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Low-temperature transport through molecules with effectively negative charging energy U exhibits a charge-
Kondo effect. We explore this regime analytically by establishing an exact mapping between the negative-U
and the positive-U Anderson models, which is suitable for the description of nonequilibrium transport. We
employ this mapping to demonstrate the intimate relation between nonequilibrium transport in the spin-Kondo
and charge-Kondo regimes, and derive analytical expressions for the nonlinear current-voltage characteristics
as well as the shot noise in the latter regime. Applying the mapping in the opposite direction, we elucidate the
finding of super-Poissonian noise in the positive-U Anderson model at high temperatures, by relating the
correlations between spin flips to pair-tunneling processes at negative U.
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I. INTRODUCTION

Recently, several theoretical studies have substantiated
that transport through single molecules may realize the sce-
nario of an Anderson model with negative charging energy
U.1–6 Such negative-U centers were originally introduced by
Anderson to explain the magnetic properties of amorphous
semiconductors.7 In recent years, there has been additional
interest in attractive on-site interactions due to impurities in
tunneling junctions between two superconductors.8,9

In molecules, negative U has been predicted to originate
from a strong coupling of the electronic orbital �d of the
molecule to the molecular vibrations, causing a large down-
ward renormalization of the charging energy.1–6 In chemistry,
this phenomenon is known as “potential inversion,” and has
been confirmed for a variety of molecules in solutions.10 As-
suming that real excitation of the molecular vibrations is
energetically not allowed, transport is described by an Ander-
son model

H = �d�
�

d�
†d� + Und↑nd↓ + �

ak�

��ak − eVa�cak�
† cak�

+ �
ak�

�takcak�
† d� + H . c . � , �1�

with an effectively attractive on-site interaction U�0. Tun-
neling of electrons between the molecule and the left �right�
electrode with amplitude ta=L,k �ta=R,k� is driven by the ap-
plied bias V=VL−VR. Since only energies in the vicinity of
the Fermi energy are relevant to transport, we assume the
hopping amplitudes ta independent of k, and a linear disper-
sion relation �ak.

As a result of the attractive interaction, the system favors
even electronic occupation numbers and may develop a de-
generacy between two even-number charge states.11 At high
temperatures, finite-bias transport in the vicinity of this de-
generacy point is accomplished by tunneling of electron
pairs. In Ref. 6, two of us have demonstrated that this pair-
tunneling regime can be addressed analytically, and mani-
fests itself in distinct features in the linear conductance as
well as in the nonlinear current-voltage characteristic �IV�. In

the low-temperature regime T�TK, the degeneracy between
the two charge states induces electronic correlations and
leads to a charge-Kondo effect.12 To date, studies of transport
in this regime have focused on numerical calculations of the
linear conductance.3–5

The central goal of the present paper is to develop an
analytical treatment of linear and nonlinear transport in the
charge-Kondo regime. We achieve this by establishing a one-
to-one mapping between the negative-U and the conven-
tional �positive-U� Anderson model, which we term particle-
hole/left-right �PHLR� transformation. The particle-hole
transformation forming the first part of this mapping was
introduced by Iche and Zawadowski,13 and further elucidated
by Haldane.14 This mapping converts between spin and
charge degrees of freedom of both the localized level and the
leads. For this reason, this mapping by itself is not well
suited for a description of nonequilibrium transport. We
show that a subsequent left-right transformation eliminates
this problem and the resulting combined mapping inter-
changes charge and spin degrees of freedom of the localized
level only. We demonstrate that this allows for a transparent
and analytical investigation of transport in the charge-Kondo
regime based upon well-known results15 for the conventional
spin-Kondo effect.

