PHYSICAL REVIEW B 70, 245302(2004)

Coulomb drag in high Landau levels

I. V. Gornyi'* A. D. Mirlin, %" and F. von Oppeit
Lnstitut fiir Nanotechnologie, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
2Institut fur Theorie der Kondensierten Materie, Universitat Karlsruhe, D-76128 Karlsruhe, Germany
SDepartment of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
4Institut fiir Theoretische Physik, Freie Universitéat Berlin, Arnimallee 14, D-14195 Berlin, Germany
(Received 9 June 2004; published 1 December 2004

Recent experiments on Coulomb drag in the quantum Hall regime have yielded a number of surprises. The
most striking observations are that the Coulomb drag can become negative in high Landau levels and that its
temperature dependence is nonmonotonous. We develop a systematic diagrammatic theory of Coulomb drag in
strong magnetic fields explaining these puzzling experiments. The theory is applicable both in the diffusive and
the ballistic regimes; we focus on the experimentally relevant ballistic regimerlayer distance smaller
than the cyclotron radiug;). It is shown that the drag at strong magnetic fields is an interplay of two
contributions arising from different sources of particle-hole asymmetry, namely the curvature of the zero-field
electron dispersion and the particle-hole asymmetry associated with Landau quantization. The former contri-
bution is positive and governs the high-temperature increase in the drag resistivity. On the other hand, the latter
one, which is dominant at low, has an oscillatory sigtdepending on the difference in filling factors of the
two layerg and gives rise to a sharp peak in the temperature dependema#f &ie order of the Landau level
width.
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[. INTRODUCTION weak interlayer coupling observed negative drag when the
dAilling factors in the two layers are different. A more recent
experiment® also reveals a nonmonotonic dependence on
temperature. While the drag resistivity shows a quadratic
mperature dependence at sufficiently high temperatures,
here drag is always positive, an additional peak develops at
low temperatures which can have both a positive or a nega-
tive sign depending on the filling-factor difference between
the two layers.
Early theoretical work’ on Coulomb drag in a magnetic

Coulomb drag between parallel two-dimensional electro
system&? has developed into a powerful probe of quantum-
Hall systems;1° providing information which is comple-
mentary to conventional transport measurements. The dr
signal is the voltag® developing in the open-circuit passive
layer when a curreritis applied in the active layer. The drag
resistancdalso known as transresistands then defined by
Rp=V/I. As a function of interlayer spacirgy the interlayer

coupling changes from weak at large spacings where it ca i, the |imit of high Landau levels showed that the mag-
be treated in perturbation theory, to strong at small Spacinggetic field may strongly enhance the Coulomb drag, as
where it can result in states with strong interlayerinqeeq observed experimentally. On the other hand, the
correlations’® In the present paper we will be concerned caicyation of Ref. 12, as well as of a later paperesults
with the regime of weak interlayer interaction. in a strictly positive transresistivity, in contradiction with
In a simple picture of Coulomb drag, the carriers of thethe oscillatory sign found in recent experiments. As we
active layer transfer momentum to the carriers of the passivgiscuss in detail below, a general formula for the drag resis-
layer by interlayer electron-electron scattering. Due to thejvity obtained in Ref. 12, which looks like a natural gener-
open-circuit setup, a voltagé develops in the passive layer, alization of the zer® result!516 and also served as a
which balances this momentum transfer. The phase space fetarting point for Ref. 13, misses an important contribution.
interlayer scattering is proportional to the temperaflirm ~ This strongly restricts the range of validity of the results of
either layer predicting a monotonous temperature deperRefs. 12 and 13, making them inapplicable under typical
denceR, = T? of the drag resistance. Moreover, the signs ofexperimental conditions. More recent wétk showed
the voltages in active and passive layer are expected to kbat Landau-level quantization can lead to sign changes in
opposite(the samgfor carriers of equafopposit¢ charge in  drag. However, the results obtained in Ref. 14 suggested that
the two layers? It is conventional to refer to the sign result- unlike the experimental observation, negative drag should be
ing for like (unlike) charges as positiveegativg drag. Itis  observed for equal filling factors in the two layers. The tem-
worth emphasizing that, as the above considerations imph\perature dependence of the drag resistivity was not studied in
the nonzero value of drag in the regime of weak interlayemRef. 14.
interaction is entirely due to the violation of the particle-hole In this paper, we present a systematic study of Coulomb
symmetry. drag in the limit of high Landau levels. We focus on the
Remarkably, experiments show that Coulomb drag beexperimentally relevant limit of well-separated Landau lev-
haves very differently from these simple expectations when @&ls (LL's) in which the LL broadening\ is small compared
perpendicular magnetic fieB is applied such that the Fermi to the LL spacingiw.. Our starting point is the diagrammatic
energyEg is in a high Landau leveEg/7fiw.> 1. (w, is the  Kubo formulation of Coulomb drd§'® for weak interlayer
cyclotron frequency.Several experimeritd in the regime of  interaction. Disorder is included at the level of the self-
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q, w+ 8 FIG. 1. The diagrams contrib-
uting to the drag conductivity to
leading order in the interlayer in-
teraction U(gq,w) (wavy lines.
The full lines represent the elec-
tron Green function. The external
vertices labelled by the velocity
operator v; are vector (currenjy
vertices while the internal vertices
q, w are scalardensity vertices.

v; '

consistent Born approximatibh(SCBA) which becomes ex- component of the current operator in thh layer. The dc

act in the limit of high Landau levef$. drag conductivity follows by taking the limit
Our results are in good agreement with the experimental
observations. We find that at high temperatures, the leading oﬁ’ = a'i?(Q =0,Q0 —0). (2

contribution to Coulomb drag is due to the breaking of Wh ina th ded lation f :
particle-hole symmetry by the quadratic dispersion of the en computing the retarded correlation function appear-

electrons. This contribution which is analogous to the!N9 in Eq. (1) within the Matsubara technique, the leading

conventional contribution to drag discussed above, alwaygIagrams in the limit of yveal_(screene}jmt_erlayer Interac-
has a positive sign and depends on temperatur&2adt tion U(q,w) are shown in Fig. _1. Analytically, these dia-
temperatureksT<A, we find that the dominant contribution 9rams are given by the expression
arises from the breaking of particle-hole symmetry due 2T
to the Landau-level structure. This contribution gives rise to Ui[j)(iQk) = > (g, iwy +iQgiop)
a peak in the temperature dependence and can take on both 20 Sq o,

ositive and negative signs, depending on the filling-factor . . . . .
gifference of thegtwo Iaye?s. In paprticula?, the sign is n%gative XT{2(0,iop iy + 12U, iwn + QUG iwp).
for equal filling factors in the diffusive regime where the (€)]
interlayer distance is larger than the cyclotron radilg, as
was found in Ref. 14. We find, however, that this signHere, w, and ), denote bosonic Matsubara frequencies and
becomes negative in the experimentally relevant ballistighe vecto"(q,iw,,iwy,) is the triangle vertex of laydras
regime (a small compared toR;), in agreement with defined by the diagrams in Fig. 2. Neglecting intralayer in-
experiment. teractions, it takes the analytical form

This paper is organized as follows. Section Il briefly sum-

marizes the pertinent background on the_ Kubo approach o I(qiopioy =T> tr{G(ie)€9"Glig +iwy)
Coulomb drag as well as on the self-consistent Born approxi- &
mation. In Sec. lll, we present the diagrammatic calculation . . igr . it .
of the triangle vertex gntering the ex?)ression for the drag XVG(i+io)e™ +Gliege ™ Glie ~iwn)
conductivity, for well-separated LL's, both in the diffusive XVG(ig —iwy)€d™}, (4)
and in the ballistic regime of momenta. In Sec. IV, we collect
the relevant results for the screened interlayer interactionwhereG denotes the Green functigfor a particular realiza-
These building blocks are used in Sec. V to compute the dragion of the disorder potentigl ¢ is a fermionic Matsubara
resistivity. In this section, we also compare our results withfrequency, andr represents the velocity operator. The vertex
experiment. Finally, Sec. VI contains a summary of our re-I" should be averaged over realizations of disorder, as will be
sults and a discussion of prospects for future research. lgiscussed in Sec. Il B.
what follows, we sefi=kg=1. Summing over the Matsubara frequeney, performing
the analytical continuation to a real frequen€y, and
finally taking the limit Q—0 vyields for the dc drag

Il. BACKGROUND conductivity>16
A. Drag

Our considerations are based on the Kubo approach to ,3::1 ,(\1":’
Coulomb drad*® which expresses the drag conductivity
aﬁ(Q,Q) in terms of a current-current correlation function

1~ v; + & A
o0(Q,0) = f dte([j""(Q.1),j?(Q. 01, (1)

wherei,j label the components of the drag conductivity ten- ';’1)2 '}11}2
sor, Q,{) denote the wave vector and frequency of the ap- ' ’
plied field,Sis the area of the sample, an‘a denotes théth FIG. 2. Diagrams defining the triangle verteXq, w;, y).
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e JOO dw [0} . )
D__ =~ —F.(l) , i0,w—1i0 F(a) , =—V.Imtded'Gt(e)eldTG , 11
s TS% Sz @e*ite=i0) (@,0) = —Vq Imtr{e9'G" (e G (9}, (1D)
XF}Z)(q,w -i0,0+i0)|U(q, w)[2. (5)  Which shows thal@(q, w) gives only a longitudinal contri-

bution (parallel toq) to I'(q, w).
In the sequel, we will use a short-hand notation
I'(q,w)=TI'(q,w+i0,w—=i0). Note that the Onsager relation

oﬁz(B)=a-ﬁ1(—B) implies, in combination with Eq(5), that B. Impurity diagram technique in high Landau levels—SCBA

