements,tLszd= tRs−zd, leads toGq→q8;L→R

n→n

=Gq→q8;R→L
n→n andGq→q8;L→L

n→n =Gq→q8;R→R
n→n .

It has been pointed out previously in the literature that due
to the singularities of the bare transition rates(13) for cotun-
neling, the integrals (12) for W diverge at finite
temperatures.24,28 Physically, this problem arises since we
have assumed a well-defined energy for the intermediate vir-
tual state. In reality, due to higher order tunneling effects,
this intermediate state gains a finite widthGi, which leads to
a regularization of the integrals. In the limitGi →0 one can
derive a regularization scheme analogous to that presented
by Turek and Matveev in Ref. 24. This scheme consists of
two steps: First, introduce finite widthsGi of the intermediate
states by adding an imaginary part in the energy denomina-
tors. Second, in order to avoid double counting, subtract
terms scaling as 1/Gi, which correspond to sequential-
tunneling contributions. In theGi →0 limit, the remaining
integrals can be written as Cauchy principal-value integrals.
Formally, this scheme can be extended to our case including
phonons. However, this turns out to be a rather awkward
procedure concerning the numerical treatment of the inte-
grals. Instead, we find it useful to transform the integrals so
that a power series expansion of the expressions with respect
to Gi is feasible. After the subtraction of all 1 /Gi terms, the
Gi →0 limit can be evaluated explicitly and we can express
our results in terms of polygamma functions, cf. Appendix C.

B. Rate equations

In the weak-coupling regime and for nondegenerate
eigenstates of the molecule, it can be shown that the off-
diagonal elements of the reduced density matrix of the mol-
ecule rmol are negligibly small.14,29 Therefore, the general-
ized master equations obtained via a density matrix approach
reduce to simple rate equations. WritingPq

nstd
=kn,qurmolstdun,ql for the probability that the molecule is in
the stateun,ql at time t, one obtains

]Pq
n/]t = o

n8Þn

o
q8Þq

fPq8
n8Wq8→q

n8→n − Pq
nWq→q8

n→n8g. s14d

We consider the leading and next-leading order contribu-
tions to the transition rates derived in the previous subsec-
tion. Generally speaking, sequential tunneling is the domi-
nant process close to the Coulomb peaks indI /dV, i.e.,
whenever alignment of a molecular level with the Fermi en-
ergies of the leads permits tunneling,

kBT * min
m=0,1

ueVg − « − mUu. s15d

Cotunneling plays the dominant role in the Coulomb valleys
and for sufficiently low temperatures, i.e., when

kBT ! min
m=0,1

ueVg − « − mUu. s16d

Using the results for the transition rates, one obtains for the
stationary case

0 =
]

]t
Pq

n = o
q8

fPq8
sn−1dWq8→q

sn−1d→n + Pq8
sn+1dWq8→q

sn+1d→ng

f − Pq
nWq→q8

n→sn+1d − Pq
nWq→q8

n→sn−1dg

+ o
q8Þq

fPq8
n Wq8→q

n→n − Pq
nWq→q8

n→n g

−
1

tFPq
n − Pq

eqo
q8

Pq8
n G , s17d

where we have included an additional term, which takes into
account relaxation of the phonons in the relaxation time
approximation with relaxation timet. Pq

eq=e−q"v/kBTs1
−e−"v/kBTd is the equilibrium probability distribution for the
phonons alone. The various cotunneling contributions have
been abbreviated by introducing

Wq→q8
n→n = o

a=L,R
o

b=L,R
Wq→q8;a→b

n→n . s18d

The stationary-state rate equations in conjunction with the
normalization conditionon,qPq

n=1 form an inhomogeneous
system of linear equations whose solution gives the station-
ary probability distributionPq

n for a given voltage bias or
temperature difference.

The stationary current is given by

I = o
n,q,q8

Pq
nfWq→q8;R

n→sn+1d − Wq→q8;R
n→sn−1dg

+ o
n,q,q8

Pq
nfWq→q8;R→L

n→n − Wq→q8;L→R
n→n g. s19d

The first sum comprises all sequential-tunneling contribu-
tions, the second sum the cotunneling contributions.

