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Recent experiments on Coulomb drag in the quantum Hall regime have yielded a number of surprises. The
most striking observations are that the Coulomb drag can become negative in high Landau levels and that its
temperature dependence is nonmonotonous. We develop a systematic diagrammatic theory of Coulomb drag in
strong magnetic fields explaining these puzzling experiments. The theory is applicable both in the diffusive and
the ballistic regimes; we focus on the experimentally relevant ballistic regime(interlayer distancea smaller
than the cyclotron radiusRc). It is shown that the drag at strong magnetic fields is an interplay of two
contributions arising from different sources of particle-hole asymmetry, namely the curvature of the zero-field
electron dispersion and the particle-hole asymmetry associated with Landau quantization. The former contri-
bution is positive and governs the high-temperature increase in the drag resistivity. On the other hand, the latter
one, which is dominant at lowT, has an oscillatory sign(depending on the difference in filling factors of the
two layers) and gives rise to a sharp peak in the temperature dependence atT of the order of the Landau level
width.
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I. INTRODUCTION

Coulomb drag between parallel two-dimensional electron
systems1,2 has developed into a powerful probe of quantum-
Hall systems,3–10 providing information which is comple-
mentary to conventional transport measurements. The drag
signal is the voltageV developing in the open-circuit passive
layer when a currentI is applied in the active layer. The drag
resistance(also known as transresistance) is then defined by
RD=V/ I. As a function of interlayer spacinga, the interlayer
coupling changes from weak at large spacings where it can
be treated in perturbation theory, to strong at small spacings
where it can result in states with strong interlayer
correlations.8,9 In the present paper we will be concerned
with the regime of weak interlayer interaction.

In a simple picture of Coulomb drag, the carriers of the
active layer transfer momentum to the carriers of the passive
layer by interlayer electron-electron scattering. Due to the
open-circuit setup, a voltageV develops in the passive layer,
which balances this momentum transfer. The phase space for
interlayer scattering is proportional to the temperatureT in
either layer predicting a monotonous temperature depen-
denceRD~T2 of the drag resistance. Moreover, the signs of
the voltages in active and passive layer are expected to be
opposite(the same) for carriers of equal(opposite) charge in
the two layers.11 It is conventional to refer to the sign result-
ing for like (unlike) charges as positive(negative) drag. It is
worth emphasizing that, as the above considerations imply,
the nonzero value of drag in the regime of weak interlayer
interaction is entirely due to the violation of the particle-hole
symmetry.

Remarkably, experiments show that Coulomb drag be-
haves very differently from these simple expectations when a
perpendicular magnetic fieldB is applied such that the Fermi
energyEF is in a high Landau levelEF /"vc@1. (vc is the
cyclotron frequency.) Several experiments5,7 in the regime of

weak interlayer coupling observed negative drag when the
filling factors in the two layers are different. A more recent
experiment10 also reveals a nonmonotonic dependence on
temperature. While the drag resistivity shows a quadratic
temperature dependence at sufficiently high temperatures,
where drag is always positive, an additional peak develops at
low temperatures which can have both a positive or a nega-
tive sign depending on the filling-factor difference between
the two layers.

Early theoretical work12 on Coulomb drag in a magnetic
field in the limit of high Landau levels showed that the mag-
netic field may strongly enhance the Coulomb drag, as
indeed observed experimentally. On the other hand, the
calculation of Ref. 12, as well as of a later paper,13 results
in a strictly positive transresistivity, in contradiction with
the oscillatory sign found in recent experiments. As we
discuss in detail below, a general formula for the drag resis-
tivity obtained in Ref. 12, which looks like a natural gener-
alization of the zero-B result11,15,16 and also served as a
starting point for Ref. 13, misses an important contribution.
This strongly restricts the range of validity of the results of
Refs. 12 and 13, making them inapplicable under typical
experimental conditions. More recent work14 showed
that Landau-level quantization can lead to sign changes in
drag. However, the results obtained in Ref. 14 suggested that
unlike the experimental observation, negative drag should be
observed for equal filling factors in the two layers. The tem-
perature dependence of the drag resistivity was not studied in
Ref. 14.

In this paper, we present a systematic study of Coulomb
drag in the limit of high Landau levels. We focus on the
experimentally relevant limit of well-separated Landau lev-
els (LL’s ) in which the LL broadeningD is small compared
to the LL spacing"vc. Our starting point is the diagrammatic
Kubo formulation of Coulomb drag15,16 for weak interlayer
interaction. Disorder is included at the level of the self-
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consistent Born approximation17 (SCBA) which becomes ex-
act in the limit of high Landau levels.18

Our results are in good agreement with the experimental
observations. We find that at high temperatures, the leading
contribution to Coulomb drag is due to the breaking of
particle-hole symmetry by the quadratic dispersion of the
electrons. This contribution which is analogous to the
conventional contribution to drag discussed above, always
has a positive sign and depends on temperature asT2. At
temperatureskBT!D, we find that the dominant contribution
arises from the breaking of particle-hole symmetry due
to the Landau-level structure. This contribution gives rise to
a peak in the temperature dependence and can take on both
positive and negative signs, depending on the filling-factor
difference of the two layers. In particular, the sign is negative
for equal filling factors in the diffusive regime where the
interlayer distancea is larger than the cyclotron radiusRc, as
was found in Ref. 14. We find, however, that this sign
becomes negative in the experimentally relevant ballistic
regime (a small compared toRc), in agreement with
experiment.

This paper is organized as follows. Section II briefly sum-
marizes the pertinent background on the Kubo approach to
Coulomb drag as well as on the self-consistent Born approxi-
mation. In Sec. III, we present the diagrammatic calculation
of the triangle vertex entering the expression for the drag
conductivity, for well-separated LL’s, both in the diffusive
and in the ballistic regime of momenta. In Sec. IV, we collect
the relevant results for the screened interlayer interaction.
These building blocks are used in Sec. V to compute the drag
resistivity. In this section, we also compare our results with
experiment. Finally, Sec. VI contains a summary of our re-
sults and a discussion of prospects for future research. In
what follows, we set"=kB=1.

II. BACKGROUND

A. Drag

Our considerations are based on the Kubo approach to
Coulomb drag15,16 which expresses the drag conductivity
si j

DsQ ,Vd in terms of a current-current correlation function

si j
DsQ,Vd =

1

VS
E

0

`

dteiVtkf j i
s1d†sQ,td, j j

s2dsQ,0dgl, s1d

wherei , j label the components of the drag conductivity ten-
sor, Q ,V denote the wave vector and frequency of the ap-
plied field,S is the area of the sample, andj i

sld denotes theith

component of the current operator in thelth layer. The dc
drag conductivity follows by taking the limit

si j
D = si j

DsQ = 0,V → 0d. s2d

When computing the retarded correlation function appear-
ing in Eq. (1) within the Matsubara technique, the leading
diagrams in the limit of weak(screened) interlayer interac-
tion Usq ,vd are shown in Fig. 1. Analytically, these dia-
grams are given by the expression

si j
DsiVkd =

e2T

2VkS
o
q,vn

Gi
s1dsq,ivn + iVk,ivnd

3G j
s2dsq,ivn,ivn + iVkdUsq,ivn + iVkdUsq,ivnd.

s3d

Here,vn andVk denote bosonic Matsubara frequencies and
the vectorGsldsq , ivn, ivmd is the triangle vertex of layerl as
defined by the diagrams in Fig. 2. Neglecting intralayer in-
teractions, it takes the analytical form

Gsq,ivn,ivmd = To
ek

trhGsiekdeiq·rGsiek + ivmd

3vGsiek + ivnde−iq·r + Gsiekde−iq·rGsiek − ivnd

3vGsiek − ivmdeiq·rj, s4d

whereG denotes the Green function(for a particular realiza-
tion of the disorder potential), ek is a fermionic Matsubara
frequency, andv represents the velocity operator. The vertex
G should be averaged over realizations of disorder, as will be
discussed in Sec. II B.

Summing over the Matsubara frequencyvn, performing
the analytical continuation to a real frequencyV, and
finally taking the limit V→0 yields for the dc drag
conductivity15,16

FIG. 1. The diagrams contrib-
uting to the drag conductivity to
leading order in the interlayer in-
teraction Usq ,vd (wavy lines).
The full lines represent the elec-
tron Green function. The external
vertices labelled by the velocity
operator vi are vector (current)
vertices while the internal vertices
are scalar(density) vertices.

FIG. 2. Diagrams defining the triangle vertexGsq ,v1,v2d.
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si j
D =

e2

16pTS
o
q
E

−`

` dv

sinh2sv/2Td
Gi

s1dsq,v + i0,v − i0d

3G j
s2dsq,v − i0,v + i0duUsq,vdu2. s5d

In the sequel, we will use a short-hand notation
Gsq ,vd;Gsq ,v+ i0,v− i0d. Note that the Onsager relation
si j

12sBd=s ji
21s−Bd implies, in combination with Eq.(5), that

Gsq ,v− i0,v+ i0;Bd=Gsq ,v+ i0,v− i0;−Bd.
The experimentally measured drag resistivity can be ex-

pressed via the drag conductivity as

ri j
D = rik

s1dskl
Drl j

s2d, s6d

whererik
s1,2d are the resistivities of the layers. Note that the

minus sign corresponding to the standard tensor inversion is
absent in this expression, according to the conventional defi-
nition of the drag resistivity. This definition yields a positive
transresistivity in the absence of a magnetic field.

The triangle vertexGsq ,vd is obtained by analytic con-
tinuation of Eq.(4), see Appendix A for detail. The result has
the formG=Gsad+Gsbd with the two contributions

Gsadsq,vd =E de

4pi
tanh

e + v − m

2T
trhvG+se + vd

3eiq·rG+sede−iq·rG+se + vd − vG−se + vd

3eiq·rG−sede−iq·rG−se + vdj + sv,q → − v,− qd,

s7d

Gsbdsq,vd =E de

4pi
Stanh

e + v − m

2T
− tanh

e − m

2T
D

3 trhvG−se + vdeiq·rfG−sed − G+sedge−iq·r

3G+se + vdj + sv,q → − v,− qd. s8d

Here, G±sed denotes the advanced/retarded Green function
and m is the chemical potential. Note that at zero magnetic
field only Gsbd survives,15 whereasGsad containing products
of three advanced or three retarded Green functions is zero.
By contrast, in strongB both Gsad and Gsbd should be re-
tained. Most importantly, we will show below that in the
ballistic limit there is a cancellation betweenGsad andGsbd in
the leading order.