I'(q,w-i0,w+i0;B)=I'(q,w+i0,w—i0;-B). In this subsection, we discuss the averaging over the ran-
The experimentally measured drag resistivity can be exdom potential of impurities. We assume white-noise disorder,
pressed via the drag conductivity as characterized by zero medb(r))=0 and by the correlation
function
Pl = pihapi? (6)
(1.2 ur)u(r')y = Srr—=r’),
wherep, ' are the resistivities of the layers. Note that the (UHUEr) 2myTo ( )

minus sign corresponding to the standard tensor inversion is

absent in this expression, according to the conventional defwhere v,=m/27 denotes the zerB- density of states

nition of the drag resistivity. This definition yields a positive Per spin andr, the zeroB elastic scattering time. We perform

transresistivity in the absence of a magnetic field. the averaging in the self-consistent Born approximation
The triangle verted'(q, ) is obtained by analytic con- (SCBA). This approximation, which neglects diagrams

tinuation of Eq.(4), see Appendix A for detail. The result has With crossing impurity lines, can be shown to give the

the formI'=I'@+T'® with the two contributions leading contribution when the Fermi enerdg is in a
high LL with LL index N> 118 Strictly speaking, the disor-

@ [ de Etw—u . der potential in the experimental samples is expected to be

I'(q,w) = A tanhTtr{vg (e+w) correlated on the scale of the distance of the two-dimensional
) , electron layer from the donor layer. However, we find that

XeIG (e)e" G (e + w) — VG (e + w) the experimental observation can already be understood

(0 = N\ i e o when considering white-noise disorder and that a finite cor-
XeG(9e ™G (et 0+ (00—~ w,=0), relation length of disorder does not qualitatively change our
(7)  conclusiong?
Within the SCBA for well-separated Landau levélghe
impurity average of the Green function, denoteddYe), is
) diagonal in the LL basignk) in the Landau gauge and takes

d +w- -
F(b)(q,w)=f4—e_<tanh—e CTR_tanh
™ the expression

2T 2T
X tr{vG (e + w)€[G () - G*(e) €97
XG (et w)}+(0,9—-w-0). (8

1

Gie=———~ 12

() e—E,—2%(e) (2
Here, G*(e) denotes the advanced/retarded Green functionvith the LL energiesE,, = w(n+1/2). For energies within a
and u is the chemical potential. Note that at zero magnetid_andau level, the self-energy is given by
field only I'® survives!® whereasI'® containing products L
of three advanced or three retarded Green functions is zero. S*He) = —{e—E.+i[A2— (e-E.)2V 13
By contrast, in strong® both I'® and I'® should be re- n(© 2{ n# 1A%~ (e~ E)° ] (13
tained. Most importantly, we will show below that in the
ballistic limit there is a cancellation betwe&® andI'® in
the leading order.

For smallw, the expressions fdr(q, w) simplify to

Here, the LL index is chosen such tha¢—E,|<A. The LL
broadeningA can be expressed in terms of the zero-field
scattering timery as

A2 = 2w . (14
(g, ) = %tf{V?(E)eiq'rng(E)e_iq'rg+(6) -(@"—=3G)}  The density of states is
9 v(e) = Lm12A%H€) = vyro[ A% - (e - En)?]Y?  (15)
with the elastic scattering time
r®(g,0) = itr{vg'(E)eiq'r[Q'(e) N ACICRMAG) me) =[A% - (e- B’ ™2 (16)

(10) Here,|=(1/eB)'? denotes the magnetic length.
In principle, disorder leads to vertex corrections of both
For well-separated LL’s, this approximation holds as long aghe vector and the scalar vertices of the triangle diagkam
w is small compared to the width of the LL. It is also  However, for white-noise disorder there are no vertex correc-
useful to note thal@(q, w) can be expressed as tions of the vector vertex. The vertex corrections of the sca-
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n,k nk q,w q, w
N+1 N
= + N N
q? w qi w
v v N N+l
K K 'K q, w q,w

FIG. 3. Diagrammatic representation of the equation for the ver- FIG. 4. The diagrams contributing to the triangle vertex in
tex Corrections')/n";n,k’(e+w’E;q) (full triangle at vertex of the SCBAto leading order in the limits of well-separated Landau levels
scalar(density vertices in the SCBA. Dashed lines represent impu-A/@c and largeN.
rity scattering. We also indicate that for well-separated LL's, the
internal Green functions in the right-most diagram should be evalube obtained from Eq(22) by complex conjugation with the
ated in the valence LN which can differ from the LL labels, n’ replacement)— —q, nk«—n’k’. Since the characteristic LL
of the external Green functions. indices are largay, n’ >1,|n-n’|, and relevant momenta are

small compared to the Fermi momentay kg, Eq.(22) can
lar vertices generally involve impurity ladde¢see Fig. 3  be simplified by using the quasiclassical approximation

and turn out to be independent of the LL indicesnd n’ :
(Ref, 21) p <nk|e|Q'r|n/k/>

n—-n’ —i _n’') i +k")I2
i (€ @,€:0) = ¥"(0, w)(nKET[n'K).  (17) = g il € AT RO (qRT), (29

A N i (W —1.[2n+1 i
Here, the indicess, »=2 indicate the type of Green func- Wheredy is the polar angle ofl, R —|,V2”+1 is the cyclo-
tions involved in the vertex. In the limit of well-separated {ron radius of theith LL, andm=(n+n’)/2. For most of the
Landau levels, one finds the explicit expressions for the vercalculations below, the dependence of the cyclotron radius

tex corrections atv=0 on the LL index in the vicinity of the Fermi level will be
immaterial, and we will drop the corresponding superscript
V() = 1 (19) and simply writeR.. Then dependence dR. will, however,

1-J3(qR)[A/23 7 be crucial for the evaluation of the contribution to the drag
related to the curvature of the electron spectrum, see Sec.
Il C 3. In view of the rotational invariance df(q, w), it is
m, (19 sufficient to calculate it for a certain direction of the wave
0 vectorq. Choosingq to point along the positive axis, we

whereJ,(2) denotes the Bessel functions. The derivation ofsimplify Eq. (23) to the form
these expressions is reviewed in Appendix B. Xt e ik

For later reference, we also collect relevant matrix (NKEPIN'K) = Goi™" €93 (aRY). (24)
elements between LL eigenstates) in the Landau gauge
A=B(0,x). The vector vertex involves the matrix elements

Y (Q,w) =

. Ill. TRIANGLE VERTEX T'(q,w)
[ —
(nKvy|n'k’) = 5kk'm{\e’/ﬁén’n/+1 - N+ 16, -1}, (20) A. Leading order
V
We now turn to an evaluation of the disorder-averaged
1 - triangle vertexI'(q,w) for well separated Landau levels
(nKv|n'k’) = 5kk'_r{Vn5n,n'+1+ VN + 18, 1} (21)  A/wg<1, in the limit in which the Fermi energy is in a high
miy2 Landau leveN> 1. The relevant diagrams are shown in Fig.

In the limit of high Landau levelsn~N>1, one can use 4- We begin by considering the low-temperature lirait
quasiclassical approximations for these matrix elements! <A.

namely, (nKu,Jnt1k')= Fideve/2 and (nKu n+1k’) ~ Inthe limit under consideration, the calculation is simpli-
~ 8q0ve/2, with the Fermi velocityr. fied as follows. Very generally for white-noise disorder, there
The scalar vertex involves the matrix element are no vertex corrections of the vector vertex. By contrast,
vertex corrections of the scalar vertices have to be retained.

. on'=np’ 1 i To leading order il\/ w., two of the three Green functions in
(nKed"n’k’) = 5qy,k—k'TeXp{'Zq2|2‘§ Egs. (9) and (10) should be evaluated in thith Landau

' level in which the Fermi energy is situated. Since the veloc-

, . _ny n-n’ ity operator has matrix elements only between states in
Xau(k+k )|2}[(Qy+ i)l " Ly " (01712), n)éighpboring Landau levels, one of the ();reen functions adja-

22) cent to the vector vertex must be taken in Landau levels
N+1. This is illustrated in Fig. 4.

where L is the associated Laguerre polynomial and We first consider the contributioF®(q,®). In this case,

n=n’. The expression for the matrix element forxn’ can it is most convenient to start from the simplified expression
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in Eq. (11) in which to leading order inl\/ w;, both remain-
ing Green functions can be evaluated in Landau leNel

Using the identitqu[JO(ch)]Z:-2qRCJO(qRC)Jl(qRC) (with
d=q/q), one obtains

. 1
P0,0) =~ 20 7 5(ARI (AR

X{IGY" P -[Gyy 13, (25)

where y*’=y**(q,0) and the factor 2 accounts for the

spin degeneracy. The calculation fBf°(q,®) in Eq. (10)
yields
o) 1 Lo el
P0(0,0) = 20 ZEX(GRIAR) 5 Gy ™ - Gy ™y
X[G+ Gyl (26)
Summing both contributions, one obtains

4wR;
12

XIm[GRy™*].

I'(@,w)=4 Jo(AR)IL(ARIRE G (Y™~ ¥7)]

(27)
For arbitraryT, o < w,, this contribution takes the forth

8R. Ji(@R) [~
71202 (AR J .

+ =
2T

I'(Q,0)=§

E— 4
tanh—2T }Re[y (4, )

-7, 0)]im y7(q, ). (28)

Since the interlayer interaction is suppressed at large mo-
mentaq by a factore @ wherea is the interlayer distance,

the drag conductivity5) is governed by momentg<<l/a.