Calculations ofIV characteristics based on this approach
show phonon steps in theIV curve for the sequential-
tunneling regime and phonon steps indI /dV for the cotun-
neling regime at low temperatures.14,15 The relaxation time
approximation provides a means of analyzing situations be-
tween the two extremes of equilibrated and non-equilibrated
phonons studied by Mitraet al.14

IV. THERMOPOWER

The thermopower, Eq.(1), is calculated by considering
the current through the molecule in the linear response re-
gime, which is

IsV,DTd = GV+ GTDT + OsV2,DT2,VDTd, s20d

whereG denotes the conductance andGT the thermal coef-
ficient. Hence, the thermopower can be written as

S=
GT

G
=

GT
sq+ GT

co

Gsq+ Gco, s21d
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where sequential tunneling and cotunneling contributions
have been separated. We investigate sequential-tunneling and
cotunneling contributions to the thermopower and obtain ex-
pressions valid in the full crossover regime by means of the
regularization scheme(Appendix C).

In order to obtainG andGT, we expand the current(19) in
the bias voltageV=VL−VR and the temperature difference
DT=TL−TR between the source and drain electrodes. Since
V andDT are in principle infinitesimal, we can conveniently
choose the right electrode to have zero potential and tem-
peratureT. Accordingly, the left electrode has potentialV
and temperatureT+DT. When expanding the current, one
has to expand both the probabilitiesPq

n and the transition

ratesWq→q8
n→n8.

We write the expansion for the transition rates and prob-
abilities as

Wq→q8
n→n8 = wq→q8

n→n8 + DTtq→q8
n→n8 + Vvq→q8

n→n8 + ¯ s22d

and

Pq
n = Pq

n + Qq
nDT + Fq

nV + ¯ . s23d

Here, Pq
n=2d1,n exps−Eq

n/kBTd /Z denotes the grandcanonical
probability distribution, andZ=on,q2

d1,n exps−Eq
n/kBTd is the

corresponding partition function.(The additional factor of
2dn,1 takes the spin degeneracy of the leveln=1 into ac-
count.) The normalization condition for the deviations ofPq

n

from its equilibrium value is 0=on,qQq
n=on,qFq

n.
By substituting the expansions(22) and(23) into the rate

equations(17) and retaining only terms linear inV andDT,
one obtains a new set of rate equations for the deviationsQq

n

and Fq
n, see Appendix D, Eq.(D1). These, in conjunction

with the normalization conditions forQ andF, represent an
inhomogeneous system of linear equations, whose solution
yields the deviationsQq

n andFq
n.

Finally, the current(19) can be expanded in terms ofDT
andV:

I = o
n,q,q8

sDTQq
n + VFq

ndfwq→q8;R
n→sn+1d − wq→q8;R

n→sn−1dg

+ o
n,q,q8

hPq
nfDTstq→q8;R→L

n→n − tq→q8;L→R
n→n d

+ Vsvq→q8;R→L
n→n − vq→q8;L→R

n→n dgj. s24d

Note that the terms proportional toQq
n andFq

n in the expan-
sion of the cotunneling contributions are absent since they
come with the coefficientfwq→q8;R→L

n→n −wq→q8;L→R
n→n g, which

vanishes due to the symmetryGq→q8;a→b
n→n sed=Gq→q8;b→a

n→n sed.

(a) Sequential-tunneling contributions.—In Eq. (24) it
was chosen to expandIR in V andDT. Due to the steady-state
property I = IR= IL, an expansion inIL gives the same result
and it turns out to be convenient to expand the expression
I =sIL+ IRd /2, which gives for the sequential-tunneling con-
tributions

Isq=
1

2 o
n,q,q8

sDTQq
n + VFq

ndfwq→q8;R
n→sn+1d − wq→q8;R

n→sn−1d

+ wq→q8;L
n→sn−1d − wq→q8;L

n→sn+1dg

+
1

2 o
n,q,q8

Pq
nVfvq→q8;L

n→sn−1d − vq→q8;L
n→sn+1dg

+
1

2 o
n,q,q8

Pq
nDTftq→q8;L

n→sn−1d − tq→q8;L
n→sn+1dg. s25d

Here, the first term remarkably vanishes due to the symmetry
w

q→q8;R
n→sn±1d=w

q→q8;L
n→sn±1d. Therefore, one obtains the following

sequential-tunneling contributions to the thermal coefficient
GT and the conductanceG:

GT
sq=

1

2 o
n,q,q8

Pq
nftq→q8;L

n→sn−1d − tq→q8;L
n→sn+1dg, s26d

Gsq=
1

2 o
n,q,q8

Pq
nfvq→q8;L

n→sn−1d − vq→q8;L
n→sn+1dg. s27d

We point out that the so-obtained conductance and thermal
coefficient do not depend on the probability deviationsQq

n

andFq
n any more. This is an important result since it allows

for an analytic expression of the thermopower not involving
an explicit solution of the rate equations, cf. Appendix D.
[Expansions ofIL and IR alone lead to expressions forGsq

andGT
sq, which do involveQq

n andFq
n. We have also carried

out calculations based on this approach by solving the rate
equations for the probability deviations and find agreement
with the results from Eqs.(26) and (27).]

