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Ground-state phases in spin-crossover chains
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Spin-crossover molecules having a low-spin ground state and a low-lying excited high-spin state are prom-
ising components for molecular electronics. We theoretically examine one-dimensional spin-crossover chain
molecules of the type of F&triazole complexes. The existence of the additional low-spin/high-spin degree of
freedom leads to rich behavior already in the ground state. We obtain the complete ground-state phase diagram,
taking into account an elastic nearest-neighbor interaction, a ferromagnetic or antiferromagnetic exchange
interaction between the magnetic ions, and an external magnetic field. Ground-state energies are calculated
with high numerical precision using the density-matrix renormalization group. Besides pure low-spin, high-
spin, and alternating low-spin/high-spin phases we obtain a number of periodic ground states with longer
periods, which we discuss in detail. For example, for antiferromagnetic coupling there exists a dimer phase
with a magnetic unit cell containing two high-spin ions forming a spin singlet and a single low-spin ion, which
is stabilized by the energy gain for singlet formation.
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[. INTRODUCTION neticLS state(§ s=0) the low spins are essentially switched
off. These SCCs are thus related to site-diluted spin
One of the most active fields of materials science tomodels!>~"but in our case the presence or absence of a spin
emerge in recent yearsrisolecular electronicd?which pro-  is adynamicalvariable and not a type of quenched disorder.
poses to use individual molecules as electronic componentalso related are recent studies of magnetic models with mo-
Arelated idea is to use a single quantum spin, say of an iorbile vacancie® and of insulating phases of atoms with spin
to store information. Kahn and co-workérshave empha- in optical latticest? We show below that there is also a close
sized thatspin-crossover compourfdd® (SCCs are particu-  relation to finite antiferromagnetic spin chains.
larly promising for molecular memory devices. These com- Antiferromagnetic spin chains have attracted a lot of in-
pounds consist of complexes involving transition-metal iongerest since Haldanein the meantime firmly establishpd
and organic ligand4:1° The magnetic ions can be either in a conjecture of a fundamental difference betwd@otropio
low-spin (LS) or high-spin(HS) state, i.e., for the spin op- half-integer and integer quantum spin chafhamong other
eratorS; at sitei the eigenvalues d§-S areS§ s(Ss+1) and  things, the latter always show an excitation gap, while the
Sis(Systl) in the LS and HS state, respectively. The energyformer are critical. The valence-bond-solid mod@KLT
difference between HS and LS states is due to the competimode),?! in which each spin of lengtls is replaced by 8
tion between the crystal field splitting, which prefers doublyfully symmetrized spin-1/2 objects that are then linked by
occupiedd orbitals and, hence, LS, and Hund’s first rule, singlet bonds between sites, was found to explain all main
which favors the HS state1%n SCCs the LS state is the features of integer quantum spin chains. One peculiarity of
ground state and the HS state is at a mode(dterma)  the AKLT model is that at each end openspin chainsS of
excitation energy. SCCs show a characteristic crossover froriie spin-1/2 objects find no singlet partner and form a free
the LS ground state to dominantly HS behavior at higherspin S/2. For integer spins this leads in the AKLT model for
temperaturésdue to the higher degeneracy of the HS stateevenchain lengths to §2(S/2)+1]?=(S+1)%fold degener-
This crossover is typically sharper than expected for noninate ground state instead of the nondegenerate ground state
teracting magnetic ions and is even replaced by a first-ordeound for periodic boundary conditions. This observation
transition in several compounds'® Spin-crossover phenom- carries over to antiferromagnetic Heisenberg chains. There,
ena are also observed in organic raditaisd certain inor- one finds a group ofS+1)? low-lying states that become
ganic transition-metal compounéfs. degenerate exponentially fast for long open chains. The low-
Of the large number of known SCCs some naturally formest lying of these states has total spin 0; above this state there
one-dimensional chains, for example?Favith 4-R-1,2,4-  follows a spin-1 triplet, etc. The maximum total spin in this
triazole ligands:3 Three ligands form bridges between two group of states is given By and is concentrated at the edges.
adjacent iron ions. Other SCCs consist of two-dimensionalhe lowest-lying excitation above them is a true bulk
layers, for example TIS€00;.114 excitation and corresponds to the lowest-lying state with
Besides possible applicatiofi$,SCCs are also interesting M=S+1. This phenomenon has been observed
from a statistical-physics point of view. Compared to con-experimentall$? and generates a wealth of low-lying exci-
ventional local-moment systems they introduce an additionafations if there are segments of spin chains of various lengths
Ising degree of freedon;, which destinguishes between the like in SCCs withS s=0. Foroddchain lengths, the situation
LS (oy=+1) and HS(o;=-1) states. In the case ofthamag- is different as the lowest-lying states of the magnetization
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sectorsM < S are strictly degenerate both in the AKLT and served, leading to ferrimagnetic order at room temperature.
Heisenberg models. However, the ground state of the mag- The full HamiltonianH commutes with the operators
netizationS+1 sector again contains the lowest-lying bulk S;-S;. Thus the total spimat each sitds a constant of motion.
excitation. This observation points to a special role of mag-On the other handy does no longer commute wit. In the
netizationM =S, as will be seen throughout this paper. case of F&, which is the most common magnetic ion in