New physical insight can also be gained by exploiting the
PHLR transformation in the opposite direction, i.e., translat-
ing from the negative-U to the conventional Anderson
model. For negative-U, pair-tunneling processes make it
natural to expect super-Poissonian current noise and we
present results for the detailed noise characteristics in this
regime. The PHLR mapping then implies that Fano factors
F�1 must also occur in the positive-U Anderson model,
where this result is surprising at first sight. We show that this
noise enhancement can be traced back to the influence of a
local Zeeman field �which is generated by the mapping�. This
Zeeman field induces correlations between consecutive spin-
flip processes.

The presentation of our results is organized as follows. In
Sec. II we introduce the PHLR mapping, which allows us to
translate between positive and negative U, and serves as the
central tool in our subsequent considerations. Results for the
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noise in the pair-tunneling regime at high temperatures are
presented in Sec. III, and using the mapping we investigate
its relation to super-Poissonian noise at positive U. The op-
posite mapping direction, i.e., from positive to negative U, is
employed in Sec. IV to obtain results for transport in the
charge-Kondo regime. A summary and discussion of our re-
sults are given in Sec. V. Some additional results on shot
noise in the high-temperature regime of the negative-U
model, which are not necessary for an understanding of the
main text, are relegated to the Appendix.

II. MAPPING BETWEEN THE NEGATIVE-U AND
POSITIVE-U ANDERSON MODELS

The low-temperature physics of the positive-U and the
negative-U Anderson models are intimately related: The
former gives rise to the conventional spin-Kondo effect,16 the
latter exhibits the charge-Kondo effect.12 The essential ingre-
dients for the conventional Kondo effect are �i� a spin-
degenerate localized orbital and �ii� the SU�2� spin symme-
try �including spin-independent hopping amplitudes�. By
close analogy, the central requirements for the charge-Kondo
effect are �i�� degeneracy of two charge states which trans-
form into each other under particle-hole transformation and
�ii�� particle-hole symmetry of the entire system including
the leads.

This close similarity suggests that a transformation inter-
changing spin and charge degrees of freedom and thus con-
verting between SU�2� spin symmetry and particle-hole sym-
metry may serve as a tool for treating both Kondo effects on
the same footing. Indeed, as first established by Iche and
Zawadowski,13 this is accomplished by a particle-hole trans-
formation restricted to one spin direction which maps the
charging energy U into −U.

The interchange of spin and charge degrees of freedom
has several immediate consequences. Tuning the gate voltage
in the negative-U model away from the charge degeneracy
point causes particle-hole symmetry breaking. This breaking
of particle-hole symmetry is mapped into a breaking of
SU�2� spin symmetry in the corresponding positive-U
model. Indeed, the detuning of the gate voltage from the
charge degeneracy point at negative U maps into a local
Zeeman field acting on the localized orbital at positive U.
Thus, unlike the spin-Kondo effect which persists over a
wide range of gate voltages, the charge Kondo effect fully
develops only exactly at the charge degeneracy point. Simi-
larly, the spin symmetry of the negative-U model is mapped
into particle-hole symmetry of the corresponding positive-U
model. In the absence of a real Zeeman field in the original
negative-U model, the positive-U model is thus fixed to the
particle-hole symmetric point �d�=−U� /2. �Here, we denote
quantities belonging to the positive-U model by primes.�
More generally, a real Zeeman field only leads to breaking of
the particle-hole symmetry after the mapping into a positive-
U model. The charge-Kondo effect is thus much less sensi-
tive to �real� Zeeman fields than the spin-Kondo effect.

Accordingly, the central results of the mapping can be
summarized by the following “dictionary”:

�d� = �U + B�/2, U� = − U, B� = 2�d + U , �2�

where B� denotes the local Zeeman field in the positive-U
model. In extension to Eq. �1�, we have also included a pos-
sible Zeeman field B in the negative-U model to emphasize
the complete formal analogy between the two models. How-
ever, in the following we will restrict our considerations to
zero Zeeman field in the original negative-U model. We now
turn to a more detailed derivation of these results, following
Refs. 13 and 14.