For smallv, the expressions forGsq ,vd simplify to

Gsadsq,vd =
v

2pi
trhvG+sedeiq·rG+sede−iq·rG+sed − sG+ → G−dj,

s9d

Gsbdsq,vd =
v

ip
trhvG−sedeiq·rfG−sed − G+sedge−iq·rG+sedj.

s10d

For well-separated LL’s, this approximation holds as long as
v is small compared to the widthD of the LL. It is also
useful to note thatGsadsq ,vd can be expressed as

Gsadsq,vd =
v

p
¹q Im trheiq·rG+sede−iq·rG+sedj, s11d

which shows thatGsadsq ,vd gives only a longitudinal contri-
bution (parallel toq) to Gsq ,vd.

B. Impurity diagram technique in high Landau levels—SCBA

In this subsection, we discuss the averaging over the ran-
dom potential of impurities. We assume white-noise disorder,
characterized by zero meankUsr dl=0 and by the correlation
function

kUsr dUsr 8dl =
1

2pn0t0
dsr − r 8d,

where n0=m/2p denotes the zero-B density of states
per spin andt0 the zero-B elastic scattering time. We perform
the averaging in the self-consistent Born approximation
(SCBA). This approximation, which neglects diagrams
with crossing impurity lines, can be shown to give the
leading contribution when the Fermi energyEF is in a
high LL with LL index N@1.18 Strictly speaking, the disor-
der potential in the experimental samples is expected to be
correlated on the scale of the distance of the two-dimensional
electron layer from the donor layer. However, we find that
the experimental observation can already be understood
when considering white-noise disorder and that a finite cor-
relation length of disorder does not qualitatively change our
conclusions.19

Within the SCBA for well-separated Landau levels,17 the
impurity average of the Green function, denoted byG±sed, is
diagonal in the LL basisunkl in the Landau gauge and takes
the expression

Gn
±sed =

1

e − En − S±sed
s12d

with the LL energiesEn=vcsn+1/2d. For energiese within a
Landau level, the self-energy is given by

Sn
±sed =

1

2
he − En ± ifD2 − se − End2g1/2j. s13d

Here, the LL indexn is chosen such thatue−Enu,D. The LL
broadeningD can be expressed in terms of the zero-field
scattering timet0 as

D2 = 2vc/pt0. s14d

The density of states is

nsed = 1/p2l2D2tsed = n0t0fD2 − se − End2g1/2 s15d

with the elastic scattering time

tsed = fD2 − se − End2g−1/2. s16d

Here, l =s1/eBd1/2 denotes the magnetic length.
In principle, disorder leads to vertex corrections of both

the vector and the scalar vertices of the triangle diagramG.
However, for white-noise disorder there are no vertex correc-
tions of the vector vertex. The vertex corrections of the sca-
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lar vertices generally involve impurity ladders(see Fig. 3)
and turn out to be independent of the LL indicesn and n8
(Ref. 21)

gnk,n8k8
mn se + v,e;qd = gmnsq,vdknkueiq·r un8k8l. s17d

Here, the indicesm, n=± indicate the type of Green func-
tions involved in the vertex. In the limit of well-separated
Landau levels, one finds the explicit expressions for the ver-
tex corrections atv=0

g++sq,vd =
1

1 − J0
2sqRcdfD/2S−g2 , s18d

g+−sq,vd =
1

1 − J0
2sqRcd

, s19d

whereJnszd denotes the Bessel functions. The derivation of
these expressions is reviewed in Appendix B.

For later reference, we also collect relevant matrix
elements between LL eigenstatesunkl in the Landau gauge
A =Bs0,xd. The vector vertex involves the matrix elements

knkuvxun8k8l = dkk8
i

mlÎ2
hÎndn,n8+1 − În + 1dn,n8−1j, s20d

knkuvyun8k8l = dkk8
1

mlÎ2
hÎndn,n8+1 + În + 1dn,n8−1j. s21d

In the limit of high Landau levels,n,N@1, one can use
quasiclassical approximations for these matrix elements,
namely, knkuvxun±1k8l. 7 idkk8vF /2 and knkuvyun±1k8l
.dkk8vF /2, with the Fermi velocityvF.

The scalar vertex involves the matrix element

knkueiq·r un8k8l = dqy,k−k8
2n8−nn8!

n!
expF−

1

4
q2l2 −

i

2

3qxsk + k8dl2Gfsqy + iqxdlgn−n8Ln8
n−n8sq2l2/2d,

s22d

where Lm
n is the associated Laguerre polynomial and

nùn8. The expression for the matrix element forn,n8 can

be obtained from Eq.(22) by complex conjugation with the
replacementq→−q, nk↔n8k8. Since the characteristic LL
indices are large,n, n8@1, un−n8u, and relevant momenta are
small compared to the Fermi momentumq!kF, Eq. (22) can
be simplified by using the quasiclassical approximation

knkueiq·r un8k8l

. dqy,k−k8i
n−n8e−ifqsn−n8de−iqxsk+k8dl2/2Jn−n8sqRc

smdd, s23d

wherefq is the polar angle ofq, Rc
snd= lÎ2n+1 is the cyclo-

tron radius of thenth LL, andm=sn+n8d /2. For most of the
calculations below, the dependence of the cyclotron radius
on the LL index in the vicinity of the Fermi level will be
immaterial, and we will drop the corresponding superscript
and simply writeRc. Then dependence ofRc will, however,
be crucial for the evaluation of the contribution to the drag
related to the curvature of the electron spectrum, see Sec.
III C 3. In view of the rotational invariance ofGsq ,vd, it is
sufficient to calculate it for a certain direction of the wave
vectorq. Choosingq to point along the positivex axis, we
simplify Eq. (23) to the form

knkueiqxun8k8l . dkk8i
n−n8e−iqkl2Jn−n8sqRcd. s24d

III. TRIANGLE VERTEX G„q,v…

A. Leading order

We now turn to an evaluation of the disorder-averaged
triangle vertexGsq ,vd for well separated Landau levels
D /vc!1, in the limit in which the Fermi energy is in a high
Landau levelN@1. The relevant diagrams are shown in Fig.
4. We begin by considering the low-temperature limitv,
T!D.

In the limit under consideration, the calculation is simpli-
fied as follows. Very generally for white-noise disorder, there
are no vertex corrections of the vector vertex. By contrast,
vertex corrections of the scalar vertices have to be retained.
To leading order inD /vc, two of the three Green functions in
Eqs. (9) and (10) should be evaluated in theNth Landau
level in which the Fermi energy is situated. Since the veloc-
ity operator has matrix elements only between states in
neighboring Landau levels, one of the Green functions adja-
cent to the vector vertex must be taken in Landau levels
N±1. This is illustrated in Fig. 4.

We first consider the contributionGsadsq ,vd. In this case,
it is most convenient to start from the simplified expression

FIG. 3. Diagrammatic representation of the equation for the ver-
tex correctionsgnk,n8k8

mn se+v ,e ;qd (full triangle at vertex) of the
scalar(density) vertices in the SCBA. Dashed lines represent impu-
rity scattering. We also indicate that for well-separated LL’s, the
internal Green functions in the right-most diagram should be evalu-
ated in the valence LLN which can differ from the LL labelsn, n8
of the external Green functions.

FIG. 4. The diagrams contributing to the triangle vertex in
SCBA to leading order in the limits of well-separated Landau levels
D /vc and largeN.
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in Eq. (11) in which to leading order inD /vc, both remain-
ing Green functions can be evaluated in Landau levelN.
Using the identity¹qfJ0sqRcdg2=−2q̂RcJ0sqRcdJ1sqRcd (with
q̂=q /q), one obtains

Gsadsq,vd = − 2q̂
vRc

p2l2
J0sqRcdJ1sqRcd

1

2i

3hfGN
+g++g2 − fGN

−g−−g2j, s25d

where gmn;gmnsq ,0d and the factor 2 accounts for the
spin degeneracy. The calculation forGsbdsq ,vd in Eq. (10)
yields

Gsbdsq,vd = 2q̂
vRc

p2l2
J0sqRcdJ1sqRcd

1

2i
fGN

+g++g+− − GN
−g+−g−−g

3fGN
+ + GN

−g. s26d

Summing both contributions, one obtains

Gsq,vd = q̂
4vRc

p2l2
J0sqRcdJ1sqRcdRefGN

+sg++ − g+−dg

3ImfGN
+g++g. s27d

For arbitraryT, v,vc, this contribution takes the form22

Gsq,vd = q̂
8Rc

p2l2D2

J1sqRcd
J0sqRcd

E
−`

`

deFtanh
e + v − m

2T

− tanh
e − m

2T
GRefg−+sq,vd

− g++sq,vdgIm g++sq,vd. s28d

Since the interlayer interaction is suppressed at large mo-
mentaq by a factore−qa, wherea is the interlayer distance,
the drag conductivity(5) is governed by momentaq,1/a.
Depending on the relation betweena and the cyclotron
radius Rc, one distinguishes between the diffusivesa@Rcd
and the ballistic sa!Rcd regimes. While in the former
case, only “diffusive” momentasqRc!1d are relevant, in the
latter case both “ballistic”sqRc@1d and diffusive momenta
contribute to the drag conductivity(5). Experimentally,
when the transresistivity is measured in moderately strong
magnetic fields(i.e., in high Landau levels), the condition
Rc.a is typically satisfied. For this reason, we mainly
concentrate on the ballistic regime in this paper. In Secs.
III B and III C we will calculate the triangle vertexGsq ,vd
in the diffusive and ballistic ranges of momenta, respectively.
These results will be used in Sec. V for the calculation of the
drag resistivity.