In the present paper we focus on the ground-state propeSCCs, we hav&,s=2 andS =0 and a significant simplifi-
ties of one-dimensional SCCs, for which we obtain esseneation ensues, since any low spin partitions the chain into
tially exact results. In particular, we treat the case of a diafinite segments that do not interaoagnetically Thus there
magnetic LS state appropriate for 2Feions. We mostly is a close relation to the physics of finite spin chains. In more
consider antiferromagnetic coupling between the spins, than one dimensiof§ s=0 leads to a less trivial percolation
which is probably the more common situation. problem—for long-range order to be present it is necessary
for the high spins to percolate.

In the following we restrict ourselves t§ s=0. The
Hamiltonian can be written as

H=-VX (0101, D =BoX (0= D =32 S-Sy

Il. THEORY

We start from the Hamiltoni&d

Ho=-V> ai0; - By, i - hE g. (1)

(i i
The sum overij) counts all nearest-neighbor bonds once

and the eigenvalues & arem=-5,-S+1,... .S, where  where we have added a constant so that the energy of the
S=Ss (S49) for 0;=1 (-1). V describes an interaction that pure LS state vanishes. The Ising operatgrsll commute

for V>0 (V<0) favors homogeneouglternating arrange-  with the HamiltonianH. Their eigenvalues are thus good
ments of LS and HS. At least in a subset of known SCCs thiguantum numbers and the Hilbert space is a direct product of
interaction is ofelastic origin®* and can be of either sigit.  subspaces for givef.. 0,054, ...}.%°

We approximate this interaction by a nearest-neighbor term. In each sectoK...,oi,0.1,...} the system consists of
2B, >0 describes the energy difference between HS and L8hains of high spins separated by chains of low spins. The
andh is the physical magnetic field with factor and Bohr  pure HS and LS states are obtained as the obvious limits.
magneton absorbetl, is diagonal in the basis of eigenstates Since the LS chains do not contribute to the energy, the total

-hX §, @)

of all S-S and§. In this basi$® energy in a sector can be written as a sum over the energies
of HS chains of various lengths, including a contribution
Ho=-V2 gi0j ~ Bo2. 07 - hz . (20 from their ends. These HS chains do not interact magneti-
I

Y ! cally sinceS s=0.
For h=0 we reobtain the Ising-type model introduced by We are interested in the ground state and thus consider the
Wajnflasz and Pic¥ for magnetic molecular compounds and lowestenergy in each sector. The lowest energy in a sector
by Doniaci#” for lipidic chains. Here, each site can be in two can be written as the sum over the ground-state energies of
states characterized hy; like in the Ising model, but the noninteracting finite HS chains. Sineecommutes with the
states are degenerate with degeneracBg®l and &5 total spin of each HS chain separately, tieomponentsv
+1.28 The model can be rigorously mapped onto an Isingof the total spins of the finite chains are good quantum num-
model in a temperature-dependent effective f@4é2"-2%nd  bers. Let us denote the lowest energy of a HS chain of length
has been treated in the mean-field approximation and with with magnetic quantum numbéd by eX(M), where|M|
Monte Carlo simulation8. A related model with next- <=nSys. We write
nearest-neighbor elastic interactions has recently been stud-
ied by Mor?te Carlo simulations and a number of stripe €n(M) = 4V + 2nBy — hM + Aei(M), (5)
phases have been fouffiThe one-dimensional model suit- where the first term comes from the extra energy of the
able for triazole compounds has not been treated before. change from HS to LS at the ends. The final term is the