Depending on the relation between and the cyclotron
radius R., one distinguishes between the diffusifee> R.)

and the ballistic(a<R;) regimes. While in the former
case, only “diffusive” moment&gR.<<1) are relevant, in the
latter case both “ballistic(qR.>1) and diffusive momenta
contribute to the drag conductivity5). Experimentally,

PHYSICAL REVIEW B 70, 245302(2004)

_ 4eR@R) 2 p-Ey
F(q,w)_ q '772|2A2 (qR:)Z[AZ_(M_EN)Z]l/Z'

(29)

More generally, at small momenta one should also take into
account the frequency dependence 6f, which has the
structure of a diffusion pole

Y (Q,w) = (30)

1
He)[D( —iw]’
where D(e):R§/27(e) is the (energy-dependentdiffusion
constant in a strong magnetic field. Equati@9) is then
generalized to

L 4wq D(w9
I'(q, w) :_qWZZE[D(M)CI]é]2+w2(M_ En)-

(31

This result can be recast in the foiim, is the electron con-
centration

doi do.
I, =2—Lq ImII =2—X
el'i(q,w) d(ene)q, mI1(q, ») dleny)

qi Im H(q1w)a

(32)

which allows for a simple interpretation as a nonlinear
susceptibility**?° This rewriting of Egq. (31) uses the
result’

& (u—Epn)?
0= 1—“A—2N (33
for the diagonal conductivity in SCBA (doy,/dn,
>doy,/dn, for separated LLsand
D(wg”
I1(g,w) =2 — 34
(@)= 20w (34)

for the polarization operator in the diffusive limit. It is
worth emphasizing that the diffusive result in EB1)
arises fromI'® only, since the other contributiod®
does not contain the vertex correctioi™. Note that the
authors of Ref. 12 failed to obtain the leading diffusive
contribution(31) and(32), because of an incorrect treatment

L . . H 1,22
when the transresistivity is measured in moderately stron§f Vertex correction$:?* For the same reason, they

magnetic fields(i.e., in high Landau leve)s the condition

missed theO(1/qR;) contribution[Eq. (36) below] which

R.>a is typically satisfied. For this reason, we mainly Pecomes important in the ballistic regime, as we are going to
concentrate on the ballistic regime in this paper. In Secsdiscuss.

[11 B and Il C we will calculate the triangle vertek(q, w)

in the diffusive and ballistic ranges of momenta, respectively.

These results will be used in Sec. V for the calculation of the

drag resistivity.

B. Diffusive momenta,qR.<€1

In the diffusive range of momen@@R. <1 we can expand

C. Ballistic momenta, qR.>1

1. Cancellation of leading contribution and the @./qR.)
contribution from vertex corrections

In the leading order in the ballistic range of momenta,
gR.>1, the vertex corrections in EqEL8) and(19) can be

the Bessel functions in the expressions for the vertex corredi€glected,

tions, (18) and (19). Due to the singular behavior of the

vertex correction y*~ at small momentag, we have

Y7(Q,w) = y"(q,w) = 1. (35)

v"~>y**, ¥, so that only the contribution proportional to Inserting this into Eq(27) for the triangle verteX'(q, ), we

"~ should be retained in E27). This yields

immediately see that the triangle vertex vanishes to this or-
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der. We emphasize th&{® andI"® do not vanish separately L1 N
but rather cancel each other in the leading order. "
Thus, to obtain a nonzero answer fbfq,w) from Eq.
(27), we need to consider the vertex corrections in Efj8) N N
as(19) in next-to-leading order igR.. In this way, one finds
from Eq.(27) " ntl

_ 2_(, _ 273/2
l-\(l/ch)(q w):_qe%Rc(M EW[A” - (u— En)7] FIG. 5. Diagram contributing to corrections of ordar w.
' w2 A8 to the triangle vertex. Here both Green function adjacent
to the vector vertex should be evaluated in Landau levels different
X J1(qR)J(GR). (36 fomN.

Here_, we _mtrodl_Jced a _superscnpt dr(g, w) in (_)rdgr Corrections of ordeA/ w, arise from two sourcesi) The
to distinguish this contribution from other contributions 5.qan functions adjacent to the current vertextath evalu-
computed below. At finitél and w (assumingT, @ <wc),  ated in Landau levels different froM. (Note that the Green
we find function between the scalar vertices must still be evaluated in
160R, the Nth Landau level becaus6;-G,~A/w? for n#N.)
TR (g, w) = - § 55 591(GR) I (AR This contribution is depicted in Fig. %ii) The diagrams in
71°A Fig. 4 can be evaluated more accurately, keeping corrections
Joc ( e+ wl2-p in A/ w, which _arise from keeping the self-energy parts of
X de| tanh the Green functions of Landau levéls-1. Note that we may
-0 now neglect vertex corrections at the scalar vertices because
e-wl2-p we con_sider the_: leading c_)rder qR.>1. _ _
) Details of this calculation are presented in Appendix C.
2T Here we only state the results. The contributionvanishes
xRe{ (e+ wl2 _EN)Z}lIZ for bothT"® andI'®. The contribution(ii) turns out to still
AZ

- tanh

give a vanishing contribution to the longitudinal triangle ver-
tex, due to the cancellation betweBf andI"® described
(e+ wl2 —Ey)? |12 above. However, the transverse contributio't no longer
xRe 1 T A2 vanishes when considering correctionsAifw,. In this way,
we obtain the contribution

etwl2-Ey|  (e-wl2-Ey? _ 2_ (4 —E.)?

X { A |:1 AZ i| F(A/wc)(q,ﬁ)) = _q X 21767(;;5(2 (/‘L EN)[i) A4(Iu“ EN) ]
-wl2 - wl2 —Ey)? i

+ £ A2 EN{l G AZZ Ev }} X Jo(qR)J1(ARy) (38)

37) to the triangle vertex. o .
As we will see below, theé\/ w. contribution is of crucial

The contribution(36) to I'(q,w) has been obtained in importance for understanding the experimental findings. We
leading order in the limit\/ w.<1 andqg/kz<1 and in next- mention that this term was lost in Ref. {id addition to the
to-leading order imjR.> 1. Thus, we are also forced to con- 1/qR. contribution missing there because of an inaccurate
sider separately next-to-leading order corrections in the pareatment of vertex corrections the course of the so-called
rameters A/w,<1 and g/ke<1, with the other two “triangles-to-bubbles” transformation. Specifically, in Ref.
parameters kept in leading order. 12 the self-energy in the Green functions connected by the

Before we turn to these calculations, we briefly remarkcurrent vertex was neglected compared to the cyclotron fre-
that the leading-order cancellation in the ballistic regime wagjuency, which obviously misses corrections of order of
missed in Ref. 14 since the contribution frdf?’ was over- A/ w,.
looked. The results obtained there for the diffusive regime Equation (38) is derived in the low-temperature limit,
remain valid since in this cad&? is negligible compared to when T, w<A. To analyze the temperature dependence of

I'® see Sec. Il B. the drag, we will need tha/ w.-contribution also at higher
temperatures. We find for arbitrary relations betwéemdA
2. Contributions of orderA/ . andT, w<w, that
In this section, we consider the first corrections (M) . _ . B8R
to the leading order in\/w, to the triangle verted'(q, w), I2e(g,0) = - q X Zﬂ2|2AJl(ch)Jo(ch)
while working to leading order in the ballistic limgR,>1 .
for high Landau levelsN>1. While such corrections v f de(tanhe+ wl2-p
are of higher order in the small parametefw,, this small- . 2T
ness may be compensated by a large facBf since it
turns out that in this case there is no cancellation between —tanhg_ w/2 ‘M)
r'® andI'®., 2T
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><E_ENR 1 (€+0)/2_EN)2 2
A A?

- wl2-E 2 |1/2
XR&{l_%} ,

3. The conventional contribution of order tkg

(39

In this section, we compute the contributionKodue to

terms of ordeig/kg relative to the leading order. Such terms
arise from a more accurate treatment of the matrix elements

PHYSICAL REVIEW B 70, 245302(2004)

LAJ(R) [~ ( e+wl2-u
(a/kp) =g X B i b %4 - 7= ™
I'%(q,w)=q X 2 272 _wde tanh >T
—tanh—e_wlz_’u>
2T

(e+ w2 ~Ey)? M2
x Re[l -

involved in the scalar vertices, for which we now use the

more accurate expressions

(N2 2|97 [N)(N[eT|N) = (ch[l +H)Jo(ch>

(40)
(N[ [N)(N[e™@"|N £ 1) = (q&{ DJo(qRC)
(41)
together with
1
Jl(ch{l t m]) =J;(qRy) £ 2_|<FJ°(qR°) (42)

Thus, such terms give rise to a contribution of the order o
g/ke relative to the naive leading ord@which vanishes be-

cause of the cancellation betweEf® andI'®)].

We find that such corrections arise only for the contribu-

tion I'®), yielding

8w A? - (u= EN)

= A*

Similarly to Eq.(39), we generalize thi©(q/kg) contribu-
tion to the finiteT case

I'?(q,w)=q x 2z JaR). (43

- wl?2-E 2 (1/2
XRe[l——(e w2~ Ey) ] . (44)
A
This expression can also be rewritten as
(a/ke) g x 325
el F(ol,w)—qxzeﬁb Im I1(q, ») (45)

with the polarization operatofl(q,w) for the ballistic re-
gime [see Eq(50) below] and the Hall conductivity

en,_ € A{l_w—EN)T’Z

— - SN— A2 (46)

TR T2 o
in SCBA. It can be checked that E@5) is valid for arbi-
trary T, including T= w...

The g/kg contribution arises from taking into account the
dependence of the cyclotron radius and hence the velocity on
the Landau level number, which is a direct consequence of
ithe curvature of the zerB-electron spectrum. It is thus natu-
ral that the obtained resul5) is a high-magnetic field ana-
log of the conventional contribution 6.1 Only this contri-
bution was retained in Refs. 12 and 13, while the other
contributions related to the particle-hole asymmetry due to
the LL quantization were lost there.