B. Diffusive momenta,qRc™1

In the diffusive range of momentaqRc!1 we can expand
the Bessel functions in the expressions for the vertex correc-
tions, (18) and (19). Due to the singular behavior of the
vertex correction g+− at small momentaq, we have
g+−@g++, g−−, so that only the contribution proportional to
g+− should be retained in Eq.(27). This yields

Gsq,vd = − q̂
4vRcsqRcd

p2l2D2

2

sqRcd2

m − EN

fD2 − sm − ENd2g1/2.

s29d

More generally, at small momenta one should also take into
account the frequency dependence ofg+−, which has the
structure of a diffusion pole

g+−sq,vd =
1

tsedfDsedq2 − ivg
, s30d

where Dsed=Rc
2/2tsed is the (energy-dependent) diffusion

constant in a strong magnetic field. Equation(29) is then
generalized to

Gsq,vd = − q̂
4vqRc

2

p2l2D2

Dsmdq2

fDsmdq2g2 + v2sm − ENd. s31d

This result can be recast in the form(ne is the electron con-
centration)

eGisq,vd = 2
dsi j

dsened
qj Im Psq,vd . 2

dsxx

dsened
qi Im Psq,vd,

s32d

which allows for a simple interpretation as a nonlinear
susceptibility.14,20 This rewriting of Eq. (31) uses the
result17

sxx =
e2

p2NF1 −
sm − ENd2

D2 G s33d

for the diagonal conductivity in SCBA (dsxx/dne
@dsxy/dne for separated LL’s) and

Psq,vd = 2nsmd
Dsmdq2

Dsmdq2 − iv
, s34d

for the polarization operator in the diffusive limit. It is
worth emphasizing that the diffusive result in Eq.(31)
arises from Gsbd only, since the other contributionGsad

does not contain the vertex correctiong+−. Note that the
authors of Ref. 12 failed to obtain the leading diffusive
contribution(31) and(32), because of an incorrect treatment
of vertex corrections.21,22 For the same reason, they
missed theOs1/qRcd contribution [Eq. (36) below] which
becomes important in the ballistic regime, as we are going to
discuss.

C. Ballistic momenta, qRcš1

1. Cancellation of leading contribution and the O„1/qRc…

contribution from vertex corrections

In the leading order in the ballistic range of momenta,
qRc@1, the vertex corrections in Eqs.(18) and (19) can be
neglected,

g++sq,vd . g+−sq,vd . 1. s35d

Inserting this into Eq.(27) for the triangle vertexGsq ,vd, we
immediately see that the triangle vertex vanishes to this or-
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der. We emphasize thatGsad andGsbd do not vanish separately
but rather cancel each other in the leading order.

Thus, to obtain a nonzero answer forGsq ,vd from Eq.
(27), we need to consider the vertex corrections in Eqs.(18)
as(19) in next-to-leading order inqRc. In this way, one finds
from Eq. (27)

Gs1/qRcdsq,vd = − q̂
64vRc

p2l2
sm − ENdfD2 − sm − ENd2g3/2

D6

3J1sqRcdJ0
3sqRcd. s36d

Here, we introduced a superscript onGsq ,vd in order
to distinguish this contribution from other contributions
computed below. At finiteT and v (assumingT, v,vc),
we find

Gs1/qRcdsq,vd = − q̂
16vRc

p2l2D2J1sqRcdJ0
3sqRcd

3E
−`

`

deStanh
e + v/2 − m

2T

− tanh
e − v/2 − m

2T
D

3ReF1 −
se + v/2 − ENd2

D2 G1/2

3ReF1 −
se + v/2 − ENd2

D2 G1/2

3 H e + v/2 − EN

D
F1 −

se − v/2 − ENd2

D2 G
+

e − v/2 − EN

D
F1 −

se + v/2 − ENd2

D2 GJ .

s37d

The contribution(36) to Gsq ,vd has been obtained in
leading order in the limitD /vc!1 andq/kF!1 and in next-
to-leading order inqRc@1. Thus, we are also forced to con-
sider separately next-to-leading order corrections in the pa-
rameters D /vc!1 and q/kF!1, with the other two
parameters kept in leading order.

Before we turn to these calculations, we briefly remark
that the leading-order cancellation in the ballistic regime was
missed in Ref. 14 since the contribution fromGsad was over-
looked. The results obtained there for the diffusive regime
remain valid since in this caseGsad is negligible compared to
Gsbd, see Sec. III B.

2. Contributions of orderD /vc

In this section, we consider the first corrections
to the leading order inD /vc to the triangle vertexGsq ,vd,
while working to leading order in the ballistic limitqRc@1
for high Landau levelsN@1. While such corrections
are of higher order in the small parameterD /vc, this small-
ness may be compensated by a large factorqRc since it
turns out that in this case there is no cancellation between
Gsad andGsbd.

Corrections of orderD /vc arise from two sources:(i) The
Green functions adjacent to the current vertex arebothevalu-
ated in Landau levels different fromN. (Note that the Green
function between the scalar vertices must still be evaluated in
the Nth Landau level becauseGn

+−Gn
−,D /vc

2 for nÞN.)
This contribution is depicted in Fig. 5.(ii ) The diagrams in
Fig. 4 can be evaluated more accurately, keeping corrections
in D /vc, which arise from keeping the self-energy parts of
the Green functions of Landau levelsN±1. Note that we may
now neglect vertex corrections at the scalar vertices because
we consider the leading order inqRc@1.

Details of this calculation are presented in Appendix C.
Here we only state the results. The contribution(i) vanishes
for both Gsad andGsbd. The contribution(ii ) turns out to still
give a vanishing contribution to the longitudinal triangle ver-
tex, due to the cancellation betweenGsad andGsbd described
above. However, the transverse contribution toGsbd no longer
vanishes when considering corrections inD /vc. In this way,
we obtain the contribution

GsD/vcdsq,vd = − q̂ 3 ẑ
16vRc

p2l2
sm − ENdfD2 − sm − ENd2g

vcD
4

3J0sqRcdJ1sqRcd s38d

to the triangle vertex.
As we will see below, theD /vc contribution is of crucial

importance for understanding the experimental findings. We
mention that this term was lost in Ref. 12(in addition to the
1/qRc contribution missing there because of an inaccurate
treatment of vertex corrections) in the course of the so-called
“triangles-to-bubbles” transformation. Specifically, in Ref.
12 the self-energy in the Green functions connected by the
current vertex was neglected compared to the cyclotron fre-
quency, which obviously misses corrections of order of
D /vc.

Equation (38) is derived in the low-temperature limit,
when T, v!D. To analyze the temperature dependence of
the drag, we will need theD /vc-contribution also at higher
temperatures. We find for arbitrary relations betweenT andD
andT, v,vc that

GsD/vcdsq,vd = − q̂ 3 ẑ
8Rc

p2l2D
J1sqRcdJ0sqRcd

3 E
−`

`

deStanh
e + v/2 − m

2T

− tanh
e − v/2 − m

2T
D

FIG. 5. Diagram contributing to corrections of orderD /vc

to the triangle vertex. Here both Green function adjacent
to the vector vertex should be evaluated in Landau levels different
from N.
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3
e − EN

D
ReF1 −

se + v/2 − ENd2

D2 G1/2

3ReF1 −
se − v/2 − ENd2

D2 G1/2

. s39d

3. The conventional contribution of order q/kF

In this section, we compute the contribution toG due to
terms of orderq/kF relative to the leading order. Such terms
arise from a more accurate treatment of the matrix elements
involved in the scalar vertices, for which we now use the
more accurate expressions

kN ± 1ueiq·r uNlkNue−iq·r uNl . iJ1SqRcF1 ±
1

4N
GDJ0sqRcd,

s40d

kNueiq·r uNlkNue−iq·r uN ± 1l . iJ1SqRcF1 ±
1

4N
GDJ0sqRcd

s41d

together with

J1SqRcF1 ±
1

4N
GD . J1sqRcd ±

q

2kF
J0sqRcd. s42d

Thus, such terms give rise to a contribution of the order of
q/kF relative to the naive leading order[which vanishes be-
cause of the cancellation betweenGsad andGsbd].

We find that such corrections arise only for the contribu-
tion Gsbd, yielding

Gsq/kFdsq,vd = q 3 ẑ
8v

p2

D2 − sm − ENd2

D4 J0
2sqRcd. s43d

Similarly to Eq. (39), we generalize thisOsq/kFd contribu-
tion to the finite-T case

Gsq/kFdsq,vd = q 3 ẑ
4J0

2sqRcd
p2D2 E

−`

`

deStanh
e + v/2 − m

2T

− tanh
e − v/2 − m

2T
D

3 ReF1 −
se + v/2 − ENd2

D2 G1/2

3ReF1 −
se − v/2 − ENd2

D2 G1/2

. s44d

This expression can also be rewritten as

eGsq/kFdsq,vd = q 3 ẑ
2sxy

ene
Im Psq,vd s45d

with the polarization operatorPsq ,vd for the ballistic re-
gime [see Eq.(50) below] and the Hall conductivity

sxy =
ene

B
−

e2

p2N
D

vc
F1 −

sm − ENd2

D2 G3/2

s46d

in SCBA. It can be checked that Eq.(45) is valid for arbi-
trary T, includingT*vc.

Theq/kF contribution arises from taking into account the
dependence of the cyclotron radius and hence the velocity on
the Landau level number, which is a direct consequence of
the curvature of the zero-B electron spectrum. It is thus natu-
ral that the obtained result(45) is a high-magnetic field ana-
log of the conventional contribution toG.11 Only this contri-
bution was retained in Refs. 12 and 13, while the other
contributions related to the particle-hole asymmetry due to
the LL quantization were lost there.