(b) Cotunneling contributions—The cotunneling contribu-
tions to thermal coefficient and conductance are

GT
co = o

n,q,q8

Pq
nstq→q8;R→L

n→n − tq→q8;L→R
n→n d, s28d

Gco = o
n,q,q8

Pq
nsvq→q8;R→L

n→n − vq→q8;L→R
n→n d. s29d

In principle, any set of rate equations involving phononic
excitations yields an infinite system of linear equations. In
numerical calculations one makes use of the fact that transi-
tion matrix elements involving highly excited phonon states
are typically very small. This allows for the introduction of a
cutoff phonon number.

We find that the linear response quantitiesG and GT do
not depend on the relaxation timet. Mathematically, this
corresponds to the result that the conductance and thermal
coefficient do not involve the probability deviationsFq

n and
Qq

n, cmp. Eqs.(26)–(29). The physical reason for this is the
following: In the I →0 limit the average time needed for one
electron tunneling through the molecule becomes large com-
pared to the relaxation time. Consequently, the initial state
for any tunneling process corresponds to an equilibrium pho-
non state.

By substituting back Eqs.(26)–(29) into Eq. (21), we ar-
rive at the following analytical expression for the thermo-
power:
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S=
on,q,q8

Pq
nftq→q8;L

n→sn−1d − tq→q8;L
n→sn+1d + 2tq→q8;R→L

n→n − 2tq→q8;L→R
n→n g

on,q,q8
Pq

nfvq→q8;L
n→sn−1d − vq→q8;L

n→sn+1d + 2vq→q8;R→L
n→n − 2vq→q8;L→R

n→n g
. s30d

This equation is our central result. It shows that even in the
presence of phonons the thermopower can be expressed ana-
lytically through the equilibrium probability distributionPq

n

and the expansion coefficients of the transition rates evalu-
tated at vanishing source drain voltage and temperature dif-
ference. In the following section the implications of Eq.(30)
will be discussed.

V. RESULTS

A. Sequential tunneling

We first consider the results for pure sequential tunneling,
postponing the discussion of the full thermopower due to
both sequential and cotunneling to Sec. V B. We give nu-
merical results for the thermopower and present analytic ex-
pressions for the limiting caseU→` and T→0. Represen-
tative numerical results are shown in Fig. 3.

The dominant feature of the sequential-tunneling ther-
mopower Ssq is a large step at the gate voltageVg

* =s«
+U /2d /e, for which the Fermi energy of the leads lies half-
way in between theu1, 0l and theu2, 0l state. This situation is
depicted in Fig. 4. AtVg=Vg

* the thermocurrentGTDT van-
ishes due to electron-hole symmetry. An increased(de-
creased) gate voltage lowers(raises) the molecular levels
with respect to the Fermi level, and therefore current is
dominated by electrons(holes) flowing from the left to the
right lead. Consequently,GT changes sign atVg=Vg

* . More-
over, away from the Coulomb peaks, sequential tunneling
can only occur through the tails of the lead Fermi distribu-
tions due to energy conservation. Therefore, the sequential-
tunneling conductance and thermal coefficient fall off expo-

nentially away from the Coulomb peak. At gate voltages
close toVg

* , their behavior can be estimated by

Gsq, expf− esVg
* − «d/kBTgcoshfesVg

* − Vgd/kBTg, s31d

GT
sq, expf− esVg

* − «d/kBTgsinhfesVg
* − Vgd/kBTg. s32d

Consequently, the sequential-tunneling thermopowerSsq

=GT
sq/Gsq behaves as,tanhfesVg

* −Vgd /kBTg in the vicinity
of Vg

* , which develops a discontinuity in the limitT→0.
In addition to the electronic step, the results show smaller

phonon steps with a distance of"v between adjacent steps.
To understand slope, temperature dependence, and phonon
step sizes of the sequential-tunneling thermopower, we turn
to the caseU→`.