IV. SCREENED INTERLAYER INTERACTION

In this section, we summarize the results for the screened
interlayer interactiot?

ViA(q)

Ui(g,0) =

Here, V(q)=2m€?/q denotes the bare intralayer interaction

andVi,(q)=V(q)e % is the bare interlayer interactiona,de-

[1+V(o)IT5(a, ) ][1 +V(a)IIx(d, )] = Vi@ T1(q, 0)TTx(q, )

(47)

In the random-phase approximation, the polarization op-
erator in a strong magnetic field has the form

notes the distance between the layers. The polarization op-

erator of layerl is denoted byll,(q,w). For g small com-
pared to the Thomas-Fermi
Ko =41y, (=1, 2 labels the layer andy, denotes the
zero-field density of states per spin of lay¢r this can be
approximated as

me’q 2191 2192
U 1 = i ’ ' . 48
12(q w) K0'1K012 S|n“qa) Hl(qrw) HZ(q7 (1)) ( )

screening wave vectors

d
11(g,0) = leJ (@R f 5 (G (e+ o)
rl

X[Gr(€)7™(a,0) = G(€) ¥ (g, w)] + Gy(e ~ w)
X[Gr(€)y(a,0) = Gy (A, )]}, (49)

where ng(e)=1/{1+exd(e—w)T]}={1-tank(e-w)2T]}/2
is the Fermi distribution function and we have used the qua-
siclassical approximation for matrix elemerngst).
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We turn now to a brief summary of results fli(q, w) in san(z+ 2x
various relevant domains of momenta and frequency. Som&(X) = f dz41 - 22)1/2{ %R‘{( +20% - 1]*2
of these results can be found in Ref. 13; we reproduce them
here for the sake of completeness. The polarization operator sgn(z— 2x) 12
in the diffusive regime of momentéand atT<A) was al- - TRG[(Z 20%-1] (59

ready given in Eq(34). In the ballistic regimegR.> 1, the

expression(49) can be simplified by neglecting the scalar The imaginary part foif < w, reads
vertex corrections

w _ E '
1 * de Im H(q a)) 2v _J (ch)_ (—)Cosh2<N—>,
(g, = —5 2 Jin(AR) f —ne(e) °

X[Gole+w) + Gyle~w)]im Gy(e),  (50) where H(x) is a dimensionless function representing the

For low temperature and frequenay T<A, the real part of ~overlap of two Landau bands
the polarization operatab0) takes the form

H(x) = r dZRe1 - (z+x)*]VH{Re 1 - (2= %)°]"?}.

Rell(g> Rc w—0)=2p,+ 21/0 JO( R, "
(57)
x[l _('“_—EN)ZTIZ_ (51) Finally, in the highT limit, T> w., the imaginary part of
A? I1(g, w) becomes independent Bf,—u, because of thermal
' . , averaging
Here, the first terd? arises from Landau levels with# m,
while the second term represents the contribution ofNtie En +tw-u
LL (n=m=N). The intra-LL(secong term contains an addi- M II(g,w) = ZVO—E —
i 2T
tional energy factof[1-(u—Ey)?/A?] compared to the case Anm
of diffusive momenta, which is due to the suppression of En—u |, E.~-Enhtow
vertex corrections at high momenta. The imaginary part of ~tanh oT Jn-m(@RIH T oA
the polarization operator fap, T<<A has the form o
_ 2
21/0 E I &)H( o ) (58

2
im0 =20 2 o] 1-#5|e
SinceH(|x|>1)=0, the imaginary part ofl(q, ) as a func-
A comparison with Eq(51) shows that IMlI<Rell in this  tion of w at T> w, consists of a series of peaksroadened
regime. by A) around multiples of the cyclotron frequency.

It follows from Eq. (51) that there is an additional Importantly, the imaginary part of the polarization opera-
wavevector scaleR,~ w./A in the ballistic regime, where tor is suppressed at high frequencies> qug. This follows
the behavior of Rél changes. Specifically, fag<w./AR.  from Eq. (58), since Jﬁ(ch) is exponentially small when
the polarization operatgiand hence screening due to the n>qR.. This is analogous to the zeBcase, where
contribution of theNth Landau level, while at largey it is

due to Landau levels with# N. Only in the latter case, we ®
recover ImII(q,w;B=0) = 2VOE O(qug - ) (59

11(q, ) = 2wy, (53)  with é(x) the step function, and can be traced back to the fact

. that at high frequencies the magnetic field becomes almost
and thus the standai=0 form of screening. When the tem' irrelevant, so that the polarization operator approaches its

perature is large compared to the Landau level broadenlngeroB form 23

A<T<w Egs.(34) and(52), and the second term of Eq.

(51) are effectively multiplied by factors-A/T due to ther-

mal averaging. In this case, the real parfHfy, w) takes its V. DRAG RESISTIVITY
zeroB form under the weaker conditiogR.> w./T. This

; ic fi > i
follows from the expression In a strong magnetic fieldp,7>1, the intralayer Hall

resistivity p,, dominates over the longitudinal resistiviy,.
,u) Therefore, the drag resistivity is given by
N

E
Rell(q,») = 2vo+21/0 Jo( R)Q ( )cosh2< b o

21 Pxx pxy TyyPyx - (60)

(54)
Using Eq.(5), we get the expression for the longitudinal
Here we defined the function component of the drag resistivity in a strong magnetic field
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5 B B 1 (” do d%q triangle vertex and polarization operator, we present the tran-
Pxx= eny en, 87 . 2Tsint(w/2T) | (27)2 sresistivity in the following form:
<T0(q,0,B02(0,0,-B|Upgof. (61 0 ~ éBZ( e ) ( e )
y y @, y » W, 12\4, . Pxx 87T3 K%neAz N K%neAZ )

The overall minus sign in Eq.61) is due to the . 5

relation py,=—py,. It follows that for identical layers, the XJ do w (o)

longitudinal (I'ecq) componentl’y of the triangle vertex ., 2T sink(w/2T) ’

gives rise tonegativedrag, sincd’j(-B)=I"(-B), while the

tlfa?sé()eisel(“r?g)( ) componentl’ | vyields positive drag, (@) = 1,(0) + 1y (@) + 1 (@), (69)
1(=B)=-1,(=B). . .

Since the upper limit of the momentum integration in Eq.Where the subscript=1,2 in (---), refers to the layed,
(61) is effectively set by the inverse interlayer distaracé, ~ and the contributions,, I;;, andly, in Eq. (67) are deter-
the behavior of the transresistivity will essentially dependenfmined by the momentum domaig, <1, 1<qR.<wc/A,
on the relation betweeR, anda. Below, we mainly concen- andqR.>w./A, respectively. The corresponding expressions

(67)

trate on theballistic regime are given in Appendix D. Estimating all three terms, we find
[see Eq(D12)] that the leading contribution is given by the
w/A <RJa<NA/w, (62 Jast term

which we consider as most relevant experimentally. In Sec. 1 RA 16

V D we will briefly consider other situations and discuss the (@) =y (0)=-—55- In(—) —(u-Ey[A?
evolution of the transresistivity with decreasing interlayer 2ma’R; "\ awe ) | weA

distance, from the diffusivéR./a<1) to the ultraballistic 5 1

(R./a>NA/ w,) regime. ~(p-EV7] .

6
YAl EN[AZ - (u- EN)Z]}2

A. Ballistic regime: Low temperatures (T<€A) 1 /AN A
In the low-temperature limit, the expressions derived ~ﬁ(—> In(RC ) (69)
for the triangle vertexI'(q,w) at w<A are sufficient, aRe\we awc

because frequencies in E(@1) are restricted tan<T<A.  Therefore, forT<A we get for identical layers
Let us analyze which of the contributions to the triangle

vertex dominates, depending on the relation between o0 = 32 1 (I)2| (RC_A)(,U«— EN>2
and 1R.. 0 372€ (kea)(koR)2\ A aw. A
In the diffusive range of momentgR.<1, the leading _E2]2
contribution to the triangle vertex is given by E@1); its X{l _u} _ (70)
magnitude can be estimated as A
wke Thus at low temperatur@ <A, the drag resistivity scales
T A%R (63)  with the magnetic field and temperature as
D, T2
In the ballistic regimegR.>1 we have three competing Pioc* TBIN(B./B), (72)
contributions(see Sec. Il ¢ where B.~ (mc/e)(vi/a’)'® sets the upper boundary
wk for the considered ballistic regime on the magnetic field
ek ~ ——F (64)  axis.
A*(QR) If R, differs slightly between the two layer§.e., the
concentrations are slightly differentso that sR./a<1,
K A the above calculation fully applies, with the only change in
[Wog . P GRS R 65 ’
rogr, %, ©®9  Eq.(70
2 272 2
2 m~Ey _(M‘EN) R -~ Ey _(M‘EN)
k) - @ @F(l/q&) 9 Perarag (66) ( A2 1 A2 A 1 A2 .
AR, N ke A
Comparing these expressions, we find that the first contribu- | *= En 1- (k- En)?
tion I'YaR) dominates fogR. < w/A, the second onE*/«o A A2 )

is dominant forw./A <gR.<NA/w., while the last contri- (72

butionI"@*F) becomes the largest one R.> NA/ w.. This

is valid provided that the Landau level indBis sufficiently  This yields anoscillatory signof the drag. For identical lay-

large,N> (w./A)2. We will assume below that this condition ers the drag igpositive at variance with Ref. 14. This is

is fulfilled. because the leading term here originates from the component
Splitting the momentum integral in E@61) into three I', of the triangle vertex transverse to the wave vedor

parts, corresponding to regions of different behavior of the(i.e., directed along X g). For a more detailed discussion of
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FIG. 6. Low-temperature drag
for identical layers. Left panel:
temperature dependences of the
O(A/ wg) term in p2(T) for differ-
ent values of the filling factor of
the highest LL, »y=0.5,0.2,0.8
(from top to bottom. Right panel:
dependence of th®(A/w.) term
on the filling factorvy for differ-
ent values of temperaturel/A
=0.1,0.5,1(from top to botton.