IV. SCREENED INTERLAYER INTERACTION

In this section, we summarize the results for the screened
interlayer interaction15

U12sq,vd =
V12sqd

f1 + VsqdP1sq,vdgf1 + VsqdP2sq,vdg − V12
2 sqdP1sq,vdP2sq,vd

. s47d

Here, Vsqd=2pe2/q denotes the bare intralayer interaction
andV12sqd=Vsqde−qa is the bare interlayer interaction,a de-
notes the distance between the layers. The polarization op-
erator of layerl is denoted byPlsq ,vd. For q small com-
pared to the Thomas-Fermi screening wave vectors
k0,l =4pe2n0,l (l =1, 2 labels the layer andn0,l denotes the
zero-field density of states per spin of layerl), this can be
approximated as

U12sq,vd .
pe2q

k0,1k0,2 sinhsqad
2n0,1

P1sq,vd
2n0,2

P2sq,vd
. s48d

In the random-phase approximation, the polarization op-
erator in a strong magnetic field has the form

Psq,vd =
1

pl2on,m
Jn−m

2 sqRcdE
−`

` de

2pi
nFsedhGn

+se + vd

3fGm
+ sedg++sq,vd − Gm

− sedg+−sq,vdg + Gn
−se − vd

3fGm
+ sedg+−sq,vd − Gm

− sedg−−sq,vdgj, s49d

where nFsed=1/h1+expfse−mdTgj=h1−tanhfse−md2Tgj /2
is the Fermi distribution function and we have used the qua-
siclassical approximation for matrix elements(24).
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We turn now to a brief summary of results forPsq ,vd in
various relevant domains of momenta and frequency. Some
of these results can be found in Ref. 13; we reproduce them
here for the sake of completeness. The polarization operator
in the diffusive regime of momenta(and atT!D) was al-
ready given in Eq.(34). In the ballistic regimeqRc@1, the
expression(49) can be simplified by neglecting the scalar
vertex corrections

Psq,vd =
1

pl2on,m
Jn−m

2 sqRcdE
−`

` de

p
nFsed

3fGn
+se + vd + Gn

−se − vdgIm Gm
+ sed, s50d

For low temperature and frequencyv ,T!D, the real part of
the polarization operator(50) takes the form

RePsq @ Rc
−1,v → 0d = 2n0 + 2n0

8vc

3pD
J0

2sqRcd

3F1 −
sm − ENd2

D2 G3/2

. s51d

Here, the first term23 arises from Landau levels withnÞm,
while the second term represents the contribution of theNth
LL sn=m=Nd. The intra-LL(second) term contains an addi-
tional energy factor43f1−sm−ENd2/D2g compared to the case
of diffusive momenta, which is due to the suppression of
vertex corrections at high momenta. The imaginary part of
the polarization operator forv ,T!D has the form

Im Psq,vd = 2n0
4vvc

pD2 J0
2sqRcdF1 −

sm − ENd2

D2 G . s52d

A comparison with Eq.(51) shows that ImP!ReP in this
regime.

It follows from Eq. (51) that there is an additional
wavevector scaleqRc,vc/D in the ballistic regime, where
the behavior of ReP changes. Specifically, forq!vc/DRc
the polarization operator(and hence screening) is due to the
contribution of theNth Landau level, while at largerq it is
due to Landau levels withnÞN. Only in the latter case, we
recover

Psq,vd . 2n0, s53d

and thus the standardB=0 form of screening. When the tem-
perature is large compared to the Landau level broadening
D!T!vc, Eqs.(34) and (52), and the second term of Eq.
(51) are effectively multiplied by factors,D /T due to ther-
mal averaging. In this case, the real part ofPsq ,vd takes its
zero-B form under the weaker conditionqRc@vc/T. This
follows from the expression

RePsq,vd = 2n0 + 2n0
2vc

pT
J0

2sqRcdQS v

2D
Dcosh−2SEN − m

2T
D .

s54d

Here we defined the function

Qsxd =E
−1

1

dzzs1 − z2d1/2Hz−
sgnsz+ 2xd

2
Refsz+ 2xd2 − 1g1/2

−
sgnsz− 2xd

2
Refsz− 2xd2 − 1g1/2J . s55d

The imaginary part forT!vc reads

Im Psq,vd = 2n0
2vc

pT
J0

2sqRcd
v

2D
HS v

2D
Dcosh−2SEN − m

2T
D ,

s56d

where Hsxd is a dimensionless function representing the
overlap of two Landau bands

Hsxd ; E
−`

`

dzhRef1 − sz+ xd2g1/2jhRef1 − sz− xd2g1/2j.

s57d

Finally, in the high-T limit, T@vc, the imaginary part of
Psq ,vd becomes independent ofEN−m, because of thermal
averaging

Im Psq,vd . 2n0
2vc

pD
o
n,m

Ftanh
En + v − m

2T

− tanh
En − m

2T
GJn−m

2 sqRcdHSEn − Em + v

2D
D

. 2n0
4v

pD
o
k

Jk
2sqRcdHSv − kvc

2D
D . s58d

SinceHsuxu.1d=0, the imaginary part ofPsq ,vd as a func-
tion of v at T@vc consists of a series of peaks(broadened
by D) around multiples of the cyclotron frequency.

Importantly, the imaginary part of the polarization opera-
tor is suppressed at high frequencies,v@qvF. This follows
from Eq. (58), since Jn

2sqRcd is exponentially small when
n@qRc. This is analogous to the zero-B case, where

Im Psq,v;B = 0d = 2n0
v

qvF
usqvF − vd s59d

with usxd the step function, and can be traced back to the fact
that at high frequencies the magnetic field becomes almost
irrelevant, so that the polarization operator approaches its
zero-B form.23

V. DRAG RESISTIVITY

In a strong magnetic field,vct0@1, the intralayer Hall
resistivity rxy dominates over the longitudinal resistivityrxx.
Therefore, the drag resistivity is given by

rxx
D . rxy

s1dsyy
D ryx

s2d. s60d

Using Eq. (5), we get the expression for the longitudinal
component of the drag resistivity in a strong magnetic field

GORNYI, MIRLIN, AND von OPPEN PHYSICAL REVIEW B70, 245302(2004)

245302-8



rxx
D = −

B

ene1

B

ene2

1

8p
E

−`

` dv

2Tsinh2sv/2Td E d2q

s2pd2

3Gy
s1dsq,v,BdGy

s2dsq,v,− BduU12sq,vdu2. s61d

The overall minus sign in Eq.(61) is due to the
relation rxy=−ryx. It follows that for identical layers, the
longitudinal sG~ q̂d componentGi of the triangle vertex
gives rise tonegativedrag, sinceGis−Bd=Gis−Bd, while the
transversesG~ ẑ3 q̂d componentG' yields positive drag,
G's−Bd=−G's−Bd.

Since the upper limit of the momentum integration in Eq.
(61) is effectively set by the inverse interlayer distancea−1,
the behavior of the transresistivity will essentially dependent
on the relation betweenRc anda. Below, we mainly concen-
trate on theballistic regime

vc/D ! Rc/a ! ND/vc, s62d

which we consider as most relevant experimentally. In Sec.
V D we will briefly consider other situations and discuss the
evolution of the transresistivity with decreasing interlayer
distance, from the diffusivesRc/a!1d to the ultraballistic
sRc/a@ND /vcd regime.

A. Ballistic regime: Low temperatures „T™D…

In the low-temperature limit, the expressions derived
for the triangle vertexGsq ,vd at v!D are sufficient,
because frequencies in Eq.(61) are restricted tov&T!D.
Let us analyze which of the contributions to the triangle
vertex dominates, depending on the relation betweenq
and 1/Rc.

In the diffusive range of momentaqRc!1, the leading
contribution to the triangle vertex is given by Eq.(31); its
magnitude can be estimated as

G ,
vkF

D2qRc
. s63d

In the ballistic regimeqRc@1 we have three competing
contributions(see Sec. III C)

Gs1/qRcd ,
vkF

D2sqRcd2 , s64d

GsD/vcd ,
vkF

DvcqRc
, qRc

D

vc
Gs1/qRcd, s65d

Gsq/kFd ,
v

D2Rc
,

sqRcd2

N
Gs1/qRcd ,

q

kF

vc

D
GsD/vcd. s66d

Comparing these expressions, we find that the first contribu-
tion Gs1/qRcd dominates forqRc!vc/D, the second oneGsD/vcd

is dominant forvc/D!qRc!ND /vc, while the last contri-
butionGsq/kFd becomes the largest one forqRc@ND /vc. This
is valid provided that the Landau level indexN is sufficiently
large,N. svc/Dd2. We will assume below that this condition
is fulfilled.

Splitting the momentum integral in Eq.(61) into three
parts, corresponding to regions of different behavior of the

triangle vertex and polarization operator, we present the tran-
sresistivity in the following form:

rxx
D .

e2B2

8p3 S kF

k0
2neD

2D
1
S kF

k0
2neD

2D
2

3E
−`

`

dv
v2

2T sinh2sv/2Td
Isvd, s67d

Isvd = I Isvd + I IIsvd + I III svd, s68d

where the subscriptl =1,2 in s¯dl refers to the layerl,
and the contributionsI I, I II , and I III in Eq. (67) are deter-
mined by the momentum domainsqRc!1, 1!qRc!vc/D,
andqRc@vc/D, respectively. The corresponding expressions
are given in Appendix D. Estimating all three terms, we find
[see Eq.(D12)] that the leading contribution is given by the
last term

Isvd . I III svd =
1

2p3a2Rc
2 lnSRcD

avc
DH 16

vcD
2sm − ENdfD2

− sm − ENd2gJ
1
H 16

vcD
2sm − ENdfD2 − sm − ENd2gJ

2

,
1

a2Rc
2S D

vc
D2

lnSRcD

avc
D . s69d

Therefore, forT!D we get for identical layers

rxx
D =

32

3p2e2

1

skFad2sk0Rcd2S T

D
D2

lnSRcD

avc
DSm − EN

D
D2

3F1 −
sm − ENd2

D2 G2

. s70d

Thus at low temperatureT!D, the drag resistivity scales
with the magnetic field and temperature as

rxx
D ~ T2B lnsB* /Bd, s71d

where B* ,smc/edsvF
2 /a2t0d1/3 sets the upper boundary

for the considered ballistic regime on the magnetic field
axis.