Particle-hole transformation. The particle-hole �PH�
transformation is carried out for one of the two spin direc-
tions, and without loss of generality we may choose �=↓.
We define new annihilation and creation operators �, �† by

�d↑ � d↑, �ak↑ � cak↑, �3�

�d↓ � − d↓
†, �ak↓ � ca�−k�↓

† . �4�

It is straightforward to verify that the � operators obey the
usual anticommutation rules. We define the corresponding
number operators by n̄d���d�

† �d� and n̄ak���ak�
† �ak�. From

this, one immediately infers that

nd↑ = n̄d↑, nak↑ = n̄ak↑, �5�

nd↓ = 1 − n̄d↓, nak↓ = 1 − n̄a�−k�↓, �6�

and, in particular

Und↑nd↓ = Un̄d↑ − Un̄d↑n̄d↓. �7�

The latter equation explains the origin of the sign change of
the charging energy, and the emergence of a Zeeman field.
Altogether, the PH transformation maps the original Hamil-
tonian �up to an irrelevant additive constant� to

H̄ =
U

2 �
�

n̄d� − Un̄d↑n̄d↓ + �
ak�

��ak − a�eV/2�n̄ak�

+ �
ak�

�ta�ak�
† �d� + h . c . � + ��d + U/2��n̄d↑ − n̄d↓� .

�8�

Here and in the following, we assume symmetric voltage
splitting between the leads, i.e., Va=aV /2. �For easier nota-
tion, we identify a=L ,R with a= +1,−1.� We have also cho-
sen to measure k with respect to the Fermi momentum kF, so
that �a�−k�=−�ak. Analyzing the resulting expression for the
Hamiltonian, one notes that the Anderson model with nega-
tive U has been mapped into a model with positive U�
=−U, which includes an additional Zeeman field B�. How-
ever, we emphasize that the current through the system,
originally given by

�I� =
e

2	 d

dt
�
ak�

anak�
 , �9�

now takes the form
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�I� =
e

2	 d

dt
�
ak�

a�n̄ak�
 . �10�

The latter equation clearly demonstrates the crucial problem
of the PH transformation when considering nonequilibrium
transport: By the PH mapping, the charge current of the
negative-U model �Eq. �9�� is turned into a spin current in
the conventional Anderson model �Eq. �10��. Moreover, fi-
nite voltages translate into Zeeman field gradients in the
transformed Hamiltonian, see Eq. �8�. As a consequence, the
PH transformation by itself is not a well-suited tool for the
analysis of nonlinear transport.

Left-right transformation. A solution is provided by a left-
right �LR� transformation, performed in addition to the PH
transformation. The LR transformation interchanges the roles
of left and right leads for one spin direction. In the following,
we establish this transformation, and show that for symmet-
ric devices �i.e., symmetric molecule-lead coupling and sym-
metric voltage splitting� the combined PHLR transformation
meets all requirements for a one-to-one mapping suitable for
nonlinear transport.

For later convenience, we first carry out the LR transfor-
mation for general molecule-lead couplings, and only subse-
quently specialize to symmetric devices. The transformation
consists of an interchange of left and right labels for the spin
component previously affected by the particle-hole transfor-
mation, i.e.,

d�� � �d�, cak↑� � �ak↑, �11�

cLk↓� � �Rk↓, cRk↓� � �Lk↓. �12�

This transforms the Hamiltonian H̄ into

H� =
U

2 �
�

nd�� − Und↑� nd↓� + �
ak�

��ak − aeV/2�nak��

+ �
ak�

�ta�� cak�� †d�� + H . c . � + ��d + U/2��nd↑� − nd↓� � ,

�13�

where

ta↑� = ta, tL↓� = tR, tR↓� = tL. �14�

As noted above, primes denote parameters of the positive-U
model, after the combined PHLR transformation. The crucial
point of Eq. �13� is that the bias now affects both spin com-
ponents in the same way, and the current is expressed as

�I� =
e

2	 d

dt
�
ak�

anak�� 
 . �15�

Through the combined PHLR mapping, the charge current of
the negative-U model �Eq. �9�� is thus mapped into a charge
current for the positive-U model.