p,, [arb. units]

D

p,z [arb. units]

T/IA

the sign of drag in different regimes, see Sec. VD. If u=u(vy,T), which is taken into account in Fig. 6.
a<OR.<RA/w,, the calculation still applies, but the argu-

Consider the regime of temperatures large compared to
ment of the logarithm changes,

the LL width, T> A. In this situation the LL's will be broad-

ened by the temperature, so that typically Ey will be of
|n(ECA> N In(ié> (73)  orderT and thus much larger thaA. Expanding the tanh
a wg OR; w¢ terms in Eq(75) in w<2A<T ande-Ey<A<T, we arrive
at
o B. .sz:l”IStIC reglme: Arbltrary. T/.A ' (pD)(A/wC) _ 4 1 |n(£>
Having identified the leading contributiogitoming from xx 7€ (kea)2(koR)?  \ awy

the A/ w. term) to drag for temperatures small compared to
the LL width A, we generalize the obtained result to the case ><<sinh En—p s En “)
of largerT (and correspondinglw). As discussed in Appen- T 2T /4

dix D, the only difference in the momentum integral in the Ey- Ey—
Al w, term is the replacement — T under the argument of ><<sinh N 73 N )
2

logarithm. Using Eq(39) and assuming that the difference in 2T 2T
R. between the two layers is not too largR.<a, we ex- AN dw
press theD(A/w.) contribution to the transresistivity as X\ = j

=) | SRR AW,
4 1 Rcma>{A,T]>

D\ (Mag) —

(Pod ™= g (ke cgR? '”(

(76)

awg

* dw ~ ~ ; ; ; ; o
X f ——— [ Fo,u, D[ Flw, 1, T, whereF(x) is a dimensionless function similar to E&.7). It
_. 2Tsint?(w/2T) ! ? also describes the overlap of two shifted Landau levels, but
(74) has an additional factof(e—Ey)/AJ? arising from the

3 particle-hole asymmetry due to LL quantization,
where F(w,u,T) is a dimensionless function ofw/A,

(u—En)/A, andT/A,

~ “ de e+twl2-pu e—wl2-pu F(x) = f dzZ{Re1 - (z+X)°]"H{Re1 - (z-x)?]"3}.
f((l),,u/,T) = - tanh _tanh —0
A 2T 2T
(77
« €_AEN |:1 _ (6 + (J)fz_ EN)2:| 12
The contribution(76) scales as
(€= wl2-Ey* [
1- | (75)
, , , po, = T3B72In(T/B?). (79)
For arbitrary T/A~1 this can only be calculated numeri-

cally. In Fig. 6 we present the results for the temperature Since the abov®©(A/w,) term falls off quickly atT> A,
dependence of th®(A/w.) contribution to drag as well as we should analyze the contributions of the other terms. Let
for its dependence on the filling factas, of the highest us first calculate the “conventional” ter@(q/kg), substitut-
(partially filled, 0<w»y<2) LL. It is worth mentioning that ing Eq. (45) in Eqg. (61). Remarkably, the stronB-expres-

when temperature is varied at fixed filling factas in typi-  sion for theq/kg contribution to drag resistivity reduces to
cal experiments the chemical potential is varying as well, the standard zerB-form!*15.16

245302-10



COULOMB DRAG IN HIGH LANDAU LEVELS PHYSICAL REVIEW B 70, 245302(2004)

(pD) @6 = X f ) = i (p2) HaR) ~ — i ! 2 sintp Sno
x 4meNeng ) _, 2TsinX(w/2T) | (2m)? X & (kea)’(KoR)* T 2T
qu[lm 11(q, @) ][ Im H(q,w)]2|U12(q,w)|2. X cosli? EN_M, (82)
(79 2T

Here all the information about the magnetic field is encodegVherec™®is a constant of order unity
in I1(q, w), Eq. (49). Equation(79) is identical to the central 4 (~
result of Ref. 12. Therefore, it is thg/ke contribution that cHaR) = — J d{PX)TPW(X), (83
the theory of Ref. 12 takes into account. As we show below, T e
this contribution dominates at high temperatures, as well agjth the function)V(x) defined in Eq(20) and
in the ultraballistic regime. .
For T> A, expanding the tanh terms in Ihh(q, w) just as _ _ 2112 o 21122
before we find P(x) f_w dz4z+ x)R1 - (z+ x)2YARd 1 - (z- x)?]V32.

2 4
27%e? (kea)*(koR)?\ A ) T This contribution scales as
E. - E\ — D ., _ T-1R5/2
><<cosh‘2 N 'u) (cosh‘zN—M) P~ T B (85)
2T /4 2T /5,

We thus conclude that th®(1/gR.) contribution wins over

* d the O(A/ tribution f
% J ﬁ[H(w/ZA)]l[H(wIZA)]Z, (o) e O(A/wo) contribution for

T> Aln1’2<R°—A> =T..

where {(x) is the Riemann zeta functidf(3) =1.202 and aw
H(x) is defined in Eq(57). This contribution scales as Comparing Eqs(80) and(82), we have
p)l()xoc T—lB7/2_ (81) O(q/kp) N 1 (wC/A)Z _ (&&)2 -1 (86)
2 H
The slower fall off of theO(q/kg) contribution (80) as [0/aR)|  (kea) a NA

compared to Eq(76) can be traced back to the different as follows from Eq(62). Therefore theD(1/qR,) contribu-
nature of the particle-hole asymmetry underlying these twajon dominates the drag resistivity in the intermediate range
contributions. Specifically, th€&(A/w,) term (76) is gov-  of temperature. This contribution oscillates with changing
erned by the particle-hole asymmetry due to the LL quantithe filling factor of the two layers; however, it is negative for
zation. This is reflected by the facter Ey in Eq.(75 which  matching densities, unlike th®(A/w,) contribution.

after thermal averaging, translates into a factor in &&) For higher temperatures> w,, the terms related to the
which is asymmetric irEy— . On the other hand, the “con- | | particle-hole asymmetry fall off rapidly due to the ther-
ventional” g/kg contribution is due to the curvature of mal averaging involving many LLs and thus tiggks term
zeroB spectrum and therefore is symmetricénEy (and in (e the “conventional” contribution to the drag resistivity
En—w after thermal averagingln both cases the fall off of  5o0n becomes dominant. The drag resistivity is then always
drag atT>A is due to the absence of electronic states outpositive, independently of the difference in filling factors of

side the Landau ban@or |e~Ey|> A). However, the thermal  he two layers. It monotonously increases with increading
averaging of the odd function af—Ey yields an additional g takes the form

factor A/T for eachA/wc-triangle vertex, at variance with

the case of an even function ef Ey determiningO(q/kg) oD = 8(3) 1 &(l)z

contribution. 77 (k) (kR A \ oo
Finally, we evaluate the contribution of th®(1/qR.) * o

term. On the one hand, the thermal averaging suppresses xf —[H(wl2A)][H(w/2A)],

eachI'™aR) vertex by the factor(A/T)2, similarly to the = 2A

O(A/w;) term. This is again because of the particle-hole 1 T \2w,
asymmetry due to the LL quantization. On the other hand, ~ W(g) N B2 (87)
the peculiarity of the finitéF screening gives rise to a factor Fa)"(Koa F

(T/A)? in the momentum integral involving th&(1/qR,) This is almost the same result that is found in zero magnetic
term, see Appendix D. The remaining frequency integrafiield;'11516 the only difference is an extra factorw./A
yields the factorT/A, since the allowed frequencies are re- «<BY2 The reason for the emergence of the zBroesult
stricted by|w| <2A <T. As a result, the contribution of this is physically very transparent. Characteristic frequencies
term to the drag resistivity is inversely proportional to tem- w~ T> w, set a characteristic time scale!, which is much
perature forT> A, similarly to the conventionai/kg contri- ~ smaller than the time of the cyclotron revolution. At such
bution. For simplicity we restrict ourselves to the case oftimes the electron motion is essentially unaffected by the
identical layers, where we get magnetic field. The magnetic field enters, however, through
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sities chosen in such a way that the Fermi energy is located