If Rc differs slightly between the two layers(i.e., the
concentrations are slightly different) so that dRc/a!1,
the above calculation fully applies, with the only change in
Eq. (70)

Sm − EN

D2 D2F1 −
sm − ENd2

D2 G2

→ Sm − EN

D
F1 −

sm − ENd2

D2 GD
1

3Sm − EN

D
F1 −

sm − ENd2

D2 GD
2
.

s72d

This yields anoscillatory signof the drag. For identical lay-
ers the drag ispositive, at variance with Ref. 14. This is
because the leading term here originates from the component
G' of the triangle vertex transverse to the wave vectorq
(i.e., directed alongẑ3 q̂). For a more detailed discussion of
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the sign of drag in different regimes, see Sec. V D. If
a!dRc!RcD /vc, the calculation still applies, but the argu-
ment of the logarithm changes,

lnSRc

a

D

vc
D → lnS Rc

dRc

D

vc
D . s73d

B. Ballistic regime: Arbitrary T /D

Having identified the leading contribution(coming from
the D /vc term) to drag for temperatures small compared to
the LL width D, we generalize the obtained result to the case
of largerT (and correspondinglyv). As discussed in Appen-
dix D, the only difference in the momentum integral in the
D /vc term is the replacementD→T under the argument of
logarithm. Using Eq.(39) and assuming that the difference in
Rc between the two layers is not too largedRc!a, we ex-
press theOsD /vcd contribution to the transresistivity as

srxx
D dsD/vcd =

4

p4e2

1

skFad2sk0Rcd2 lnSRc maxfD,Tg
avc

D
3 E

−`

` dv

2Tsinh2sv/2Td
fF̃sv,m,Tdg1fF̃sv,m,Tdg2,

s74d

where F̃sv ,m ,Td is a dimensionless function ofv /D,
sm−ENd /D, andT/D,

F̃sv,m,Td ; E
−`

` de

D
Stanh

e + v/2 − m

2T
− tanh

e − v/2 − m

2T
D

3
e − EN

D
F1 −

se + v/2 − ENd2

D2 G1/2

3F1 −
se − v/2 − ENd2

D2 G1/2

. s75d

For arbitraryT/D,1 this can only be calculated numeri-
cally. In Fig. 6 we present the results for the temperature
dependence of theOsD /vcd contribution to drag as well as
for its dependence on the filling factornN of the highest
(partially filled, 0,nN,2) LL. It is worth mentioning that
when temperature is varied at fixed filling factor(as in typi-
cal experiments), the chemical potential is varying as well,

m=msnN,Td, which is taken into account in Fig. 6.
Consider the regime of temperatures large compared to

the LL width, T@D. In this situation the LL’s will be broad-
ened by the temperature, so that typicallym−EN will be of
order T and thus much larger thanD. Expanding the tanh
terms in Eq.(75) in v,2D!T ande−EN,D!T, we arrive
at

srxx
D dsD/vcd .

4

p4e2

1

skFad2sk0Rcd2 lnSRcT

avc
D

3Ssinh
EN − m

2T
cosh−3 EN − m

2T
D

1

3Ssinh
EN − m

2T
cosh−3 EN − m

2T
D

2

3SD

T
D3E

−`

` dv

2D
fFsv/2Ddg1fFsv/2Ddg2,

s76d

whereFsxd is a dimensionless function similar to Eq.(57). It
also describes the overlap of two shifted Landau levels, but
has an additional factorfse−ENd /Dg2 arising from the
particle-hole asymmetry due to LL quantization,

Fsxd ; E
−`

`

dzz2hRef1 − sz+ xd2g1/2jhRef1 − sz− xd2g1/2j.

s77d

The contribution(76) scales as

rxx
D ~ T−3B7/2 lnsT/B2d. s78d

Since the aboveOsD /vcd term falls off quickly atT@D,
we should analyze the contributions of the other terms. Let
us first calculate the “conventional” termOsq/kFd, substitut-
ing Eq. (45) in Eq. (61). Remarkably, the strong-B expres-
sion for theq/kF contribution to drag resistivity reduces to
the standard zero-B form11,15,16

FIG. 6. Low-temperature drag
for identical layers. Left panel:
temperature dependences of the
OsD /vcd term inrxx

D sTd for differ-
ent values of the filling factor of
the highest LL, nN=0.5,0.2,0.8
(from top to bottom). Right panel:
dependence of theOsD /vcd term
on the filling factornN for differ-
ent values of temperature,T/D
=0.1,0.5,1(from top to bottom).
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srxx
D dsq/kFd =

1

4pe2ne1ne2
E

−`

` dv

2Tsinh2sv/2Td E d2q

s2pd2

3q2fIm Psq,vdg1fIm Psq,vdg2uU12sq,vdu2.

s79d

Here all the information about the magnetic field is encoded
in Psq ,vd, Eq. (49). Equation(79) is identical to the central
result of Ref. 12. Therefore, it is theq/kF contribution that
the theory of Ref. 12 takes into account. As we show below,
this contribution dominates at high temperatures, as well as
in the ultraballistic regime.

For T@D, expanding the tanh terms in ImPsq ,vd just as
before we find

srxx
D dsq/kFd .

3zs3d
2p4e2

1

skFad4sk0Rcd2Svc

D
D2D

T

3 Scosh−2 EN − m

2T
D

1
Scosh−2 EN − m

2T
D

2

3E
−`

` dv

2D
fHsv/2Ddg1fHsv/2Ddg2, s80d

wherezsxd is the Riemann zeta functionfzs3d.1.202g and
Hsxd is defined in Eq.(57). This contribution scales as

rxx
D ~ T−1B7/2. s81d

The slower fall off of theOsq/kFd contribution (80) as
compared to Eq.(76) can be traced back to the different
nature of the particle-hole asymmetry underlying these two
contributions. Specifically, theOsD /vcd term (76) is gov-
erned by the particle-hole asymmetry due to the LL quanti-
zation. This is reflected by the factore−EN in Eq. (75) which
after thermal averaging, translates into a factor in Eq.(76)
which is asymmetric inEN−m. On the other hand, the “con-
ventional” q/kF contribution is due to the curvature of
zero-B spectrum and therefore is symmetric ine−EN (and in
EN−m after thermal averaging). In both cases the fall off of
drag atT@D is due to the absence of electronic states out-
side the Landau band(for ue−ENu.D). However, the thermal
averaging of the odd function ofe−EN yields an additional
factor D /T for eachD /vc-triangle vertex, at variance with
the case of an even function ofe−EN determiningOsq/kFd
contribution.

Finally, we evaluate the contribution of theOs1/qRcd
term. On the one hand, the thermal averaging suppresses
each Gs1/qRcd vertex by the factorsD /Td2, similarly to the
OsD /vcd term. This is again because of the particle-hole
asymmetry due to the LL quantization. On the other hand,
the peculiarity of the finite-T screening gives rise to a factor
sT/Dd2 in the momentum integral involving theOs1/qRcd
term, see Appendix D. The remaining frequency integral
yields the factorT/D, since the allowed frequencies are re-
stricted byuvu,2D!T. As a result, the contribution of this
term to the drag resistivity is inversely proportional to tem-
perature forT@D, similarly to the conventionalq/kF contri-
bution. For simplicity we restrict ourselves to the case of
identical layers, where we get

srxx
D ds1/qRcd . −

cs1/qRcd

e2

1

skFad2sk0Rcd2

D

T
sinh2 EN − m

2T

3cosh−2 EN − m

2T
, s82d

wherecs1/qRcd is a constant of order unity

cs1/qRcd =
4

p
E

−`

`

dxfPsxdg2Wsxd, s83d

with the functionWsxd defined in Eq.(20) and

Psxd =E
−`

`

dzzsz+ xdRef1 − sz+ xd2g1/2hRef1 − sz− xd2g1/2j2.

s84d

This contribution scales as

rxx
D ~ − T−1B5/2. s85d

We thus conclude that theOs1/qRcd contribution wins over
the OsD /vcd contribution for

T . Dln1/2SRcD

avc
D ; T* .

Comparing Eqs.(80) and (82), we have

Osq/kFd
uOs1/qRcdu

,
1

skFad2svc/Dd2 , SRc

a

vc

ND
D2

! 1, s86d

as follows from Eq.(62). Therefore theOs1/qRcd contribu-
tion dominates the drag resistivity in the intermediate range
of temperature. This contribution oscillates with changing
the filling factor of the two layers; however, it is negative for
matching densities, unlike theOsD /vcd contribution.

For higher temperaturesT.vc, the terms related to the
LL particle-hole asymmetry fall off rapidly due to the ther-
mal averaging involving many LL’s and thus theq/kF term
(i.e., the “conventional” contribution to the drag resistivity)
soon becomes dominant. The drag resistivity is then always
positive, independently of the difference in filling factors of
the two layers. It monotonously increases with increasingT
and takes the form

rxx
D .

8zs3d
p2e2

1

skFad4sk0Rcd2

vc

D
S T

vc
D2

3E
−`

` dv

2D
fHsv/2Ddg1fHsv/2Ddg2

,
1

e2skFad2sk0ad2S T

EF
D2vc

D
~ T2B1/2. s87d

This is almost the same result that is found in zero magnetic
field;11,15,16 the only difference is an extra factor,vc/D
~B1/2. The reason for the emergence of the zero-B result
is physically very transparent. Characteristic frequencies
v,T@vc set a characteristic time scaleT−1, which is much
smaller than the time of the cyclotron revolution. At such
times the electron motion is essentially unaffected by the
magnetic field. The magnetic field enters, however, through
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the density of statesn inside the LL, which determines the
characteristic magnitude of ImP, and thus ofG, see Eq.(45).
The v integration in Eq.(61) thus results in an effective
averaging ofn2, yielding the factorvc/D. It is worth men-
tioning that, for the same reason, the longitudinal resistivity
rxx of a single layer is also enhanced by such a factor in the
regimeT@vc@D as compared to its zero-B value, see, e.g.,
Ref. 24.

For still higher temperatureT@vF /a, the quadratic-in-T
dependence of the drag resistivity crosses over into the
linear-in-T drag. This occurs because of the suppression of
the imaginary part of the polarization operator[determining
the q/kF triangle, Eq.(45)] at v@qvF, see Eq.(59). As a
result, the domain ofv integration is effectively restricted by
v&vF /a (since q&1/a), yielding the replacement
T2→TvF /a as compared to the case ofvc!T!vF /a,

rxx
D ~ TB1/2.

Before closing this subsection, it is worth mentioning that
in the above consideration we have neglected the contribu-
tion of magnetoplasmons to the drag(see Ref. 13 for details).
While this contribution may become important for very high
temperaturesT@vc, it is negligibly small at relatively low
T,D, which is the range of our main interest in the present
paper.

C. Comparison with experiment

In this subsection we compare the results for the drag in
the ballistic regime obtained above with experimental find-
ings. We have found a sequence of different regimes of the
temperature behavior ofrxx

D , see Eqs.(71), (78), (85), and
(87). All these results are schematically summarized in Fig.
7. The upper curves there depictsrxx

D sTd for equal densities,
whereas the lower curve corresponds to a mismatch in den-

sities chosen in such a way that the Fermi energy is located
in the upper half of the Landau band in one layer, and in the
lower half in the other layer. As has already been empha-
sized, the drag at low temperatures is positive for matched
and negative for mismatched densities. This sign of the os-
cillatory drag can be traced back to the fact that the dominant
contribution to the triangle vertex is given byGsD/vcd, which
is transverse with respect to the momentumq.