We are interested in a model with an additional exchanggowest eigenenergy of the finite HS Heisenberg chain with
interaction J#0 between the magnetiC ions. The Hamil- open boundary conditions and the Ham”toniaHn

tonian(1) is generalized to =-J3"1s .S,

H=H,-JX S-S, (&)
€0

whereJ>0 (J<O0) corresponds to a ferromagnetantifer-
romagneti¢ coupling between the spind has not been mea-
sured in SCCs, but it has been determined in similar metal- For ferromagnetic coupling)>0, and magnetic fieldh
organic complexes|J|/kg is typically of the order of >0 boththe exchange interaction and the Zeeman term favor
10-20 K and is antiferromagnefi®;3?as expected for a ki- ferromagnetic alignment. The lowest-energy state thus has
netic superexchange interacti¥hin compounds based on the maximum magnetic quantum numbd=nS,g for each
Prussian blue, larger exchange interactions have been obhain. ForJ=0 we haveAe(nS;9)=—-(n-1)JS;s and thus

Ill. RESULTS AND DISCUSSION

A. Ferromagnetic coupling
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ed(NSye) =4V+2nBy— nhSs- (N-1)IFs.  (6)

Now let us consider a sectdr..,o;,0i,1, ...} for which the
state consists ofolume fractions pof HS chains of length

n. The HS chains have to be separated by at least one lov
spin. When counting this low spin with each HS chain, the

volume fractions becomé+1)/np, They must satisfy the
constraint

§n+1 <1
<~ Prh=1.

(7

The energy per site is

0
=3 pnw

n n

4V +J
=> pn<+§'S+ZBo-hS45-JSis>- (8)
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FIG. 1. (Color onling The lowest energiedeX(M)/|J| of anti-
ferromagnetic Heisenberg chains of lengthfor spin S4s=2 in
sectors with open boundary conditions for fixed tdg&lquantum
numberM. The energies are normalized by a factofri/1) and

We have to solve the linear optimization problem of mini- shown as a function of 1+1), wheren+1 is the period of the

mizing e, under the constrain{7). In the space of vectors
(p1,P2, ---) the region allowed by EqZ7) is a hyperpyramid
with apex at zero and the other corners at points with
=m/(m+1) for one m and p,=0 for n#m. These are the

LS/HS pattern. Circles: Results from exact Lanczos diagonaliza-
tion. Squares: Results from DMRG. Equal colors correspond to
equalM. For oddn the energies foM=0, 1, and 2 are degenerate,
as noted in Sec. I. The cross afti+1)=0 denotes the extrapolated

points for which only chains of one single length are presengnerdy density —4.761248 of an infinite chain(see Ref. 3f
and have the maximum volume fraction. This means that the

finite HS chains are separated singlelow spins. Since the

with any magnetic quantum numbkt. The energyeX(M) of

allowed region is convex, the only possible solutions are itsuch a chain is given by E¢5). We introduce volume frac-
corners, except for special choices of parameters. Thus eith&ons p,, ), of HS chains of lengtm with magnetic quantum

p,=0 for all n (LS state or p,,=m/(m+1) for onem and all
otherp,=0. For the LS state we hawg=0, whereas for the
state with nonzer@,,

4V -2By+ 205+ hSys
- n+1

+ 2By - hSys—I%s. (9)

€0

Examination shows that there are only three possible phases:

(i) If 4V-2By+2)F,s+hSs>0 and By—hS;5-IF,s>0 or
4V-2By+2)Fs+hSis<0 and /+By—hSg/2>0 the
ground state is the LS statéi) If 4V-2By+2F,s+hS;s
>0 and ZBO—hS43—J§r|3<O the ground state has, >0 and
all other p,,=0, for n—o, which corresponds to the HS
state, and the energy 5)=ZBO—hS4S—J§,S. Note that the
HS state appears for any values\6fand h for sufficiently
large exchange interactiod. This is reminicent of the

numberM. They must satisfy the constraint

» NS5

n+1
E 2 Pov < 1. (10
n=1M=-n§g

The energy per site is

4V - hM + AeX(M)
€=, pn,M( N . + 250)- (17
n,M

The ground state for certain parameter values is determined
by the minimum ofey under the constrair{fL0). This is again

a linear optimization problem. Except for accidental degen-

eracies, the minima occur at the corners of the allowed pa-
rameter region. Thus eithex, ,=0 for all (n,M) (LS state

exchange-induced Van-Vleck ferromagnetism in rare-earti®r p,m=n/(n+1) for one (n,M) andp, =0 for all others.

compounds$® (jii) If 4V-2B,+2JF¢+hSis<0 and &/

+By—hS;s/2<0 the ground state hgg=1/2 and allother
pPm=0. This corresponds to azlternating state of low and
high spins. The energy ig=2V+By—hS;s/2. By using the

LS/HS splittingB, as our unit of energy, we obtain the phase

diagram inV/By, h/By, andJ/By shown as the=0 part of
Fig. 8, below.

B. Antiferromagnetic coupling

In the case of antiferromagnetic coupliigy 0, there is a

In the latter case the energy per site is

_ 4V -2By—hM + Ae)(M) N
- n+1

€ ZBO . (12)

A€X(M)/|J] is the lowest energy of the finite antiferromag-
netic Heisenberg chain with open boundary conditions and
the HamiltonianH/ =[S+ S, in the sector with total?
quantum numbeM. It is not possible to find these energies
in analytical form. For sufficiently smai, the Hamiltonian

H;, can be diagonalized numerically. We have calculated the

competition between the exchange and Zeeman terms in Egnergies up ta1=8 for all M using the Lanczos algorithm.

(4). Thus in principle finite HS chains of lengthcan occur

The results forAed(M)/|J|/(n+1) are shown in Fig. 1 as
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and, hence, no end spins are attached. The energies for
lengthsn=9 throgzghn:49 as well amn=99 are shown in
0000 | Fig. 1 by square$:
We first consider the case @hnishing magnetic fieJch
=0. Figure 1 shows that the state with=0 has the lowest
- energy for anyn. Then ey=[4V-2By+Ae(0)]/(n+1)+2B,
is a sum ofAeﬂ(O)/(n+ 1) and alinear function in 1/n+1).
The minimum of ¢ can only occur forn=1, n=2, or n
— o0, since all other points lie above the dotted straight lines

connecting the corresponding points in Fig(ribt obvious
$?$? | on this scalg The relevant energies per site are thus deter-
singlet mined by Aed/2=0, A€)/3=2], and lim, .. Aed/(n+1)
h=0 =4.7612483 and have to be compared to the LS eneegy
-1 ! s I : =0. The resulting phase diagram is shown in Fig. 2. Note the