A. Asymmetric devices in the linear-response regime

A difficulty arising for asymmetric molecule-lead cou-
plings consists of the spin dependence of hopping within the

positive-U model, see Eq. �14�. In this section, we first show
that this complication drops out when restricting to the
linear-response regime.17 Specifically, we show that the con-
ductance of the spin-dependent model H�, Eq. �13�, is iden-
tical to the conductance of an ordinary Anderson model

H� =
U

2 �
�

nd�� − Und↑� nd↓� + �
ak�

��ak − aeV/2�nak��

+ �
ak�

�tacak�� †d�� + H . c . � + ��d + U/2��nd↑� − nd↓� � ,

�16�

obtained from H� by substituting Eq. �14� with the spin-
independent prescription ta�� = ta.

The calculation of the conductance is simplified by invok-
ing a canonical transformation of the lead operators, hence-
forth referred to as Glazman-Raikh transformation for
definiteness.18 Conventionally, i.e., for spin-independent tun-
neling described by H�, this transformation converts the left
and right lead electrons into two channels 	ik� �i=1,2� ac-
cording to

�	1k�

	2k�
� = � c s

− s c
��cRk�

cLk�
� , �17�

where �c ,s�=
�tR,tL�

�ata
2 . This decouples the channel i=2 from the

localized level, and the tunneling term is transformed into

�
k�

�t̃	1k�d� + H . c . � , �18�

where t̃=�ata
2. As a consequence, the current operator can

be expressed in terms of the decoupled channel only,

I = −
i



�
k�

1

t̃
�tLtR	2k�

† d� − H . c . � . �19�

Turning to the case of spin-dependent hopping described by
H�, we find that the extension of the Glazman-Raikh trans-
formation is straightforward, and merely amounts to the in-
troduction of spin dependences ta→ ta�, t̃→ t̃�. The crucial
point in our proof is that for the spin-dependent tunneling
matrix elements given by Eq. �14�, the expressions t̃�

=�ata�
2 and tL�tR� in fact remain spin independent. As a re-

sult, the Glazman-Raikh transformation of H� and H� leads
to the same tunneling terms �Eq. �18�� and current operators
�Eq. �19��, respectively. Employing the Kubo formalism,19

the conductance is expressed in terms of the zero-frequency
current-current correlation function in equilibrium. Since the
Glazman-Raikh transformation of H� and H� leads to the
same expressions for the Hamiltonian and current operators,
the conductances are identical.

We emphasize that these arguments do not apply to the
nonequilibrium case. For finite bias, the different chemical
potentials of the left and right lead prohibit the channel de-
coupling via the Glazman-Raikh transformation.

B. Symmetric devices out of equilibrium

The spin dependence of the tunneling matrix elements Eq.
�14� drops out for symmetric couplings, i.e., when tL= tR we
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recover an ordinary Anderson model after the PHLR trans-
formation. As a result, for symmetric devices we have estab-
lished a one-to-one mapping between transport in the
negative-U model and transport in a conventional Anderson
model, which remains valid beyond the linear response. The
conventional Anderson model contains an additional local
Zeeman field, whose magnitude is determined by the gate-
voltage detuning from the degeneracy point in the negative-
U model. In addition, spin symmetry of the negative-U
model enforces particle-hole symmetry of the positive-U
model, which is thereby fixed to the symmetric point 2�d�
+U�=0. An illustration of the resulting configuration is pro-
vided in Fig. 1. The details of the mapping are summarized
by the “dictionary” in Table I.