In the U→` limit, electronic double occupation of the
molecule is forbidden, and the sequential-tunneling ther-
mopowerSsq=GT

sq/Gsq reads

Ssq=
oq,q8

Pq
eqsP0tq→q8

0→1 − P1tq→q8
1→0 d

oq,q8
Pq

eqsP0vq→q8
0→1 − P1vq→q8

1→0 d
=

Vg − «/e

T

−
oq,q8

sP0Pq
eq+ P1Pq8

eqdfR8sEq8
1 − Eq

0d"vsq8 − qdGq8→q
0→1

Teoq,q8
sP0Pq

eq+ P1Pq8
eqdfR8sEq8

1 − Eq
0dGq8→q

0→1
.

s33d

Thus, we find that the thermopower purely due to sequential
tunneling roughly scales like 1/T, which is in agreement
with the quantum dot case.21 In the low temperature limit,
the thermopower as a function of gate voltage develops a
characteristic sawtooth behavior. The slope of the linear
pieces is found to bedSsq/dVg=1/T.

In the T→0 limit, one obtains

FIG. 3. ThermopowerSsq times temperature as a function of
gate voltage. The parameters are chosen as«=0, "v=0.11U. Vg

and T S have units ofU /e. Large: Vibrations withl=2. Inset:
Oscillations withj0=5. [See text following Eq.(35) for a discus-
sion of the choice of parameters.] The positions of the correspond-
ing Coulomb peaks in]I /]V are marked with arrows. In contrast,
the main features of the thermopower occur between the Coulomb
peaks.

FIG. 4. Electron-hole symmetry for the gate voltageVg
* =s«

+U /2d /e.
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lim
T→0

TSsq= Vg − «/e− sgnseVg − «d
oq,ueVg−«u/"v

"vq G0→q
0→1

eoq,ueVg−«u/"v
G0→q

0→1
,

s34d

where the last term generates the step features by adding up
higher phonon contributions for increasing gate voltages. We
can obtain the phononic step sizeDQ of the Qth step ofTSsq

in the T→0 limit from Eq. (34):

DQ = "v/eG0→Q
0→1 o

q=0

Q

sQ − qdG0→q
0→1Fo

q=0

Q

G0→q
0→1o

q=0

Q−1

G0→q
0→1G−1

.

s35d

Here, Q counts the discontinuities ofTSsq starting at
«−eVG=0 with increasing gate voltage.DQ depends on the
step number Q and on the coupling strengthl or
j0=z0/losc for vibrations or oscillations, respectively. Here,
losc=s" /Mvoscd1/2 is the harmonic-oscillator length for os-
cillations andM denotes the molecular mass.

It is instructive to estimate typical values of the param-
etersj0 andl for realistic systems. Forj0 we need to com-
parez0 to the oscillator lengthlosc. An order of magnitude
estimate yieldsz0<" / smeWd1/2. Here,W is the work func-
tion of the metal leads and is of the order of several electron-
volts. On the other hand, for a typical experiment6 oscilla-
tions occur on an energy scale of 1–10 meV. This yields
j0=z0/losc@1. In this case, displacements of the molecule’s
CM are small on the scale ofz0, and therefore no significant
shuttle effects can be expected.

Next we consider the vibrational coupling parameterl.
Let r be the normal coordinate deviation from the equilib-
rium valuer0. An additional electron has to lowest order the
effect of shifting the phonon potential curve by some dis-
tance Dr, so that the potential energy is now< 1

2Mvvib
2 sr

+nDrd2. Hence, the electron-phonon coupling term is of the
order of magnitude ofMvvib

2 rDr =Dr /lvib"vvibsb+b†d and
thereforel<Dr /lvib. Here, lvib=s" /Mvvibd1/2 is the har-
monic oscillator length corresponding to vibrations. There is
not a general rule for howlvib andDr compare so thatl can
in principle assume values both smaller and lager than 1.

Due to the different behavior of the matrix elements for
vibrations and oscillations, the phonon step size turns out to
differ between those two cases as shown in Fig. 5. For vi-
brational phonons the electron-phonon coupling becomes
stronger for increasingl. In the case of electron-phonon cou-
pling for oscillations, the coupling gets stronger for decreas-
ing j0=z0/losc [decreasingz0 at fixedlosc increases the po-
sition dependence of the hopping matrix elementstszd].
Thus, the plausible finding is that in both cases phonon step
size increases with electron-phonon coupling strength. For
oscillations the steps are rather small in the relevant regime
of j0@1. For vibrations they may be more pronounced.