appearance of dimer(n=2) phase. In this phase the energy
increase due to the HS-HS paiié< 0 favors HS-LS neigh-
FIG. 2. (Color online Ground-state phase diagram of the one- bOr9 is overcompensated by the large negative singlet for-
dimensional1D) spin-crossover model wit s=0 andS,s=2 for ~ Mation energy of Heisenberg spin pairs.
vanishing magnetic fielch=0, and antiferromagnetic exchange in-  For general magnetic field ve have to take all possible
teraction,J<<0. The dimer(n=2) phase case is highlighted. The magnetic quantum numbefd of the chains into account.
heavy solid lines denote discontinuous transitions. The various spiithis is obviously impossible for the pure HS phase. Instead,
structures are indicated by cartoosslid symbols: HS state, open we have performed DMRG calculations for chain length
symbols: LS state these should not be overinterpreted—there is no=99 for all possible magnetizatiod=0,...,198 and use
magnetic long-range order. them as a caricature of the HS state. The resulting errors are
discussed below.
colored circles, where identical colors denote the same val- For each set of parametefg/By,J/By,h/B;) we calcu-
ues ofM. late the minimum energy densities for all states wits 49
The energies for longer chains can be calculated with exas well an=99 from Eq.(12). The energy density of the LS
cellent precision with a finite-chain density-matrix renormal-state is zero. Then the ground state is obtained by finding the
ization group(DMRG) algorithm?7-38for a detailed explana- minimum energy. Figure 3 shows a series of phase diagrams
tion of the algorithm and its applications see Refs. 39 and 40ior fixed exchange interactiah Note that the lower edges of
To obtain typically seven-digit precision for the ground stateeach diagram, i.eh=0, are consistent with Fig. 2. We ob-
energy per site, we have kept up k=300 states in the serve that the dimefn=2) phase present &t=0 is sup-
reduced DMRG Hilbert spaces and carried out three finitepressed by the field, as is expected since this phase is stabi-
system sweeps which was enough to ensure convergendeed by the singlet formation energy.
Note that DMRG prefers open to periodic boundary condi- For J=<-0.6 the phase diagrams remain qualitatively the
tions. In standard DMRG applications to integer-spin chainssame. The features are shifted to loweand expanded lin-
end spins of lengtl$/2 (a spin 1 at each end for our casee  early in both the/ andh directions. LettingV, J, andh go to
attached to eliminate the peculiar boundary degrees of fregnfinity while keeping their ratios fixed corresponds to the
dom and access bulk physics directly! In the present cal- limit B,— 0, i.e., vanishing energy difference between LS
culation, these boundary degrees of freedom are physicaind HS states. In this limit we choosd as our unit of

VIB,

20

1o FIG. 3. Zero-temperature phase diagrams for

the same model as in Fig. 2, but in a magnetic
field, for antiferromagnetic exchange interactions
J/By=0.0,-0.2,-0.4,-0.41,-0.42,-0.6. The
white area corresponds to the LS phase, the black
to the HS phase, approximated by a phase with
n=99, and the gray areas correspond o
=1,2,3,5(from light to darK. All transition are
discontinuous, the purely magnetic continuous
transition discussed below is not shown.

h/By
po
(==Y

1.0

0.0

K VB, X
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2.0

1.5 —
>
= <
-~ 1.0
<~
0.5
-3.0 =20 -1.0 -3.0 -2.0 -1.0
VI
0.0
-35 -30 -25 =20 -15 -10 FIG. 5. Left: Density plot of the magnetic quantum numivr
(a) V/IJI of the finite chains in the same parameter region as in Ra. 4

Black corresponds t¥ =0, white to maximunM. The phases with
odd n all have M=2. Right: Magnetizatiorm=M/(n+1) derived
from the data in the left plot. Blackwhite) corresponds tan=0
(m=1). The magnetization of the fully polarized HS state, which
does not appear in the plot, would be=S;5=2.

C. Magnetic properties

We now discuss the magnetic properties in more detail. In
the ferromagnetic case all high spins are fully aligned with a
nonzero magnetic field. For the antiferromagnetic case Fig.
5 shows the magnetic quantum numiérof the finite HS
chains and the magnetization in the ground states in the
2510 2.08 —2.06 —2.04 —2.02 —2.00 limit of large V, J, h. The magnetization is defined as the

(b) VI magnetic quantum _numbeM divided _by the period,
m=M/(n+1). Interestingly, the phases with oddall have

FIG. 4. (a) Zero-temperature phase diagrams as in Fig. 3 in theM =S4s=2, including then=7 andn=9 phases not resolved
limit By— 0 (or V,J,h— o with their ratios fixed. The gray scaleis in Fig. 5. This of course corresponds to differemagnetiza-
the same as in Fig. 3b) Enlargement of the left figure ondiffer- ~ tions m To understand the special significance of the value
ent gray scale The values ofn in the various ground states are M=S,g, we plot in Fig. 6 the local expectation values of the
indicated. spins,(S), for each site of a HS chain of length=9, ob-

tained with DMRG. The plot shows that for<OM < S5 the

oddchain can accomodate the finite spin by forming a Néel-
energy, leaving two dimensionless paramet®fdJ| and  type state. For higheM this is no longer possible and spins
h/|J|. The resulting phase diagram is shown in Fig. 4. pointing in the “wrong” direction are reducedd bulk mag-