) 1 I{};;f;ﬂ‘ﬁ;i in the upper half of the Landau band in one layer, and in the
T T3 lower half in the other layer. As has already been empha-
e T? f sized, the drag at low temperatures is positive for matched
1 and negative for mismatched densities. This sign of the os-
T / cillatory drag can be traced back to the fact that the dominant

o contribution to the triangle vertex is given By*/¢, which

T, | O is transverse with respect to the momentgm

T We now compare these results with a most recent and

detailed study by Muraket al1° of the Coulomb drag in the
: regime of high Landau levels. A comparison of our Fig. 7
“}iggls?{fged with Fig. 3 of Ref. 10 reveals a remarkable agreement be-
tween the experimental findings and our theoretical results.
In both the theory and the experimeiit) p°(T) shows a
HI IV sharp peak at low temperaturés) the sign of the drag in
this temperature range oscillates as a function of the filling
T factor of one layefat fixed filling factor of the other laygr
FIG. 7. Schematic temperature dependence of drag in thélil) the low-T drag is po_sitive for. equal fiIIing_fa_ctors and
ballistic regime for matched and mismatched densities. In thd'€dative when the Fermi energy in one layer is in the upper
latter case the mismatch is chosen such that the drag is negatif¥lf and in the other layer in the lower half of the Landau
at low T (see text Scaling of pP with temperature in different 0Pand, and(iv) the highT drag is always positive, indepen-
regions is indicatedi) Eq.(72), (i) Eq.(78), (i) Eq.(85), and(iv) dently of the difference in filling factors of two layers
Eq. (87). and increases monotonically with increasing-urthermore,
it was observed by Muraket al. (see Fig. 2 of Ref. 10
that in the low-temperature regime of initial increase of
p2, as well as in the high-temperature regime of “normal”
drag, the drag resistivity can be described by an empirical
scaling law

the density of stateg inside the LL, which determines the
characteristic magnitude of lrh and thus of’, see Eq(45).
The o integration in Eq.(61) thus results in an effective
averaging ofi?, yielding the factorw./A. It is worth men-
tioning that, for the same reason, the longitudinal resistivity

pyx Of @ single layer is also enhanced by such a factor in the b 27
regimeT> w,> A as compared to its ze-value, see, e.g., Pxx B f(T/B).
Ref. 24,

For still higher temperatur@>uvg/a, the quadratic-inF .
dependence of the drag resistivity crosses over into th(.Qur results for the _Iow—tempergture,_ E(JZl_), and high-
linear-in-T drag. This occurs because of the suppression ofemperature, EC[BS)' increase Opiy arezm a hice correspon-
the imaginary part of the polarization operafdetermining dence with this prediction, witf(x) ~x". _
the q/k. triangle, Eq.(45)] at > qug, see Eq.(59). As a The magnitude of the low-temperature peak in the

result, the domain ob integration is effectively restricted by drag resistivity that follows from our theory also agrees
w=vela (since q=1/a), vyielding the replacement with the experiment. Specifically, estimating E¢/0) at

T?— Tvg/a as compared to the case @f<T<vg/a, T:O'Z.EA and[(u-En/AP=1/2 by makin_g use of typical

experimental parametersco~ke~10® m™, a~10%m,

po, = TBY2, R.~107 m, we find p2~ 10, in good agreement with the
result of Ref. 10.

There is however a difference between our regtdy for

e low-temperature scaling of drag and the interpretation of

low-T data in Ref. 10 Specifically, while we fintf scaling

(88)

Before closing this subsection, it is worth mentioning that
in the above consideration we have neglected the contribL{—h
tion of magnetoplasmons to the dr@ge Ref. 13 for detaijs
While this contribution may become important for very high in this regime, Murakiet al. fit the data to an exponential

%—einie:f,lﬁijéﬁgi—;ﬁec’ rgn'zen(e)?I(')%'rb%;nmﬁllltg[e;flﬁ:';felyplr%v;’ent(activation-type dependence, arguing that localized states
pape; are responsible for the low-temperature “anomalous peak” in
' pEX(T). We do not expect, however, that localization plays an
important role in the regime of high Landau levels at realistic
temperatures. Indeed, as is seen from Fig. 1 of Ref. 10, the
In this subsection we compare the results for the drag imesistivity for filling factorsy=10 has a shape as predicted
the ballistic regime obtained above with experimental find-by SCBA, without developed Hall plateaus. Also, the fit of
ings. We have found a sequence of different regimes of théhe low-T behavior Ofp)l?x to the activated over a single de-
temperature behavior quX, see Eqs(71), (78), (85), and cade is not unambiguous; the same data could be quite well
(87). All these results are schematically summarized in Figfitted to theT? power law. In other words, we believe that our
7. The upper curves there depi¢g§(T) for equal densities, theory based on SCBA and not including quantum localiza-
whereas the lower curve corresponds to a mismatch in deriion effects is sufficient to explain the most salient experi-

C. Comparison with experiment
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FIG. 8. Schematic temperature dependence of low-temperature drag in different re@nfusive, R./a<1; (b) weakly ballistic,
1<R./a<w./A; (c) ballistic, w./A<R.,/a<NA/w; (d) ultraballistic, NA/ w.<R./a.

mental observations of Ref. 10: the “anomalous” drag with -T2B™54  T<A,
qscnlatory sign at low temperatures and the “normal” posi- PEX“ ~TUR2 A <T<Tw = o a/R), (90)
tive drag at hight. ’
-T1B%2, T> wlaR,).
The sign of the peak oscillates just as in the diffusive regime.
Ballistic regime w./A<R./a<<NA/w.. This is the re-
gime we have studied in the main part of the paper. For the
As discussed in the beginning of Sec. V A, the form of reader’s convenience, we repeat the results here. The peak is
the drag resistivitypo(T) depends on the value of the ratio governed by th@©(A/w) contribution, its sign oscillates and
R./a. In the above we have concentrated on the regimds positive for matching densities

D. Evolution of pEX(T) with varying interlayer distance:
From the diffusive to the ultraballistic limit

wC/A<RC/a<NA/w_C, which can be termed “balllstlc_” T28 In(B./B), T<A,

and which we believe to be most relevant to a typical 5 a7

experiment. In this subsection we briefly describe the results P> 1T B In(B./B), A<T<T, (91
obtained for other regimes. Specifically, with increasftaga -T71B%?, T>T..

we identify the following four regimes:(i) diffusive, - .

R./a<1, (ii) weakly ballistic, =<R./a<w//A, (i) Ultrabalhstlg: regime: NA/w. <R /a. TheT drag for all

ballistic, w./A<R./a<NAlw, and (iv) ultrabalistic, SMPeratures is determined by the conventi@j/ke) con-

NA/w,<R./a. In all regimes, the temperature dependencet“bunon’ Eq.(79), Wh_|ch is a cgntral formula of Ref. 12 ar'ld.

of the drag resistivity is nonmonotonous: the absolute valud/as useéd as a starting point in Ref. 13. In the ultraballistic

of pP(T) shows a peak arourifi~A and increases again at '€9ime the o_lrag is always positivendependently of the fill-

T> w,.. However, theT andB dependences ¢f2, as well as ing factor mismatchand scales as

the sign of the low-temperature peéke high-temperature T2B2, T<A,

drag is always positive are specific for each particular re- p'fxoc TIR72 Ts A

gime, as illustrated in Fig. 8 and summarized below. ’ ’
Diffusive regime R;//a<1. In the diffusive regime, the in agreement with Ref. 13.

drag at not too high temperaturés< w,, is governed by the At high temperature,T>w., the drag is governed

diffusive rectification, Eqs(31) and (32). As a result, the by the conventional contributiotand is therefore positiye

sign of the drag af ~ A oscillates but is opposite to what we in all the regimes. It is linear iff in the diffusive regime

found above for the ballistic regime: the drag is negative fOf(pExxTB'llz)_ In all the ballistic regimes the drag resistivity

equal densitie$? At the “slopes” of the peaky? scales with  scales aspl = T?BY2 for w,<T<vg/a and pRo TBY2 for

T andB in the following way: T>ve/a. (As mentioned in the end of Sec. V B, we do not

consider the magnetoplasmon contributibnere)

(92)

D
Pxx *

-T?In(TB%?), T<A, (89
-T1B%2|InB, T>A, VI. SUMMARY

In this paper, we have developed a systematic diagram-

where the sign corresponds to the case of matching densitiesatic theory of the Coulomb drag in moderately strong mag-
Weakly ballistic regimel<R./a<<w./A. This regime is  netic fields, when the Landau bands are already separated but

qualitatively similar to the diffusive regime. The peak atthe Landau level index is still large. Using the self-consistent

T~ A is governed now by th®(1/gR;) term in the triangle  Born approximation, we performed a thorough analysis of all

vertex, resulting in relevant contributions and, on this basis, analyzed the tem-
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p-h symmetry p-h asymmetry p-h symmetry p-h asymmetry

curvature LL - quantization curvature DoS V(E)

FIG. 9. Schematic illustration of different sources of particle-hole asymmetry: curvature oBzggeetrumE(k) vs LL quantization
of the density of state€@OS) v(E). In the particle-holgp-h) symmetric case, the electronic and hole contributions to the current induced
in the passive laydij andj;, respectively compensate each other. When thh asymmetry is generated by a finite curvature, the velocities
of electrons and holesshown by arrows in the right panehre different, which destroys the compensation. This is the “conventional”
mechanism of the drag. When the DOS depends on en@ngihe present case because of the LL quantizatian “anomalous” drag
arises due to the difference in numbers of occupied electronic and hole [gsevia theE dependence of the scattering time induced
by v(E), see Eq(16)].

perature dependence of the drag resistivity. Depending on theand?® which should become important in lower Landau
relation between the cyclotron radié& and the interlayer levels or for very low temperatures. Finally, it should be
distancea we distinguish several regimes. We concentratecpossible to reproduce our results within the framework of a
on the experimentally most relevant ballistic regime. In thisquantum kinetic equatiofsee Ref. 2}t This would also al-
case the theoretical analysis requires special care, in view ddw one to generalize the theory of magnetodrag to nonequi-
a cancellation between leading-order contributions to the tritibrium setups(strong bias, microwave, ejc.as well as to
angle vertexI". We also briefly considered the evolution of other observableg.g., the thermopowgrelated to particle-
the drag resistivity in the whole range &./a, from the hole asymmetry.
diffusive to the ultraballistic regime.