We now compare these results with a most recent and
detailed study by Murakiet al.10 of the Coulomb drag in the
regime of high Landau levels. A comparison of our Fig. 7
with Fig. 3 of Ref. 10 reveals a remarkable agreement be-
tween the experimental findings and our theoretical results.
In both the theory and the experiment,(i) rxx

D sTd shows a
sharp peak at low temperatures,(ii ) the sign of the drag in
this temperature range oscillates as a function of the filling
factor of one layer(at fixed filling factor of the other layer),
(iii ) the low-T drag is positive for equal filling factors and
negative when the Fermi energy in one layer is in the upper
half and in the other layer in the lower half of the Landau
band, and(iv) the high-T drag is always positive, indepen-
dently of the difference in filling factors of two layers
and increases monotonically with increasingT. Furthermore,
it was observed by Murakiet al. (see Fig. 2 of Ref. 10)
that in the low-temperature regime of initial increase of
rxx

D , as well as in the high-temperature regime of “normal”
drag, the drag resistivity can be described by an empirical
scaling law

rxx
D ~ S n

B
D−2.7

fsT/Bd. s88d

Our results for the low-temperature, Eq.(71), and high-
temperature, Eq.(88), increase ofrxx

D are in a nice correspon-
dence with this prediction, withfsxd,x2.

The magnitude of the low-temperature peak in the
drag resistivity that follows from our theory also agrees
with the experiment. Specifically, estimating Eq.(70) at
T=0.25D and fsm−ENd /Dg2=1/2 by making use of typical
experimental parametersk0,kF,108 m−1, a,10−8 m,
Rc,10−7 m, we findrxx

D ,1V, in good agreement with the
result of Ref. 10.

There is however a difference between our result(71) for
the low-temperature scaling of drag and the interpretation of
low-T data in Ref. 10 Specifically, while we findT2 scaling
in this regime, Murakiet al. fit the data to an exponential
(activation-type) dependence, arguing that localized states
are responsible for the low-temperature “anomalous peak” in
rxx

D sTd. We do not expect, however, that localization plays an
important role in the regime of high Landau levels at realistic
temperatures. Indeed, as is seen from Fig. 1 of Ref. 10, the
resistivity for filling factorsn*10 has a shape as predicted
by SCBA, without developed Hall plateaus. Also, the fit of
the low-T behavior ofrxx

D to the activated over a single de-
cade is not unambiguous; the same data could be quite well
fitted to theT2 power law. In other words, we believe that our
theory based on SCBA and not including quantum localiza-
tion effects is sufficient to explain the most salient experi-

FIG. 7. Schematic temperature dependence of drag in the
ballistic regime for matched and mismatched densities. In the
latter case the mismatch is chosen such that the drag is negative
at low T (see text). Scaling of rxx

D with temperature in different
regions is indicated:(i) Eq. (71), (ii ) Eq. (78), (iii ) Eq. (85), and(iv)
Eq. (87).
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mental observations of Ref. 10: the “anomalous” drag with
oscillatory sign at low temperatures and the “normal” posi-
tive drag at highT.

D. Evolution of rxx
D
„T… with varying interlayer distance:

From the diffusive to the ultraballistic limit

As discussed in the beginning of Sec. V A, the form of
the drag resistivityrxx

D sTd depends on the value of the ratio
Rc/a. In the above we have concentrated on the regime
vc/D!Rc/a!ND /vc, which can be termed “ballistic”
and which we believe to be most relevant to a typical
experiment. In this subsection we briefly describe the results
obtained for other regimes. Specifically, with increasingRc/a
we identify the following four regimes:(i) diffusive,
Rc/a!1, (ii ) weakly ballistic, 1!Rc/a!vc/D, (iii )
ballistic, vc/D!Rc/a!ND /vc, and (iv) ultraballistic,
ND /vc!Rc/a. In all regimes, the temperature dependence
of the drag resistivity is nonmonotonous: the absolute value
of rxx

D sTd shows a peak aroundT,D and increases again at
T@vc. However, theT andB dependences ofrxx

D , as well as
the sign of the low-temperature peak(the high-temperature
drag is always positive), are specific for each particular re-
gime, as illustrated in Fig. 8 and summarized below.

Diffusive regime, Rc/a!1. In the diffusive regime, the
drag at not too high temperaturesT!vc, is governed by the
diffusive rectification, Eqs.(31) and (32). As a result, the
sign of the drag atT,D oscillates but is opposite to what we
found above for the ballistic regime: the drag is negative for
equal densities.14 At the “slopes” of the peak,rxx

D scales with
T andB in the following way:

rxx
D ~ H− T2 lnsTB3/2d, T ! D,

− T−1B3/2 ln B, T @ D,
J s89d

where the sign corresponds to the case of matching densities.
Weakly ballistic regime, 1!Rc/a!vc/D. This regime is

qualitatively similar to the diffusive regime. The peak at
T,D is governed now by theOs1/qRcd term in the triangle
vertex, resulting in

rxx
D ~ 5− T2B−5/4, T ! D,

− T1/2B−1/2, D ! T ! T** ; vcsa/Rcd,

− T−1B5/2, T @ vcsa/Rcd.
6 s90d

The sign of the peak oscillates just as in the diffusive regime.
Ballistic regime, vc/D!Rc/a!ND /vc. This is the re-

gime we have studied in the main part of the paper. For the
reader’s convenience, we repeat the results here. The peak is
governed by theOsD /vcd contribution, its sign oscillates and
is positive for matching densities

rxx
D ~ 5T2B lnsB* /Bd, T ! D,

T−3B7/2 lnsB* /Bd, D ! T ! T* ,

− T−1B5/2, T @ T* .
6 s91d

Ultraballistic regime, ND /vc!Rc/a. The drag for all
temperatures is determined by the conventionalOsq/kFd con-
tribution, Eq.(79), which is a central formula of Ref. 12 and
was used as a starting point in Ref. 13. In the ultraballistic
regime the drag is always positive(independently of the fill-
ing factor mismatch) and scales as

rxx
D ~ H T2B2, T ! D,

T−1B7/2, T @ D,
J s92d

in agreement with Ref. 13.
At high temperature,T@vc, the drag is governed

by the conventional contribution(and is therefore positive)
in all the regimes. It is linear inT in the diffusive regime
srxx

D ~TB−1/2d. In all the ballistic regimes the drag resistivity
scales asrxx

D ~T2B1/2 for vc!T!vF /a and rxx
D ~TB1/2 for

T@vF /a. (As mentioned in the end of Sec. V B, we do not
consider the magnetoplasmon contribution13 here.)

VI. SUMMARY

In this paper, we have developed a systematic diagram-
matic theory of the Coulomb drag in moderately strong mag-
netic fields, when the Landau bands are already separated but
the Landau level index is still large. Using the self-consistent
Born approximation, we performed a thorough analysis of all
relevant contributions and, on this basis, analyzed the tem-

FIG. 8. Schematic temperature dependence of low-temperature drag in different regimes:(a) diffusive, Rc/a!1; (b) weakly ballistic,
1!Rc/a!vc/D; (c) ballistic, vc/D!Rc/a!ND /vc; (d) ultraballistic,ND /vc!Rc/a.
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perature dependence of the drag resistivity. Depending on the
relation between the cyclotron radiusRc and the interlayer
distancea we distinguish several regimes. We concentrated
on the experimentally most relevant ballistic regime. In this
case the theoretical analysis requires special care, in view of
a cancellation between leading-order contributions to the tri-
angle vertexG. We also briefly considered the evolution of
the drag resistivity in the whole range ofRc/a, from the
diffusive to the ultraballistic regime.

We have shown that Coulomb drag in strong magnetic
fields is an interplay of two contributions, as illustrated in
Fig. 9. At high temperatures, the leading contribution is due
to breaking of particle-hole symmetry by the curvature of the
zero-B electron spectrum. This “normal” contribution to the
drag is always positive and increases in a broad temperature
range asT2. At low temperatures, we find that a second,
“anomalous,” contribution dominates, which arises from the
breaking of particle-hole symmetry by the energy depen-
dence of the density of states related to Landau quantization.
This contribution is sharply peaked at a temperatureT,D
(whereD is the Landau level width) and has an oscillatory
sign depending on the density mismatch between the two
layers. In particular, we find that in the ballistic regime the
sign is positive for equal densities, in contrast to the negative
sign in the diffusive regime found in Ref. 14.

Our results for the temperature dependence and sign of
the drag resistivityrxx

D sTd in the ballistic regime are illus-
trated in Fig. 7. These results are in good agreement with
recent experimental findings,10 and thus explain the remark-
able features of Coulomb drag in high Landau levels ob-
served experimentally.