III. FROM NEGATIVE TO POSITIVE U: CONSEQUENCES
OF A LOCAL ZEEMAN FIELD

While the principal goal of this paper consists of applying
the PHLR mapping to study transport in the negative-U
model at low temperatures, it is interesting to note that valu-
able insight can also be gained by employing the mapping in
the opposite direction. Specifically, in this section we inves-
tigate the current noise for the positive-U model with local
Zeeman field at high temperatures T�TK.21,22

Within the negative-U model, transport in the high-
temperature regime is accomplished by tunneling of electron

pairs.6 Thus, it is natural to expect super-Poissonian zero-
frequency noise S noise due to electron pairing. A convenient
measure of the effectively transferred charge is given by the
Fano factor F=S /2e � �I��, as demonstrated for Cooper pairs
in superconductors,23,24 and quasiparticles with fractional
charge in the quantum Hall regime.25–27 In Fig. 2, we present
our numerical results for the negative-U model, obtained via
a generalized version of the technique developed by
Korotkov.28 �This formalism is discussed in Ref. 29, and the
computation for the pair-tunneling regime is detailed in the
Appendix.�30 The plot depicts the Fano factor of a symmetric
device at negative U, as a function of gate and bias voltage.
As expected, the transfer of electrons in pairs causes super-
Poissonian noise F�1 in the regime dominated by pair tun-
neling. The fact that the value F=2, naively expected for
electron pairs, is not reached, is explained by the coexistence
of various pair-tunneling processes as well as cotunneling of
single electrons. The Fano factor for a symmetric device
typically reaches its maximum in the vicinity of the cross-
over between the cotunneling and pair-tunneling regimes. In
this region, the phase space for pair tunneling onto the mol-
ecule ��eV /2−�d−U /2� is large compared to the phase
space for tunneling off the molecule ���d+U /2+eV /2�0�,
or vice versa. As a result, one junction dominates the pair
transport with a Fano factor close to 2. A more detailed un-
derstanding of this behavior may be obtained by an analysis

TABLE I. Dictionary for the PHLR mapping between the negative-U model and the conventional Anderson model with additional
Zeeman field. Symbols with �without� primes denote quantities in the positive-U �negative-U� model.

Dot operators Lead operators Dot state Charging energy
Gate voltage

→Zeeman energy
Zeeman energy
→gate voltage

Negative-U
model

d↑, d↓ cak↑, cLk↓, cRk↓ �0�, �↑ �, �↓ �, �↑ ↓ � U�0 �d B

Positive-U
model

d↑�,−d↓�
† cak↑� , cR�−k�↓� †, cL�−k�↓� † �↓ ��, �↑ ↓ ��, �0��, �↑ �� U�=−U�0 B�=2�d+U �d�= �U+B� /2

FIG. 1. �Color online� Illustra-
tion of the mapping between the
negative-U model �a� and the con-
ventional Anderson model �b�
with additional local Zeeman field
B�. All level energies are given as
energies per particle.20 The hori-
zontal dashed line marks the zero-
bias Fermi energy of the leads.
The one-particle energy �d is re-
quired for adding a single electron
to the neutral molecule.
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of the different processes relevant for the charge transfer.
This is demonstrated in the Appendix.

We now turn to the central point of employing the PHLR
transformation, and map our negative-U results to the con-
ventional Anderson model with local Zeeman field. It is
straightforward to obtain the corresponding expressions for
the linear conductance and the nonlinear IV as a function of
the Zeeman field. Remarkably, beyond this the PHLR trans-
formation leads to the conclusion that the current noise be-
comes super-Poissonian in the conventional Anderson
model. This prediction comes as a surprise, since charge
transfer at positive U is essentially comprised of one-particle
processes.