B. Results for the total thermopower

The results for the thermopower discussed earlier arise
from considering sequential-tunneling contributions only.
However, if the Fermi levels are not aligned with a molecular

level, sequential tunneling only occurs via electrons(or
holes) in the tails of the Fermi distributions in the leads. In
this case, the sequential-tunneling conductanceGsq and ther-
mal coefficientGT

sq are exponentially suppressed, and higher-
order processes such as cotunneling may yield important
contributions. Accordingly, sequential tunneling dominates
in proximity to the aligned-levels configuration, and is sup-
pressed most at the gate voltageVg

* at which the large elec-
tronic step in the sequential-tunneling thermopower occurs.
In the latter range of gate voltages, cotunneling may give the
dominant contributions to the thermopower. For this reason
we have included the effect of cotunneling processes in the
rate-equations approach, cf. Sec. III. At temperatures
kBT,"v inelastic cotunneling can be neglected, and we find
that the elastic cotunneling does not exhibit significant pho-
non structure.

Figure 6 exemplifies the behavior of the thermopower in-
cluding both sequential and cotunneling as a function of gate
voltage for several temperatures. Whether the total ther-
mopowerS shows the sequential-tunneling phonon structure
or whether it is mainly dominated by cotunneling contribu-
tions without significant phonon features, strongly depends
on the choice of parameters. First, step-like features can only
be expected if the sequential-tunneling part develops pro-
nounced steps. As discussed earlier, this depends on phonon
type, phonon-coupling strength, and temperature. Only for

FIG. 5. Phonon step sizeDQ in units of "v /e for the step num-
bersQ=1, 2, 3.

FIG. 6. Thermopower times temperature as a function of gate
voltage for several temperatures. The parameter choices are:«=0,
"v=0.11U, l=2 (vibrations), a=10−9 [dimensionless coupling pa-
rameter defined in Eq.(36)]. Vg andTSare plotted in units ofU /e.
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temperatures well below"v /kB one can expect any features,
as can be seen from the smoothening of the phonon steps for
increasing temperature in Fig. 6.

Second, temperature and the dimensionless coupling pa-
rameter

a = rt0
2/U, s36d

which arises in the rate equations and roughly describes the
relative strength of cotunneling to sequential tunneling,32 de-
termine where the crossover between the sequential-
tunneling and cotunneling regimes occurs. For illustration,
Fig. 7 shows the thermopowerSas a function of gate voltage
at fixed temperature for two different coupling parametersa
as well as the corresponding sequential-tunneling result for
comparison.

The crossover between the sequential-tunneling and co-
tunneling regimes occurs in a rather small gate voltage
range, cf. Figs. 6 and 7, which allows one to identify cross-
over gate voltagesVg

xo.33 Our results show that the crossover
points roughly scale asVg

xo,T ln a−1, which is in agreement
with corresponding results for quantum dots, cf., e.g.,
Ref. 24.

This can be understood based on the following estimate of
the crossover pointsVg

xo. We assume that only a small gate-
voltage region is dominated by sequential tunneling,
Vg

xo,Vg
* . With eDVg=minm=0,1ueVg−«−mUu being the domi-

nant activation energy for either electrons or holes, one can
roughly estimate the sequential-tunneling conductance and
thermal coefficient by an activated behavior dependence

Gsq,GT
sq, exps− eDVg/kBTd. s37d

While sequential-tunneling contributions therefore fall off
exponentially withDVg, cotunneling contributions only show
a weak power-law dependence on the activation energy
eDVg, and temperatureT. To lowest order they may be ap-
proximated by a constant

Gco,GT
co , ab. s38d

Comparison of Eqs.(37) and (38) yields as an estimate for
the crossover gate voltage

Vg
xo < kBTsln a−1 − ln bd/e. s39d

In this approximation,Vg
xo increases linearly with tempera-

ture and decreases logarithmically with lna−1. The number
of phonon steps(if present in the sequential-tunneling con-
tribution) is given byeVg

xo/"v.
For the parameter choices of Fig. 7, we find thatb as-

sumes values so that the lnb term in Eq. (39) can be ne-
glected. This leads to the following estimates of the cross-
over gate voltage:Vg

xo<0.1U /e for a=10−5, and Vg
xo

<0.2U /e for a=10−9, which is in good agreement with the
crossovers observed in Fig. 7.

We note that the thermopower attains rather small values
in the cotunneling regime. This is plausible when reconsid-
ering the effect of the electron-hole symmetry ateVg

* =s«
+U /2d. Due to this symmetry, the thermopower must vanish
at Vg

* . In the case of sequential tunneling, the exponentially
suppressed currentGT

sqDT shows the breaking of this sym-
metry for small gate voltage deviations fromVg

* rather
abruptly (leading to the large steps in the sequential-
tunneling thermopowerSsq as a function of gate voltage). For
cotunneling on the other hand, the thermal current is not
exponentially suppressed, but roughly follows a power-like
decrease withDVg. Therefore, breaking of the electron-hole
symmetry is not as pronounced so thatS remains small in the
cotunneling region centered aroundVg

* .