Finally, we discuss some prospects for future research.
First, our theory can be generalized to phonon drag, which is
expected to dominate over Coulomb drag at larger separa-
tions between the layers. Second, it will be interesting to
consider the magnetic field and temperature dependence of
the drag around filling factorn=1/2, where transport is due
to composite fermions moving in a reduced magnetic
field.25–28Third, one can study the effects of quantum local-
ization, as well as criticality in the center of the Landau

band,29 which should become important in lower Landau
levels or for very low temperatures. Finally, it should be
possible to reproduce our results within the framework of a
quantum kinetic equation(see Ref. 24). This would also al-
low one to generalize the theory of magnetodrag to nonequi-
librium setups(strong bias, microwave, etc.), as well as to
other observables(e.g., the thermopower) related to particle-
hole asymmetry.
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APPENDIX A: ANALYTICAL CONTINUATION

In this Appendix we perform the analytical continuation
of the Matsubara expressions for the drag conductivity and
the triangle vertexG. To calculate the Matsubara sum over
vn=2pnT in Eq. (3), the standard contour integration in the
complexv plane is done,

To
vn

fsivnd =
1

4pi
E

Cb

dvfsvdcoth
v

2T
. sA1d

The integrand has branch cuts at Imv=0 and Imv=−Vk,
whereVk represents the external frequency. The integration
contourCb thus contains three parts, see Fig. 10. Deform-
ing the contour as shown in Fig. 10, we get four terms cor-
responding to four lines(above and below of both the branch
cuts) forming the new contour,

FIG. 9. Schematic illustration of different sources of particle-hole asymmetry: curvature of zero-B spectrumEskd vs LL quantization
of the density of states(DOS) nsEd. In the particle-holesp-hd symmetric case, the electronic and hole contributions to the current induced
in the passive layer(je and jh, respectively) compensate each other. When thep-h asymmetry is generated by a finite curvature, the velocities
of electrons and holes(shown by arrows in the right panel) are different, which destroys the compensation. This is the “conventional”
mechanism of the drag. When the DOS depends on energy(in the present case because of the LL quantization), an “anomalous” drag
arises due to the difference in numbers of occupied electronic and hole states[also via theE dependence of the scattering time induced
by nsEd, see Eq.(16)].
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si j
DsiVkd = −

e2

8VkS
o
q
E

−`

`

dv coth
v

2T
fGi

s1dsq,v + iVk,v + i0dG j
s2dsq,v + i0,v + iVkdUsq,v + iVkdUsq,v + i0d

− Gi
s1dsq,v + iVk,v − i0dG j

s2dsq,v − i0,v + iVkdUsq,v + iVkdUsq,v − i0d

+ Gi
s1dsq,v + i0,v − iVkdG j

s2dsq,v − iVk,v + i0dUsq,v + i0dUsq,v − iVkd

− Gi
s1dsq,v − i0,v − iVkdG j

s2dsq,v − iVk,v − i0dUsq,v − i0dUsq,v − iVkdg. sA2d

In the third and fourth terms we have used cothsz
+ iVk/2Td=cothz. The contributions of pointsv=0 and
v=−iVk cancel the integral over the small circles around
these points, so that the integrals above should be understood
in the principal value sense.

We now perform the analytical continuationiVk→V+ i0
and take the limitV→0. As shown in Ref. 15, the first and
the last terms coming from outer sides of branch cuts vanish
in the limit V→0. This yields

si j
D = −

e2

8pS
o
q
E

−`

`

dv coth
v

2T

]

]v
fGi

s1dsq,v + i0,v − i0d

3G j
s2dsq,v − i0,v + i0dUsq,v + i0dUsq,v − i0dg.

sA3d

Using

]

]v
coth

v

2T
= −

1

2T sinh2sv/2Td
, sA4d

we arrive at Eq.(5).
The next step is the analytical continuation of the triangle

vertex. The summation over the fermionic Matsubara
energiesek=2psk+1/2Td in Eq. (4) is performed using the
integral

To
ek

fsiekd =
1

4pi
E

Cf

defsedtanh
e

2T
, sA5d

along the contourCf shown in Fig. 11. Since the triangle
vertex depends on two frequenciesivm and ivn, the inte-
grand now has three branch cuts in the complex plane ofe,
namely, at Ime=0, Ime=−vm, and Ime=−vn. Similarly to
Cb, the contourCf can be deformed into a set of six lines
going on both sides of each of the branch cuts(see Fig. 11),
yielding

Gsq,ivm,ivnd =E
−`

` de

4pi
tanh

e

2T
trhvfG+sed − G−sedgeiq·rGse − ivnde−iq·rGse + ivm − ivnd − vGse + ivndeiq·rfG+sed − G−sedge−iq·r

3Gse + ivmd + vGse − ivm + ivndeiq·rGse − ivmde−iq·rfG+sed − G−sedgj + svn ↔ − vm,q → − qd. sA6d

In this formulaG±sed=Gse± i0d and we have used tanhsz− ivm/2Td=tanhsz− ivn/2Td=tanhz. Equation(A6) is valid irrespec-
tive of the relation betweenvm, vn, and 0. Performing the analytical continuation to real frequenciesivm→v1+ i0 and ivn
→v2− i0 (and shifting the integration variablese→e+v2 ande→e+v1 in the first and third terms, respectively) we obtain

Gsq,v1 + i0,v2 − i0d =E
−`

` de

4pi
trHtanh

e + v2

2T
vfG+se + v2d − G−se + v2dgeiq·rG+sede−iq·rG+se + v1d

− tanh
e

2T
vG−se + v2deiq·rfG+sed − G−sedge−iq·rG+se + v1d

+ tanh
e + v1

2T
vG−se + v2deiq·rG−sede−iq·rfG+se + v1d − G−se + v1dgJ + sv,q → − v,− qd. sA7d

Setting v1=v2 and collecting the contributions containing
only retarded(from the first term) and only advanced(from
the third term) Green functions, we arrive[up to a redefini-
tion of zero of fermionic energies, which are counted from
the chemical potential in Eq.(A7)] at Eq. (7) for Gsad. The

remaining terms constitute the expression(8) for Gsbd.

APPENDIX B: VERTEX CORRECTIONS IN SCBA

In this appendix, we review vertex corrections in SCBA.
We start by noting that in real space, the impurity-averaged
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electron Green function in SCBA can be written as

Gsr ,r 8;Ed = eiwsr ,r8do
n

Cnsr − r 8dGnsEd sB1d

with

Cnsr ,r 8d =
1

2pl2
e−sr − r8d2/2l2LnS sr − r 8d2

2l2
D . sB2d

The gauge-dependent phasewsr ,r 8d satisfies wsr ,r 8d
=−wsr 8 ,r d. This can be used to express the vertex correction
in real space as(see Fig. 12)

gmnsq,v;r d = eiq·r +
1

2pn0t0
E dr 8gmnsq,v;r 8d

3Gmsr ,r 8;E + vdGnsr 8,r ;Ed. sB3d

For well-separated Landau levels, the valence LL with LL
index N gives the dominant contribution so that

gmnsq,v;r d = eiq·r +
1

2pn0t0
GN

msE + vdGN
n sEd E dr 8

3CNsr − r 8dCNsr 8 − r dgmnsq,v;r 8d. sB4d

Thus, we find that

gmnsq,v;r d = gmnsq,vdeiq·r sB5d

with

gmnsq,vd = 1 +
s2pl2dD2

4
gmnsq,vdGN

msE + vdGN
n sEd

3E dr 8CNsr − r 8dCNsr 8 − r de−iqsr−r8d.

sB6d

Here we used the identity 1/2pn0t0=s2pl2dD2/4. The inte-
gral is equal to

E dr 8CNsr − r 8dCNsr 8 − r de−iqsr−r8d

=
1

2pl2
eq2l2fLnsq2l2/2dg2 .

1

2pl2
J0

2sqRcd, sB7d

where the second equality holds in the limit of high Landau
levels. Neglecting the frequency dependence and using the
identities

GN
+GN

− =
4

D2 , sB8d

GN
+GN

+ =
1

sSN
−d2 , sB9d

we can solve forgmn, and obtain Eqs.(18) and (19) for the
vertex corrections. Finally, for finitev we get

gmnsq,vd =
1

1 − sD2/4dJ0
2sqRcdGN

msE + vdGN
n sEd

,

sB10d

which is used in Eq.(28).

APPENDIX C: CORRECTIONS OF ORDER D /vc

In this appendix, we consider the contributions to the tri-
angle vertex to orderD /vc in more detail. To this order,
vertex corrections of the scalar vertices can be neglected. We
first consider the case(i) in which both Green functions ad-
jacent to the current vertex are evaluated in Landau levels
other thanN. As mentioned in Sec. III C 2, the Green func-
tion connecting the scalar vertices should be evaluated in the
Nth LL up to corrections of ordersD /vcd2. Using the semi-
classical expression(23) for the matrix elements, we then
find for the corresponding correction toGsbd the expression

FIG. 10. Contours for thev-integration.

FIG. 11. Contours for thee integration.

FIG. 12. Diagrams for the(scalar) vertex corrections in real
space.
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dGsbdsq,vd = −
v

ip

1

2pl2
ÎN

lmÎ2
sGN

+ − GN
−d

3 o
nÞN,N+1

S2i

0
D 1

sN − ndvc

1

sN − n + 1dvc

3iJN−n+1sqRcdJN−nsqRcd

= −
v

2p2l2
ÎN

lmÎ2

sGN
+ − GN

−d
vc

2 o
k=1

`
1

ksk + 1d
S2i

0
D

3fJksqRcdJk+1sqRcd + J−ksqRcdJ−sk+1dsqRcdg.

sC1d

Using thatJ−kszd=s−1dkJkszd, we find that the expression in
square brackets vanishes so thatdGsbdsq ,vd=0.

The corresponding contribution toGsadsq ,vd takes the
form

dGsadsq,vd =
v

p

1

2pl2
Im

]

]qo
n,m

8Jn−m
2 sqRcdGm

+Gn
+

=
2v

p

1

2pl2
Im

]

]qo
k=1

`

Jk
2sqRcdsGN

+GN−k
+ + GN

+GN+k
+ d.

sC2d

The prime on the sum indicates that only those terms should
be kept, in which one of the two Green functions is evaluated
in a LL different fromN. Up to leading order,

GN−k
+ = − GN+k

+ =
1

kvc
,

and hence also the contribution(C2) to the triangle vertex
vanishes.

Next, we turn to the contribution(ii ) in which the dia-
grams in Fig. 4 are evaluated to next-to-leading order in
D /vc while neglecting the vertex corrections on the scalar
vertices. Such contributions can arise in particular from the
self-energy enteringGN±1. We first consider the correspond-
ing contribution toGx

sbd. (For the purpose of this appendix,

we chooseq i x̂.) According to the diagrams in Fig. 4, we
have for the contribution(ii )

Gx
sbd =

v

p

1

2pl2
ÎN

lmÎ2
J0sqRcdJ1sqRcd2 ImsGN−1

− − GN+1
− dfGN

+g2.

sC3d

Here, we have already used that to the order under consider-
ation,

− sGN−1
− − GN+1

− dGN
+GN

− + sGN−1
+ − GN+1

+ dGN
+GN

− . 0.

sC4d

To our order, we then find

Gx
sbd =

vÎ2N

p2l
J0sqRcdJ1sqRcdImfGN

+g2. sC5d

Comparing with Eq.(25), we find even to orderD /vc that
this contribution is cancelled exactly byGx

sad. Thus, there is
also no contribution of type(ii ) to Gx and Gx vanishes to
orderD /vc.