The noise enhancement in the positive-U model can be
traced back to correlations induced by the local Zeeman
field.31 Specifically, the origin of the super-Poissonian noise
lies in the translation of the unidirectional pair tunneling
�i.e., paired electrons are transferred across the same junc-
tion� into the language of the positive-U Anderson model,
see Fig. 3. Applying the PHLR transformation, one finds that
the two consecutive pair processes correspond to two inelas-
tic cotunneling processes: The first process flips the spin
from down to up, the second process flips it back to �=↓. In
both cases, one electron is transferred from the left to the
right lead. The crucial point is that these two processes are
correlated whenever the Zeeman field is nonzero. For B�
�0, a spin flip from �=↓ to �=↑ requires �twice� the Zee-
man energy. The same energy is released for the opposite
spin flip. As a result, the phase space involved in these in-
elastic processes causes one spin flip to be faster than the
other one. The difference of the rates becomes maximal
when the Zeeman field becomes as large as the bias voltage,
B��eV. These correlations cause the enhancement of noise
beyond the Poissonian limit.

IV. FROM POSITIVE TO NEGATIVE U: ANALYTICAL
STUDY OF THE CHARGE-KONDO EFFECT

In this section, we employ the PHLR mapping to study
transport in the negative-U model, both in the poor-man-

scaling regime and the fully developed Kondo regime.

A. The onset of the charge-Kondo effect: Logarithmic
corrections

The degeneracy between the two charge states n=0 and
n=2 in the negative-U Anderson model results in Kondo
correlations at low temperatures.12 For temperatures T�TK,
the development of these correlations is expected to be sig-
naled by logarithmic corrections to the leading-order pertur-
bative results. Here, we exploit the PHLR transformation to
extract the logarithms for the negative-U case from well-
known results in the context of the conventional Anderson
model, see, e.g., Ref. 15.

Specifically, we employ the following chain of transfor-
mations. Our starting point is the negative-U Anderson
model. Applying the PHLR transformation, we obtain a con-
ventional Anderson model with local Zeeman field, Eq. �13�.
Then, a Schrieffer-Wolff transformation is performed.32 Note
that the usual potential scattering term vanishes due to the
particle-hole symmetry of the positive-U model. As usual,
the exchange is approximated by its Fermi-energy value
Jaa�kk�→Jaa�=−8tata� /U within a band of width D and zero
outside. In the linear-response regime, the Hamiltonian may
be further simplified by diagonalizing J= �Jaa�� with eigen-
values 0 and J=−�8/U��a � ta�2, resulting in the one-channel
problem15

HK = �
i

�
k�

�k	ik�
† 	ik� + Js1 · S + B�Sz. �20�

Alternatively, this can be derived by applying the Glazman-
Raikh transformation18 to the Anderson Hamiltonian before
carrying out the Schrieffer-Wolff transformation.

After the mapping of the negative-U problem to the
Kondo Hamiltonian, we are now ready to translate results
from the conventional spin-Kondo effect to the charge-
Kondo scenario of negative U. Employing the Kubo formula,
the conductance for vanishing Zeeman field B�=2�d+U=0
is found to be15

FIG. 2. �Color online� Fano factor as a function of bias and gate
voltage for a symmetric junction with �L=�R=kBT, and with U=
−2103kBT. Super-Poissonian noise reflects the bunching of elec-
trons in pair-tunneling processes.

FIG. 3. �Color online� Relation between �a� the unidirectional
pair-tunneling process for negative U and �b� the inelastic spin-flip
in the conventional Anderson model with local Zeeman field, as
obtained by the PHLR transformation. The phase space available
for the spin-up electron in the initial state is marked in red �dark
gray�.
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G =
2e2

h

4�L�R

��L + �R�2

3�2

16

1

ln2�T/TK�
. �21�

Note that the leading order correctly reproduces the rate-
equations result for the pair-tunneling peak: For T�TK we
have ln�T /TK��1/�J, so that G�24e2�L�R /U2h, in agree-
ment with results in Ref. 6. For decreasing temperature, the
developing Kondo correlations cause a slow logarithmic in-
crease of the peak height value.