VI. SUMMARY

Using a model for electronic transport through a single
spin-degenerate molecular orbital, and taking into account
oscillational and vibrational phonons, we have calculated the
thermopower of a single-molecule device in the regime of
weak molecule-lead coupling. In contrast toIV measure-
ments, the thermopower provides a means of extracting in-
formation about electronic and phononic excitations and the
nature of the electron-phonon coupling in a linear response
measurement. Therefore, it may have advantages over the
more conventionalIV characteristic, which necessarily in-
volves nonequilibrium effects, and which, at large voltages,
may even affect symmetry and structure of the molecule it-
self.

We have found that sequential-tunneling contributions
yield a characteristic sawtooth behavior of the thermopower
as a function of gate voltage for low temperatures, which
shows structure due to electronic and phononic excitations. It
has been shown that due to the different nature of electron-
phonon coupling for oscillations and vibrations, characteris-
tic differences in the phonon step size arise in the sequential-
tunneling thermopower. Analytical expressions for the
phonon step size have been derived in the limit of strong
Coulomb blockade, which show that, for realistic param-
eters, phonon steps can be expected to be more pronounced
for vibrations than for oscillations.

Away from the Coulomb peaks, cotunneling dominates
over sequential tunneling.26 By considering cotunneling con-
tributions obtained by means of a regularization scheme, we
have found that the(elastic) cotunneling regime does not
show significant structure due to phononic excitations. We
have investigated the crossover regime and have given an

FIG. 7. Thermopower as a function of gate voltage at fixed
temperature. The parameter choices are:«=0, "v=0.11U, l=2 (vi-
brations), T=0.01U /kB. Vg is plotted in units ofU /e, S in units of
kB/e.
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estimate for the gate voltage at which the crossover takes
place. It has been shown that the phononic structure exhib-
ited by the sequential-tunneling contributions is retained in
the thermopower ifkBT!"v and kBT ln a−1."v, i.e., (1)
the temperature is low enough so that the phononic structure
is not blurred out, and(2) the dimensionless coupling param-
eter a is so small that the crossover gate voltage is high
enough to allow for at least one phonon feature in the ther-
mopower.
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APPENDIX A: SPIN FACTORS

In our model we consider transport through one spin-
degenerate molecular orbital. Including the phononic excita-
tions, a basis of the corresponding Hilbert space is given by
the states

u0,ql, u1↑,ql, u1↓,ql, u2,ql. sA1d

Due to the spin-degeneracy and the spin-independent tunnel-
ing matrix elements, one can make use of the resulting sym-
metry and obtain a description without explicit reference to
spin indices. To see this, we write down the rate equations
including spin indices

]

]t
Pq

ns = o
q8,s8

fPq8
sn−1ds8W̃q8→q

sn−1ds8→ns + Pq8
sn+1ds8W̃q8→q

sn+1ds8→ns

− Pq
nsW̃q→q8

ns→sn+1ds8 − Pq
nsW̃q→q8

ns→sn−1ds8g

+ o
q8Þq

fPq8
nsW̃q8→q

ns→ns − Pq
nsW̃q→q8

ns→nsg

+ o
q8,s8Þs

fPq8
ns8W̃q8→q

ns8→ns − Pq
nsW̃q→q8

ns→ns8g, sA2d

where it is implied thats=0 for n=0,2 ands= ↑ ,↓ for n

=1. Here,W̃ denotes total transition rates between specific
spin states.

By defining Pq
1; Pq

1↑+Pq
1↓ and W

q→q8
s1±1d→1;W

q→q8
s1±1d→1↑

+W
q→q8
s1±1d→1↓, the sequential-tunneling contributions to the rate

equations can be cast into the form of Eq.(17). Accordingly,
the sequential-tunneling spin factors are given by

s1→0 = s1→2 = 1, s0→1 = s2→1 = 2. sA3d

For cotunneling transitionsW̃q→q8
00→00 and W̃q→q8

20→20, one has
to take into account that the virtual intermediate state is now
spin-degenerate, which leads to a factor of 4 due to the co-
herent sum, cf. Eq.(13). For cotunneling transitions withn
=1, the intermediate state has no spin degeneracy, but the

rate equations contain an additional spin-flip channel, cf. Eq.
(A2), leading to a factor of 2. Therefore, by defining the
cotunneling spin factors by

s1→1 = 2, s0→0 = s2→2 = 4, sA4d

the rate equations involving spin, Eq.(A2), can be trans-
formed into the set of rate equations in Eq.(17).