We have shown that Coulomb drag in strong magnetic
fields is an interplay of two contributions, as illustrated in

Fig. 9. At high temperatures, the leading contribution is due We are grateful to K. von Klitzing, J. G. S. Lok, and K.
to breaking of particle-hole symmetry by the curvature of theMuraki for informing us on experimental results prior to
zeroB electron spectrum. This “normal” contribution to the publication and for interesting discussions. We further ac-
drag is always positive and increases in a broad temperatutéowledge valuable discussions with I. L. Aleiner, J. Dietel,
range asT2. At low temperatures, we find that a second, A. V. Khaetskii, and A. Stern. F. v. O. thanks the Weizmann
“anomalous,” contribution dominates, which arises from theinstitute for hospitality and support through the Einstein
breaking of particle-hole symmetry by the energy depencCenter and LSF while part of this work was performed. Fi-
dence of the density of states related to Landau quantizatiomancial support by the DFG-Schwerpunktprogramm
This contribution is sharply peaked at a temperafireA  “Quanten-Hall-Systeme{l.V.G., A.D.M., and F.v.0, by
(whereA is the Landau level widthand has an oscillatory SFB 290 and the “Junge Akademig”.v.0) and by RFBR
sign depending on the density mismatch between the twg.V.G.) is gratefully acknowledged.

layers. In particular, we find that in the ballistic regime the

sign is positive for equal densities, in contrast to the negative
sign in the diffusive regime found in Ref. 14. APPENDIX A: ANALYTICAL CONTINUATION

Our results for the temperature dependence and sign of | this Appendix we perform the analytical continuation
the drag resistivityp,,(T) in the ballistic regime are illus- of the Matsubara expressions for the drag conductivity and
trated in Fig. 7. These results are in good agreement Withhe triangle vertex. To calculate the Matsubara sum over

recent experimental finding$,and thus explain the remark- , =2:mT in Eq. (3), the standard contour integration in the
able features of Coulomb drag in high Landau levels obtomplexw plane is done,

served experimentally.

Finally, we discuss some prospects for future research. TS )_i
First, our theory can be generalized to phonon drag, which is )= 4
expected to dominate over Coulomb drag at larger separa- “on
tions between the layers. Second, it will be interesting toThe integrand has branch cuts at &#®0 and Imw=-£,,
consider the magnetic field and temperature dependence wfhere(), represents the external frequency. The integration
the drag around filling factor=1/2, where transport is due contourCy, thus contains three parts, see Fig. 10. Deform-
to composite fermions moving in a reduced magneticng the contour as shown in Fig. 10, we get four terms cor-
field 2528 Third, one can study the effects of quantum local-responding to four lineg@bove and below of both the branch
ization, as well as criticality in the center of the Landaucuts forming the new contour,

ACKNOWLEDGMENTS
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e2 o0
aP(iQk):——Ef do coth —[T(q, @ + Q0 + I0T2(q,0 +i0,0 +iQYU(G, & +iQYU(G, » +i0)
) 8 ST ). 2T 1
—TP(q,0+iQ0-i0T?(q,0 = i0,0 +iQYU(q, 0 +iQIU(,0 - i0)
+T{7(0, 0 +i0,0 = 1Q)T{P(q,0 = Q0 +i0)U(g,0 +i0)U(q, @ = i)
-T1P(g,0=i0,0 - iQYTP(0,0 = Q0 = 10)U(q, @ - i0)U(q, = iQy)]. (A2)
[
In the third and fourth terms we have used d¢nth J ® 1
+iQ,/2T)=cothz. The contributions of pointswu=0 and %COthE:_ZTsinI’?(wIZT)’ (A4)

w=-1Q cancel the integral over the small circles around

these points, so that the integrals above should be understod¢€ arrive at Eq(5). _ S _
in the principal value sense. The next step is the analytical continuation of the triangle

We now perform the analytical continuatiofy,— Q+i0 ~ Vertex. The summation over the fermionic Matsubara
and take the limit2—0. As shown in Ref. 15, the first and energiese=2m(k+1/2T) in Eq.(4) is performed using the

the last terms coming from outer sides of branch cuts vanisfitegral

in the limit 0 — 0. This yields 1
TS fig) = — f def(e)tanh—, (A5)
e2 . e 47T| Cf 2T
J . .
a}l?:—S—SEf do coth%_—[l“i(l)(q,wﬂo,w—IO) along the contoulC; shown in Fig. 11. Since the triangle
TS g J ow vertex depends on two frequencias,, and iw,, the inte-
XFJQ)(q,w_ i0,0+i0)U(q, 0 +i0)U(q, 0 - i0)]. grand now has three branch cuts in the complex plane of

namely, at Ime=0, Im e=-w,, and Ime=-w,. Similarly to
(A3) C,, the contourC; can be deformed into a set of six lines
going on both sides of each of the branch qgte Fig. 1},
Using yielding

L(@ionior) = f 2 (VIO (6) - (D16 Gl i) G e+ i~ ) ~ VG 1) €[G (0 ~ G (e

l
XG(e+iwm) +VG(e—ion+iw)@Gle—iwn)e I [G () = G ()} + (wn = ~ Wm0 — — Q). (A6)

In this formulaG*(e)=G(e+i0) and we have used taf#riw,,/2T)=tanh(z-iw,/2T) =tanhz. Equation(A6) is valid irrespec-
tive of the relation betweem,, o,, and 0. Performing the analytical continuation to real frequeneigs— w,+i0 andiw,
— w,—10 (and shifting the integration variables— e+ w, and e— e+ w4 in the first and third terms, respectivehve obtain

€+ Wy
2T

I'(q,w; +i0,0,—i0) = f %tr{tanh VIGH(e+ wy) — G (e+ wy)[€97G ()9 GH e+ wy)
_ A

- tanhzi_l_vg‘(e +w))d9[G (&) -G (€)]€7 G (e + wy)

€tw P P _
T VG (e+ wp)€97G ()™ [G (e + w1) -G (e+ wl)]} +(0,g—-w,-0q). (A7)

+tanh

Setting w;=w, and collecting the contributions containing remaining terms constitute the expressi@nfor I"®),
only retardedfrom the first term and only advancedrom
the third term Green functions, we arrivpup to a redefini-
tion of zero of fermionic energies, which are counted from In this appendix, we review vertex corrections in SCBA.
the chemical potential in EqA7)] at Eq.(7) for T, The  We start by noting that in real space, the impurity-averaged

APPENDIX B: VERTEX CORRECTIONS IN SCBA
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Rew=0 (:) Rew=0

Imw=0
_____________ Imp=-Q @ o= FIG. 12. Diagrams for thdscalaj vertex corrections in real
’ space.
, . (@mPar u Y
FIG. 10. Contours for the-integration. rQo)=1+ 4 70, @)GN(E + ©)G(E)
electron Green function in SCBA can be written as X fdr’CN(r —1")Cy(r’ = r)e =T,
G(r.r;E)=€9 )3 Cr-r')G,(E) (B (B6)
" Here we used the identity 1#8ym=(2m2)A%/4. The inte-
with gral is equal to
Cyr,r') = L gt -ri ((r — rr)2> (B2) f dr’Cy(r =1")Cy(r’ = r)e™ar=r"
e 2712 o222 )
_ 1 o212 22/9\72 15
The gauge-dependent phase(r,r’) satisfies ¢(r,r’) = € [Ly(0192)]*= —(X@R), (B7)
: . . 2l 2l
=—¢(r’,r). This can be used to express the vertex correction
in real space atsee Fig. 12 where the second equality holds in the limit of high Landau
levels. Neglecting the frequency dependence and using the
A 1 ) iti
Y(q,w;r) =€ + fdr’y‘”(q,w;r’) dentities
27Ty
4
XGH(r,r";E+ w)G"(r',r;E). (B3) G,J(,G,:,:A—z, (B8)
For well-separated Landau levels, the valence LL with LL
index N gives the dominant contribution so that oG 1 (89)
+ + = = , B
N™~N (Emz
"(q,w;r) = €97 + GHE+ w)GY(E) | dr’ .
7@ @) 277 N(E + @) Gy( )f we can solve for*’, and obtain Eqs(18) and (19) for the

, , ” , vertex corrections. Finally, for finiter we get
XCy(r = 1")Cu(r' =1)y*"(q,:r"). (BA) 4 g

. 1
Thus, we find that (g, w) = PN ,
1 - (A%2)33(qRIGH(E + w)GY(E)
Y(q,@;1) = ¥(q, w)e” (B5) (B10)
with which is used in Eq(28).
Ree=0 @ Reg=0 APPENDIX C: CORRECTIONS OF ORDER A/,
In this appendix, we consider the contributions to the tri-
angle vertex to ordeA/w; in more detail. To this order,
--------------- Imeg=-0, =H=—==——=——=—"=—= vertex corrections of the scalar vertices can be neglected. We
first consider the casg) in which both Green functions ad-
Ime =0 jacent to the current vertex are evaluated in Landau levels
______________ Ime = -0, Toe=———d = other thanN. As mentioned in Sec. Il C 2, the Green func-
’ tion connecting the scalar vertices should be evaluated in the
Ct ~_ » Ct Nth LL up to corrections of ordefA/w.)?. Using the semi-
classical expressio23) for the matrix elements, we then
FIG. 11. Contours for the integration. find for the corresponding correction T8? the expression
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b o 1 \rr we chooseqlix.) According to the diagrams in Fig. 4, we
O, ) =~ i 272 Im (GN Gy have for the contributiofii )
i &) 1 V/N
x 2 (2'> : L L = i 5 o ARIIARI2 MGy = GG
n#N,N+1 (N_n)wc(N_n+ l)wc T Im

(C3

XiIn-n+1(AR) IN-n(ARe)
" " ) Here, we have already used that to the order under consider-
o N (G- N)E 1 (2l> ation,

27 im\2 W} s k(k+ 1)\ 0 ~ (Gno1~ Gre1)GNG + (Gyog ~ GRu1)GNGr = 0.
X [I(AR) Ik 1(ARY) + (AR I_ (ks 1) (AR . (C4)