Interesting behavior is seen in the triangular region surnon is excitegl Due to the cost in exchange energy such
rounded by phases with=1, n=2, and the HS phase, as states are always higher in energy than competing phases.
shown in Fig. 4b). Here, phases with HS chain lengths Compare also the discussion in Sec. I.
n=3, 5, 7, and 9 are found. We do not observe any further

0.30

phases. To understand why omigld nappear, we refer to the R ' ' ' ' ' iy
energy densities in Fig. 1: The energy of the singht=0) .\’4_\/,
state islower for evenn than expected from a linear fit, at \ /
least for the smaln relevant here, while for oda it is L 5" by
higher. Thus at zero magnetic field, everstates are pre- LR =2
ferred. On the other hand, the energy of states Witk 2 is g M=3
higherfor evenn than a linear fit, while for odd it is lower. = o ot
Thus in a sufficiently large magnetic field oddstates are 8 =
preferred. The fact that the series of aulgs cutoff atn=9 is — =2
a result of the detailed numerical values of energies in — M-l
Fig. 1—for largern, the HS state happens to have the lower M=13
energy. While we expect the appearance of only odd HS L _.M=1“9

chain lengths to be a robust feature of spin-crossover chains
with strong antiferromagnetic interaction, the restriction to
n<9 should thus be model dependent. For example, inclu- FIG. 6. (Color onling Local expectation valuesS) from
sion of a next-nearest-neighbor elastic interaction or a differbMRG for each site of a HS chain of lengtt¥ 9 for various total
ent integer value 08,5 may change this result. magnetic quantum numbers of the chdih,

position i
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The dimer(n=2) phase always consists of singleid,
=0. This shows that it is energetically favorable to replace
the dimer state by a state with oddr the HS state, instead
of havingM >0 for the dimers.

Finally, we turn to the pure HS phase. A0 the system
is equivalent to an infinite antiferromagnetss=S;g chain.
We thus expect the magnetization to rise continuously with ’ |,~-,1,,'f5’
increasing magnetic field and to reach its maximum value .
m=S,s, i.e., full spin alignment, at econtinuousphase .
transition. Since we approximate the HS phase by the /M=2 B
n=99 phase, the continuous increase is replaced by 1f — N
small steps. The position of this transition is determined “\ . s n =_994
by equating the energies per site fM=nS;5 and M e Pl . ! . -] n .
=nSys—1. From Eq.(12) we thus obtain the critical field 0 S(I)na Hetic ua;l‘:gm numbe”};‘) 200
h.=Aed(2n)-Ae2(2n- 1), which is proportional ta) and in- gnetie d
dependent ofB, and V. For n=99 exact diagonalization FIG. 7. (Color onling Expectation value of the component of
yields h,~-7.9980, compared to the exact result for an the spins(S), and spin-spin correlation functions at the separation
infinite chain,h,=-4JS;5=-8J. To find the critical behavior of |i-j|=4 as functions of the total magnetic quantum numider
close to this transition we define the deviation of the magnefor chain lengt=99. Inset: Correlation functio(§" ;) as a func-
tization from its maximum byAm= S,s—m. PlottingAn? vs  tion of separation for three values of the total magnetic quantum
h (not shown we find thatAn¥ is linear inh,—h so that the  numberM.
critical exponent of Am with respect to the fieldh is
mean-field-like,3=1/2. spins close to the center of the chain, where the infinite chain