APPENDIX B: MATRIX ELEMENTS

(a) Matrix elements for oscillations.—The matrix ele-
mentsMq→q8;a

n→m for oscillations are given by

Mq→q8;L
n→sn±1d = t0kq8uexpf− z/z0guql

= t0S2q2−q1q1!

q2!
D1/2S−

1

2j0
Dq2−q1

e1/4j0
2
Lq1

q2−q1S−
1

2j0
2D

sB1d

Mq→q8;R
n→sn±1d = t0kq8uexpf+ z/z0guql

= t0S2q2−q1q1!

q2!
D1/2S+

1

2j0
Dq2−q1

e1/4j0
2
Lq1

q2−q1S−
1

2j0
2D ,

sB2d

where q1=minhq,q8j, q2=maxhq,q8j, and j0=z0/losc. Fi-
nally, Lm

n sxd denotes the generalized Laguerre polynomial.
Note that there is no dependence on whether the final elec-
tronic state isn+1 or n−1.

(b) Matrix elements for vibrations.—For vibrations one
obtains, cf. Ref. 14:

M
q→q8;a
n→sn−1d= t0kq8ue−lsb†−bduql

=t0sq1 ! /q2 ! d1/2lq2−q1e−l2/2Lq1

q2−q1sl2d

3 Hs− 1dq8−q for q8 ù q

1 for q8 , q,
J sB3d

where againq1=minhq,q8j, q2=maxhq,q8j. Note that there
is no dependence on the lead indexa. The corresponding
matrix element for a transitionn→n+1 can be obtained by
using

Mq→q8;a
n→sn−1d = Mq8→q;a

n→sn+1d. sB4d

See Secs. II and V A for definitions and a discussion of
the parameterslosc, z0, andl.

APPENDIX C: REGULARIZATION SCHEME

We sketch the regularization scheme that we apply in or-
der to extract the cotunneling contributions from the diverg-
ing next-leading order perturbation theory. The integralsw, t,
andv for cotunneling, cf. Eq.(22), contain factors of Fermi
functions and their derivatives, energy factors and the bare
transition rates. Our starting point is to introduce a finite
width for the intermediate state. The bare transition rates
then assume the following form:
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Gq→q8;a→b
n→n , Uo

k=0

` S Ak

e − Ek + iGk
+

Bk

e − Ek8 + iGk
DU2

= o
k
FU Ak

e − Ek + iGk
U2

+ U Bk

e − Ek8 + iGk
U2G + 2 Reo

q
o
k,q

F Ak

e − Ek + iGk

Aq

e − Eq − iGq
+

Bk

e − Ek8 + iGk

Bq

e − Eq8 − iGq
G

+ 2 Reo
q

o
k

Ak

e − Ek + iGk

Bq

e − Eq8 − iGq

.

Accordingly, we need to consider several types of integrals. In the following, we always evaluate the integrals in theG→0
limit. The notation “−Os1/Gd” indicates that terms proportional to 1/G have been subtracted before carrying out the limit.
These terms correspond to sequential-tunneling contributions, cf. Ref. 15.

I =E de fse − E1dfse − E2d
1

e − e1 − iG1

1

e − e2 + iG2

=
1

e1 − e2
hip + nBsE1 − E2df− cs1/2 + ibfE1 − e1g/2pd + cs1/2 − ibfE1 − e2g/2pdg

+ nBsE2 − E1df− cs1/2 + ibfE2 − e1g/2pd + cs1/2 − ibfE2 − e2g/2pdgj, sC1d

J =E de fse − E1dfse − E2d
1

se − Ed2 + G2 − Os1/Gd

=
b

2p
hnBsE1 − E2dIm cs1ds1/2 + ibfE − E1g/2pd + nBsE2 − E1dIm cs1ds1/2 + ibfE − E2g/2pdj. sC2d

Here,csndsxd denotes the polygamma function of ordern, cf. Ref. 30, andnBsxd=fexpsx/kBTd−1g−1 is the Bose function. By
evaluatingI sJd in the limit E2→`, one obtains an expression for the integralI8 sJ8d with only one Fermi factor.