(C1) To our order, we then find
Using thatJ_,(2)=(-1)¥J,(2), we find that the expression in

square brackets vanishes so tBBEt®(q, w)=0. rP= ﬂz Mg (C5)
The corresponding contribution tH@(q,w) takes the I
form Comparing with Eq(25), we find even to ordeA/w, that
o 1 P this contribution is cancelled exactly ﬂi&a). Thus, there is
TA(q,w)=———5 Im —> "2 (QRIG.G}, also no contribution of typgii) to I', and I', vanishes to
2" Mnm order A/ w,.
2 1 Finally, we consider the contribution of typg@) to I
w . . . . . .
=2 = Im _2 JQR)(G Gy + GiGray).  Since this is a transverse contribution, we need to consider
m2m? T dey AR (GNGivic* Cr G only I'®_ In this case, the diagrams in Fig. 4 translate into
(C2) the expression
The prime on the sum indicates that only those terms should ro= o 1 N iJ J G -Go
be kept, in which one of the two Green functions is evaluated Vo o 2m I2| F ol GRIL(GR) Gy~ Gy
in a LL different fromN. Up to leading order, i _ _ N
X 2i Im(Gy_1 + Gn:1) G- (Co)
1

Gk =~ Gruk = Noting that the leading order cancels from the combination

ko GN 1+Gns1, We can simply evaluate E(QC6) for I', to lead-
and hence also the contributidf?2) to the triangle vertex ing nonvanishing order. This yields E@8) for I'“/“¢) in the
vanishes. main text.
gral\rlr:asX tinwlgigt.urz ;?eth:vglﬂrz;ttgzuignrq;;Et;\flrg;zirtE]eoC:Ic?er in APPENDIX D: CONTRIBUTIONS TO DRAG FROM

. . . DIFFERENT MOMENTUM REGIONS
A/ w; while neglecting the vertex corrections on the scalar
vertices. Such contributions can arise in particular from the We write down explicitly the momentum integrals deter-
self-energy entermgSN+1 We first consider the correspond- mining the functionl(w) in Eqg. (67). The first integral, cor-
ing contribution toF . (For the purpose of this appendix, responding to the diffusive range of momenta. <1

- 1’&%( i ) (1=~ EWD(R)? (1~ END(W)
0= | o i) R o o || T o o

{ A7 ( )[D<M>q2]2+w}{ A7 <W_A>Z[D(mq2]2+w2} o1
N=(u-E?\20,)  [D@P || 4= (u-E?\20,) [D@dF |,

is dominated by the contribution of the “diffusive rectification,” E81), while the screening is determined by Eg4). The
second integral

(@) =12 (o) + 1) 2(w), (D2)

includes the contribution oF Y9R) [denoted byl;_;(w)] andI'4/“d [denoted byl,_,(w)], Egs.(36) and(38), respectively,
while the screening i, is determined byNth LL, Eq. (51):
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AR, d 2
o (w) = - f E(L) {3(aR)IHGR)} (I (AR BR}

1R, 2w \sinhga

X{%(M CE[AZ- (s EN)Z]?”Z} {%’(ﬂ —EW[AZ- (u- EN)2]3/2}
1

8w, —Ey)? |32 2 8w, —E.)2]372] -2
X{“ﬁJé(ch)[l-u} } {1+ﬁ33(q&){1—u} } ,

| ()—FCIARC(M< 1
=200 wr, 2 \sinhga

2

1 A2 , (D3)
)Z{Jl(q RoJo(aR)1{31(aR) Jo(aR)}
X { %(,U« —EQ[A% - (- EN)Z]}]{ wtiz(’“ ~EW[AZ- (u- EN)Z]}Z
R [ W

8w _
x{l + 37TAJo(ch)[1

The integration domain in the third integrd|, (w), corre-
sponds to the range where the screening acquires its static
zeroB form (53), while the triangle vertex is dominated by

I'@ed Eq.(38),

(@)= %(L)Z
i wC/ARC 21 S|nhqa

X{J1(gR)Io(dR) }1{J1(aR) Jo(aR) }2

16
X { ?(M -EW[AZ-(u- EN)Z]}
We 1

16
X { E(M -EW[AZ - (u- EN)Z]} (D5)

2

A2 mec FE(qR) IR
Iy x| — dao——> ——
2 <wc) 1R, g [1+A3c2)(ch)]4

912 fwdd 2
T 32 oo
We 1 We

yielding the result of the same order as for EQ3), since
both integrals are dominated by the upper limit. We note that
for this reason the same estimate can be obtained by replac-
ing J3(R.),J%(qR) by (mqR)™* The two termsl,_, and
l-o give contributions of the opposite signs to the drag
resistivity, ~since O(1/qR)«—1I,(B)=I',(-B),  while
O(A/w) =T (B)=-T",(-B).

Estimating other terms, we obtain

Let us analyze the first term ih,, Eq. (D3). Consider 1 (AN (Y dQ 1 [A)
identical layers. The screening is nontrivial and almost van- I~ @<Z> - ag_Rg(Z> IN Qmin, (DY)
ishes in the vicinity of zeroe®, of J3(qR,). The structure of ¢ < Qmin ¢
the integral is 2 o ,
1 (A\2([ , 1 (A
wAR:  B(qR)I(AR) t az_Rg(Z> f dQQ™~ @(Z) '
lii-1 “f dao— % 1 (D6) ¢ ' ¢
1R, [1+AJ(aR)] (D10)
whereA~ w./A. We see that the integral is dominated by the 1 (A\2(RadQ 1 (A2 RA
momenta close t®,, each peak contributing R;°Q}?A~72, I ~ ﬁ<—) f —== ﬁ<—> In( )
so that the total result aR\we/ Jon Q  aR\ e awe
(D11)

1 ® =712
lyq EZEn: Qﬁm(i)

712 [odd 2
AT a2 o
We 1 We

is determined by the upper limit wheﬁa]f(qRC)~1.

Similarly, we estimate the second termlip Eq. (D4),

where in the diffusive terml; the momentum integration
is restricted from below by Quin=R.(w/k,aD)?
~R.(T/ kaD)*2. This infrared cutoff is necessary, since the
momentum integral diverges logarithmically at snepih the
diffusive regime, when Eqq48) and (34) are used for the
interlayer interaction. The divergence is naturally cured
when the general formul@?) is employed together with Eq.
(34).
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S T =
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FIG. 13. Functiong(x) [Eq. (55)] andH(x) [Eq. (57)], and the producP?(x)W(x)—Egs.(84) and(D20), determining the frequency

dependence of the “inelastic kernalw)—Eq. (D15).

Thus we conclude that at low temperatuifes A the total

the T4@0 term. To evaluate this contribution more accu-

integral is dominated by the contribution of high momentarately, we consider the corresponding momentum integral in

1

TR In( )
x{ 10 - EWIA?- (u- EN>2]}

WA
16
X { ok En[AZ = (u- EN)Z]} :
We 2
(D12)

RA

awg

Tyl =1y =

1

resulting in Eq.(70).
In the case of higher temperaturéds< T < w., the main

difference is related to the fact that the contribution of a

single LL to the polarization operator is thermally smeared,
yielding an extra factor~A/T as compared to the second
term of Eqg.(51), as follows from Eq(54). This changes the
upper(lower) limit of integration inl, (I,) whereA should
be replaced byT. Furthermore, inl;, one should replace
wc/ A by o /T in the factor related to the screening, which is
equivalent to multiplyingA by A/T in Egs.(D6) and(D8).
This yields

1 [T\
ly ~ aZ_R§<ZC) , (D13)
R.T
el S0l e

We see that forA <T< . the contribution of thel"*/dR)

the whole range ofg and include the imaginary part of
I1(q, w) into the screeningfor simplicity we consider iden-

tical layerg
2
[(w) = { 162 P( )

E —_
xcosﬁG(N—’u

|<1/ch>:Jx %( )2
1R, 2\ sinhga
J(aR) (AR

{2+ AR+ [BEGRIT
whereP(x) is defined in Eq(85) and
——H(w/ZA)cosh

N~ M
T 2A ( 2T ) (018

according to Eqgs(54) and (56). The functionsQ(x) and
H(x) are presented in Fig. 13.

From the above estimates we know that the momentum
integral is determined by~ w./ TR,>1/R.. This holds pro-
vided A,B>1, i.e., for cosiEy—u]/2T)<(w/T)Y2 On
the other handw./TR.<<1/a in the ballistic regime. In this
case, we can sef/sinl? ga=1/a? in Eq. (D16) and set the
lower integration limit toq=0. Separating the fast and slow

(O]

2A

ENTH

ot

)|<1’ch>, (D15)

q

(D16)

NT M
2T

(D17)

—Q(w/ZA)cosh (

20, ®

B=

term to the momentum integral increases faster than that ofariables in Eq(D16), we get[J;(z,)=0, z,= wn+ /4]

|(1aRo)

sir’ ¢ co$ ¢

2 4
27Ta2R€n§OZn<En) fo dé
2 m ) *
mfo degsir? ¢ cos ¢f0 dz

1
- 87%a’R2B?

_
{[z+ AP+

{ A { w A ]}
1- —arctan— | (=
B[ 2 Bl

{[1 +(2A/mrz,)coS ¢J* + [(2B/mz,)cOS ]}

82}2
1
32a°R?

T

<_

Wc

N

2 _
) cosH‘(u

o (D19)

)W(a)/ZA),
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__ ! 209 |7 __ can2®
W= a2 1_|XIH(X)l2 arCtanlevwf(x)] | (20

Substituting this result into E¢D15) and integrating the obtaindéw) over frequency according to E@7), we arrive at Eq.
(83) of the main text.
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