Finally, we consider the contribution of type(ii ) to Gy.
Since this is a transverse contribution, we need to consider
only Gsbd. In this case, the diagrams in Fig. 4 translate into
the expression

Gy =
iv

p

1

2pl2
ÎN

lmÎ2
iJ0sqRcdJ1sqRcdsGN

+ − GN
−d

32i ImsGN−1
− + GN+1

− dGN
+ . sC6d

Noting that the leading order cancels from the combination
GN−1

− +GN+1
− , we can simply evaluate Eq.(C6) for Gy to lead-

ing nonvanishing order. This yields Eq.(38) for GsD/vcd in the
main text.

APPENDIX D: CONTRIBUTIONS TO DRAG FROM
DIFFERENT MOMENTUM REGIONS

We write down explicitly the momentum integrals deter-
mining the functionIsvd in Eq. (67). The first integral, cor-
responding to the diffusive range of momentaqRc!1

I Isvd = −E
0

1/Rc dqq

2p
S q

sinhqa
D2H4qRc

sm − ENdDsmdq2

fDsmdq2g2 + v2 J
1
H4qRc

sm − ENdDsmdq2

fDsmdq2g2 + v2 J
2

3H D2

D2 − sm − ENd2S pD

2vc
D2fDsmdq2g2 + v2

fDsmdq2g2 J
1
H D2

D2 − sm − ENd2S pD

2vc
D2fDsmdq2g2 + v2

fDsmdq2g2 J
2

sD1d

is dominated by the contribution of the “diffusive rectification,” Eq.(31), while the screening is determined by Eq.(34). The
second integral

I IIsvd = I II−1svd + I II−2svd, sD2d

includes the contribution ofGs1/qRcd [denoted byI II−1svd] and GsD/vcd [denoted byI II−2svd], Eqs.(36) and (38), respectively,
while the screening inI II is determined byNth LL, Eq. (51):
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I II−1svd = −E
1/Rc

vc/DRc dqq

2p
S q

sinhqa
D2

hJ1sqRcdJ0
3sqRcdj1hJ1sqRcdJ0

3sqRcdj2

3H 64

D4sm − ENdfD2 − sm − ENd2g3/2J
1
H 64

D4sm − ENdfD2 − sm − ENd2g3/2J
2

3H1 +
8vc

3pD
J0

2sqRcdF1 −
sm − ENd2

D2 G3/2J
1

−2H1 +
8vc

3pD
J0

2sqRcdF1 −
sm − ENd2

D2 G3/2J
2

−2

, sD3d

I II−2svd =E
1/Rc

vc/DRc dqq

2p
S q

sinhqa
D2

hJ1sqRcdJ0sqRcdj1hJ1sqRcdJ0sqRcdj2

3H 16

vcD
2sm − ENdfD2 − sm − ENd2gJ

1
H 16

vcD
2sm − ENdfD2 − sm − ENd2gJ

2

3H1 +
8vc

3pD
J0

2sqRcdF1 −
sm − ENd2

D2 G3/2J
1

−2H1 +
8vc

3pD
J0

2sqRcdF1 −
sm − ENd2

D2 G3/2J
2

−2

. sD4d

The integration domain in the third integral,I III svd, corre-
sponds to the range where the screening acquires its static
zero-B form (53), while the triangle vertex is dominated by
GsD/vcd, Eq. (38),

I III svd =E
vc/DRc

dqq

2p
S q

sinhqa
D2

3hJ1sqRcdJ0sqRcdj1hJ1sqRcdJ0sqRcdj2

3H 16

vcD
2sm − ENdfD2 − sm − ENd2gJ

1

3H 16

vcD
2sm − ENdfD2 − sm − ENd2gJ

2
. sD5d

Let us analyze the first term inI II , Eq. (D3). Consider
identical layers. The screening is nontrivial and almost van-
ishes in the vicinity of zeroesQn of J0

2sqRcd. The structure of
the integral is

I II−1 ~ E
1/Rc

vc/DRc

dqq
J1

2sqRcdJ0
6sqRcd

f1 + AJ0
2sqRcdg4 , sD6d

whereA,vc/D. We see that the integral is dominated by the
momenta close toQn, each peak contributing,Rc

−2Qn
1/2A−7/2,

so that the total result

I II−1 ~
1

Rc
2o

n

Qn
1/2Svc

D
D−7/2

,
1

Rc
2S D

vc
D7/2E

1

vc/D

dQQ1/2 ,
1

Rc
2S D

vc
D2

sD7d

is determined by the upper limit whereAJ1
2sqRcd,1.

Similarly, we estimate the second term inI II , Eq. (D4),

I II−2 ~ S D

vc
D2E

1/Rc

vc/DRc

dqq
J1

2sqRcdJ0
2sqRcd

f1 + AJ0
2sqRcdg4

,
1

Rc
2S D

vc
D9/2E

1

vc/D

dQQ3/2 ,
1

Rc
2S D

vc
D2

, sD8d

yielding the result of the same order as for Eq.(D3), since
both integrals are dominated by the upper limit. We note that
for this reason the same estimate can be obtained by replac-
ing J0

2sqRcd ,J1
2sqRcd by spqRcd−1 The two termsI II−1 and

I II−2 give contributions of the opposite signs to the drag
resistivity, since Os1/qRcd↔GisBd=Gis−Bd, while
OsD /vcd↔G'sBd=−G's−Bd.

Estimating other terms, we obtain

I I ,
1

a2Rc
2S D

vc
D4E

Qmin

1 dQ

Q
=

1

a2Rc
2S D

vc
D4

ln Qmin, sD9d

I II ,
1

a2Rc
2S D

vc
D7/2E

1

vc/D

dQQ1/2 ,
1

a2Rc
2S D

vc
D2

,

sD10d

I III ,
1

a2Rc
2S D

vc
D2E

vc/D

Rc/a dQ

Q
=

1

a2Rc
2S D

vc
D2

lnSRcD

avc
D ,

sD11d

where in the diffusive termI I the momentum integration
is restricted from below by Qmin=Rcsv /k0aDd1/2

,RcsT/k0aDd1/2. This infrared cutoff is necessary, since the
momentum integral diverges logarithmically at smallq in the
diffusive regime, when Eqs.(48) and (34) are used for the
interlayer interaction. The divergence is naturally cured
when the general formula(47) is employed together with Eq.
(34).
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Thus we conclude that at low temperaturesT!D the total
integral is dominated by the contribution of high momenta
I III

I I + I II + I III . I III =
1

2p3a2Rc
2 lnSRcD

avc
D

3H 16

vcD
2sm − ENdfD2 − sm − ENd2gJ

1

3H 16

vcD
2sm − ENdfD2 − sm − ENd2gJ

2
,

sD12d

resulting in Eq.(70).
In the case of higher temperatures,D!T!vc, the main

difference is related to the fact that the contribution of a
single LL to the polarization operator is thermally smeared,
yielding an extra factor,D /T as compared to the second
term of Eq.(51), as follows from Eq.(54). This changes the
upper(lower) limit of integration in I II sI III d whereD should
be replaced byT. Furthermore, inI II one should replace
vc/D by vc/T in the factor related to the screening, which is
equivalent to multiplyingA by D /T in Eqs. (D6) and (D8).
This yields

I II ,
1

a2Rc
2S T

vc
D2

, sD13d

I III =
1

a2Rc
2S D

vc
D2

lnSRcT

avc
D . sD14d

We see that forD,T,vc the contribution of theGs1/qRcd

term to the momentum integral increases faster than that of

the GsD/vcd term. To evaluate this contribution more accu-
rately, we consider the corresponding momentum integral in
the whole range ofq and include the imaginary part of
Psq ,vd into the screening(for simplicity we consider iden-
tical layers)

Isvd = H16D2

T2 PS v

2D
DJ2

sinh2SEN − m

2T
D

3cosh−6SEN − m

2T
DI s1/qRcd, sD15d

I s1/qRcd . E
1/Rc

` dq

2p
S q

sinhqa
D2

3
qJ1

2sqRcdJ0
6sqRcd

hf1 + AJ0
2sqRcdg2 + fBJ0

2sqRcdg2j2 , sD16d

wherePsxd is defined in Eq.(85) and

A =
2vc

pT
Qsv/2Ddcosh−2SEN − m

2T
D , sD17d

B =
2vc

pT

v

2D
Hsv/2Ddcosh−2SEN − m

2T
D , sD18d

according to Eqs.(54) and (56). The functionsQsxd and
Hsxd are presented in Fig. 13.

From the above estimates we know that the momentum
integral is determined byq,vc/TRc@1/Rc. This holds pro-
vided A,B@1, i.e., for coshsfEN−mg /2Td! svc/Td1/2. On
the other hand,vc/TRc!1/a in the ballistic regime. In this
case, we can setq2/sinh2 qa=1/a2 in Eq. (D16) and set the
lower integration limit toq=0. Separating the fast and slow
variables in Eq.(D16), we get[J1sznd=0, zn.pn+p /4]

I s1/qRcd .
1

2pa2Rc
2o

n=0
znS 2

pzn
D4E

0

p

df
sin2 f cos6 f

hf1 + s2A/pzndcos2 fg2 + fs2B/pzndcos2 fg2j2

.
2

p3a2Rc
2E

0

p

dfsin2 f cos2 fE
0

`

dz
z

hfz+ Ag2 + B2j2

=
1

8p2a2Rc
2B2H1 −

A

uBuFp

2
− arctan

A

uBuGJ =
1

32a2Rc
2S T

vc
D2

cosh4SEN − m

2T
DWsv/2Dd, sD19d

FIG. 13. FunctionsQsxd [Eq. (55)] andHsxd [Eq. (57)], and the productP2sxdWsxd—Eqs.(84) and (D20), determining the frequency
dependence of the “inelastic kernal”Isvd—Eq. (D15).
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Wsxd =
1

x2H2sxdH1 −
Qsxd

uxuHsxdFp

2
− arctan

Qsxd
uxuH sxdGJ . sD20d

Substituting this result into Eq.(D15) and integrating the obtainedIsvd over frequency according to Eq.(67), we arrive at Eq.
(83) of the main text.
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burg, Russia.
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burg, Russia.
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