K =E de f8se − E1dfse − E2d
1

e − e1 − iG1

1

e − e2 + iG2
= − ]I/]E1, sC3d

L =E de f8se − E1dfse − E2d
1

se − Ed2 + G2 = − ]J/]E1, sC4d

M =E dese − E1df8se − E1dfse − E2d
1

e − e1 − iG1

1

e − e2 + iG2
= G + se2 − E1dK, sC5d

M8 =E dese − E1df8se − E1df1 − fse − E2dg
1

e − e1 − iG1

1

e − e2 + iG2
= b]/]bI8 − M , sC6d

N =E dese − E1df8se − E1dfse − E2d
1

se − Ed2 + G2 − Os1/Gd = ReG + sE − E1dL, sC7d

N8 =E dese − E1df8se − E1df1 − fse − E2dg
1

se − Ed2 + G2 − Os1/Gd = b]/]bJ8 − N, sC8d

G =E de f8se − E1dfse − E2d
1

e − e1 − iG
=

ib

2p
nBsE1 − E2dcs1ds1/2 + ibsE1 − e1d/2pd

+ nB8sE1 − E2dfcs1/2 + ibsE1 − e1d/2pd − cs1/2 + ibsE2 − e1d/2pdg. sC9d
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APPENDIX D: RATE EQUATIONS FOR Qq
n, Fq

n; EXPANSION COEFFICIENTS

The rate equations for the deviationsQq
n andFq

n from the equilibrium probability have the following form:

0 = o
q8

hPq8
n−1fDTtq8→q

sn−1d→n + Vvq8→q
sn−1d→ng + Pq8

n+1fDTtq8→q
sn+1d→n + Vvq8→q

sn+1d→ng − Pq
nfDTtq→q8

n→sn+1d + Vvq→q8
n→sn+1d + DTtq→q8

n→sn−1d

+ Vvq→q8
n→sn−1dg + sDTQq8

n−1 + VFq8
n−1dwq8→q

sn−1d→n + sDTQq8
n+1 + VFq8

n+1dwq8→q
sn+1d→n − sDTQq

n + VFq
ndfwq→q8

n→sn+1d + wq→q8
n→sn−1dgj

+ o
q8Þq

fPq8
n sDTtq8→q

n→n + Vvq8→q
n→n d − Pq

nsDTtq→q8
n→n + Vvq→q8

n→n d + sDTQq8
n + VFq8

n dwq8→q
n→n − sDTQq

n + VFq
ndwq→q8

n→n g

−
1

t
fDTQq

n + VFq
n − Pq

eqo
q8

sDTQq8
n + VFq8

n dg. sD1d

By expanding(8) and(9) one obtains the following expressions for the expansion coefficients of the sequential-tunneling rates
W

q→q8
n→sn±1d=oaWq→q8;a

n→sn±1d:

wq→q8;L
n→sn+1d = wq→q8;R

n→sn+1d = fRsEq8
n+1 − Eq

ndGq→q8
n→sn+1d, sD2d

wq→q8;L
n→sn−1d = wq→q8;R

n→sn−1d = f1 − fRsEq
n − Eq8

n−1dgGq→q8
n→sn−1d, sD3d

tq→q8;L
n→sn+1d = − sEq8

n+1 − Eq
nd/TfR8sEq8

n+1 − Eq
ndGq→q8

n→sn+1d, tq→q8;R
n→sn+1d = 0, sD4d

tq→q8;L
n→sn−1d = + sEq

n − Eq8
n−1d/TfR8sEq

n − Eq8
n−1dGq→q8

n→sn−1d, tq→q8;R
n→sn−1d = 0, sD5d

vq→q8;L
n→sn+1d = + efR8sEq8

n+1 − Eq
ndGq→q8

n→sn+1d, vq→q8;R
n→sn+1d = 0, sD6d

vq→q8;L
n→sn−1d = − efR8sEq

n − Eq8
n−1dGq→q8

n→sn−1d, vq→q8;R
n→sn−1d = 0. sD7d

Similarly, the expansion of the cotunneling rates(12) yields

wq→q8;a→b
n→n = rE defRsedf1 − fRse + Eq

n − Eq8
n dgGq→q8;a→b

n→n sed, sD8d

tq→q8;L→R
n→n = − rE de

e

T
fR8sedf1 − fRse + Eq

n − Eq8
n dgGq→q8;L→R

n→n sed, sD9d

tq→q8;R→L
n→n = rE de

e + Eq
n − Eq8

n

T
fRsedfR8se + Eq

n − Eq8
n dGq→q8;R→L

n→n sed, sD10d

tq→q8;L→L
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