The previous discussion shows that by restricting theshould be well approximated. We first notice the anomaly at
DMRG calculations ton< 100 we make an error for the M=2. This is of the same origin as the stabilization of
transition to full spin alignment of the order of 0.03%. As M=2 for small odd chain lengths, discussed above. It is thus
another way to estimate the errors, we have determined th finite-size effect not present for the true HS phase. Apart
triple point between LS, HS, and dimer phases in zero fieldrom this anomaly, theransversecorrelations(S'S)) first
and compared the result to the “exact” triple point shown ingrow with magnetic fieldh or magnetization. This is the
Fig. 2. The error is of the order of 0.2% f&f and 0.1% one-dimensional analog of the spin-flop state in ordered an-
for J. tiferromagnets, where the staggered magnetization is ori-

We also obtain spin correlations from the DMRG. Figureented perpendicularly to the applied field. For large fields,

7 shows spin-spin correlation functions fo=99 for two  the correlations decrease again since the spins are more and

V/B,

-3 =2 =1 0 1

FIG. 8. (Color onling Zero-temperature
phase diagram of the spin-crossover chain with
Ss=0 and Sys=2. Positive (negative J corre-
sponds to ferromagneti@ntiferromagnetic ex-
change interactionvV denotes the elastic interac-
tion, h the applied magnetic field in units of
energy, and By is the energy difference between
HS and LS states in the absence of interactions.
The solid surfaces denote phase transitions be-
tween different phases, which are indicated. The
phases with HS chain lengtins=3,5,. .. arehid-
den in this view. All transitions are discontinuous,
except for the continuous transition to full spin
alignment in the HS phase, shown as the mono-
chrome(blue) surface.

Og/r

—_—
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more forced into the field direction. In the fully polarized high spins separated by single low spins. Since this phase
state forh=h; the transverse fluctuations vanish. appears at zero and low magnetic fields, it should be acces-
sible experimentally. As the magnetic field is increased, the
dimers remain in the singlet state until states with an odd
_ _ number of HS ions or the pure HS state become lower in
To conclude, we have studied a model for spin-crossovegnergy, whereupon the dimer phase is destroyed in a discon-
compounds forming one-dimensional chains. We considefinyous transition. At higher magnetic fields we find a num-
spin quantum numbers appropriate fofFiens, which have e of phases consisting of finite chains of length
a spin-0 LS and a spin-2 HS state. The model includes elastic3 5 7 9 of HSions with total & quantum numbeM =2
and exchange interactions and an applied magnetic field. Thesparated by single LS ions. We suggest that the succession
most important effect left out here is probably the dipole-of odd chain lengths is a general feature of spin-crossover
dipole interaction, which is of long range for an isolated ;pains.
chain, but becomes screened if the chain is deposited on a \e thus find that a model that contains the most important
conducting substrate. We obtain the ground-state phase d'ﬁfrgredients of one-dimensional spin-crossover systems
gram analytically for ferromagnetic or zero exchange intershows a rich ground-state phase diagram. The model is re-
action and using the DMRG for antiferromagnetic exchangejated to various systems studied in recent years, such as site-
As a summary, Fig. 8 shows the full phase diagram. Theyjjyted spin models and finite antiferromagnetic Heisenberg
continuous transition to full spin alignment is indicated by chains. Questions for the future concern the behavior at non-
the solid blue surface. All other surfaces are discontinuouserq temperature and of higher-dimensional models, in
transitions between states with different chain lengthlori-  \yhich percolation plays an important role. New physics

zontal cuts correspond to the plots in Fig. 3, the vertical cUtomes into play since the dilution by LS ions is not quenched
ath=0 to Fig. 2. Besides a diamagnetic LS phase and a Hgjsorder but a dynamical degree of freedom.

phase equivalent to the usual Heisenberg chain we find a
number of more complex phases. For sufficiently negative
elastic interaction/ we find an alternating phase of low and
high spins. In quasi-two-dimensional SCCs the correspond- We would like to thank P. Giitlich, P. J. Jensen, and F. von
ing checkerboard state has been observed experimettally. Oppen for valuable discussions. C.T. thanks the Deutsche

For antiferromagnetic coupling we find a robust dimerForschungsgemeinschaft for support through Sonderfors-
(n=2) phase, which consists of spin singlets formed by twochungsbereich 290.
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