Additional corrections affect the tails of the conductance
peak. In the language of the positive-U Anderson model, this
implies considering the situation of a large Zeeman field
B�=2�d+U�kBT. For this limit, a relation similar to Eq.
�21� can be derived,15 namely,

G =
2e2

h

4�L�R

��L + �R�2

�2

16

1

ln2��2�d + U�/TK�
. �22�

This captures the logarithmic corrections to the cotunneling
tails of the conductance peak in the negative-U model.

B. The fully developed charge-Kondo regime

We now turn to the investigation of the fully developed
Kondo regime in the low-temperature limit T�TK and em-
ploy the PHLR transformation to translate between the con-
ventional spin-Kondo effect and the charge-Kondo effect.
Our considerations are based on Nozières’ Fermi-liquid de-
scription of the Kondo fixed-point Hamiltonian,33,34 given by

H = �
k�

�k	k�
† 	k� −

1

��TK
�

k,k��

��
�k + �k�

2
+ �B���	k�

† 	k��

+
�

��2TK
�

k1,k2,k3,k4

	k1↑
† 	k2↑	k3↓

† 	k4↓, �23�

where 	k� annihilates a quasiparticle with energy �k=vFk
and spin �. As shown by Nozières, the fact that the Kondo
resonance is floating on the Fermi sea fixes the parameter
ratio � /� to unity.33,34 The additional � term describes the
effect of a local Zeeman field B� acting on the impurity �as
generated by the PHLR mapping�. We note that the coeffi-
cients � and � take on the values �=�=1, when we interpret
TK in Eq. �23� to be the exact Kondo temperature, as deter-
mined, e.g., from the exact Bethe-ansatz solution,35 i.e., TK

=TK
BA=

�2U��1/2

� e−�U/8�.

1. Linear conductance

Within the Fermi-liquid description, the linear conduc-
tance may be expressed as a function of the scattering phase
shift. As shown by Nozières in Ref. 33, this phase shift de-
pends both on the energy of the incoming particle and on the
quasiparticle distribution, and can be expanded as

�� =
�

2
+

��

TK
−

�n�̄

�TK
+

��B�

TK
, �24�

where we denote ↑̄=↓, ↓̄=↑. The leading-order phase shift
� /2 makes the molecule a perfectly open channel in the

Kondo regime. Using the Glazman-Raikh transformation,
one can determine the transmission coefficient from the
phase shift:

�t��2 =
4�tL�2�tR�2

��tL�2 + �tR�2�2 sin2���� . �25�

At T=0, the linear conductance is not expected to depend on
� or �, since the quasiparticles have energy �=0 in linear
response, and n�̄=0 in the absence of a global magnetic field.
As a result, the Kondo-regime conductance of the Anderson
model with local Zeeman field B��TK is given by

G� =
e2

h
�
�

�t��2 =
2e2

h

4�L�R

��L + �R�2 �1 − ��B�/TK�2� . �26�

Exploiting the identity of linear conductances for the positive
and negative-U models, see Sec. II A, we conclude that the
charge-Kondo effect in the negative-U model leads to the
conductance

G =
2e2

h

4�L�R

��L + �R�2�1 − � �

TK
�2�d + U��2� . �27�

Here, the correspondence between Zeeman field �at positive
U� and gate voltage �at negative U� is directly reflected in a
departure from the unitary limit as soon as the negative-U
system is tuned away from the charge-degeneracy point.

2. Nonlinear current-voltage characteristics

For the special case of symmetric junctions, the PHLR
transformation allows us to go beyond linear response. For
nonzero bias, quasiparticles with finite energy are involved,
and hence the � and � terms in the effective Hamiltonian
�23� become relevant. These terms describe the weak scatter-
ing off the spin-singlet state as well as the induced interac-
tion between quasiparticles, and cause a reduction of the uni-
tary current Iu=2e2 /hV due to backscattering events. The
total current may thus be written in the form I= Iu− Ib. For a
symmetric device, the backscattering contributions can be
extracted from the effective Hamiltonian by interpreting the
quasiparticle states 	k� as a combination of left movers Lk�

and right movers Rk�, i.e., 	k�= 1
2

�Lk�+Rk��. Importantly,
left movers originate from the right lead and right movers
from the left lead. This fact allows one to account for the
nonequilibrium situation at finite bias by identifying the dis-
tribution of right movers �left movers� with the Fermi distri-
bution of the left �right� lead, i.e., fL�R����. Substituting the
LR decomposition into the effective Hamiltonian, one finds
that the elastic term ���� and the inelastic term ���� gen-
erate backscattering transitions which turn left movers into
right movers, and vice versa. Since these contributions act as
weak perturbations, one may evaluate the backscattering cur-
rent by summing the corresponding backscattering rates ob-
tained via Fermi’s golden rule.

Following Ref. 36 and including the additional local Zee-
man term results in the total current
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I =
2e2

h
V�1 − ��B�/TK�2 −

�2 + 5�2

12
� V

TK
�2� . �28�

Due to the onset of backscattering at finite energies, the cur-
rent is reduced with increasing bias voltage. The breaking of
spin-symmetry by the local Zeeman field leads to an addi-
tional reduction ��B��2, as required by symmetry. Now, we
return to the charge-Kondo effect in the negative-U model by
applying the PHLR transformation. The resulting current
close to the unitary limit is given by

I =
2e2

h
V�1 − ���2�d + U�/TK�2 −

�2 + 5�2

12
� V

TK
�2� ,

�29�

revealing the current reduction due to a gate detuning from
the charge degeneracy point.

3. Shot noise

We finally turn to a discussion of shot noise in the Kondo
regime, which we have recently investigated for the conven-
tional Anderson model in Ref. 36. The PHLR transformation
allows us to transfer our central results for the conventional
Anderson model to the negative-U model.

As demonstrated in the previous subsection, close to T
=0 and for small bias voltages, the current is nearly unitary,
and backscattering events are rare. In this scenario, a sensible
definition of the Fano factor does not involve the transmitted
current �which would yield F�0�, but rather the backscatter-
ing current Ib,

F = S/2e�Ib� . �30�

The backscattering current consists of a competition between
single-particle and pair backscattering processes. Remark-
ably, for vanishing local Zeeman field and the conventional
positive-U Anderson model, we have shown that the Fano
factor is super-Poissonian, F=5/3, due to the pair
backscattering.36 It is the enhanced phase space for pair scat-
tering events which renders their contribution dominant, de-
spite the fact that they constitute only one of the seven rel-
evant processes.36 The inclusion of an additional local
Zeeman field is straightforward, and we obtain

F =
2�B�/TK�2 + 5

3 �V/TK�2

2�B�/TK�2 + �V/TK�2 . �31�

�Here, we have exploited the identity of the coefficients �
and � following from the Bethe ansatz.35� Hence, for B�=0
we reproduce the result F=5/3, while in the opposite limit of
large Zeeman fields B��V, single-particle backscattering at
the singlet dominates and the Fano factor is Poissonian, F
=1.

Applying the PHLR mapping now yields the correspond-
ing Fano factor for the negative-U model,

F =
2��2�d + U�/TK�2 + 5

3 �V/TK�2

2��2�d + U�/TK�2 + �V/TK�2 . �32�

The Fano-factor enhancement to 5/3 only dominates the im-
mediate vicinity of the charge-degeneracy point. A detuning

from this point results in a suppression of the Fano factor,
and Poissonian noise is recovered as soon as the detuning is
large compared to the bias voltage.

V. SUMMARY

By an extension of the particle-hole transformation due to
Iche and Zawadowski,13 we have established a one-to-one
mapping between the negative-U and the positive-U Ander-
son models appropriate for the situation of nonequilibrium
transport. This mapping transforms spin degrees to charge
degrees of freedom, converts between SU�2� spin symmetry
and particle-hole symmetry, and is thus ideally suited to the
investigation of the spin- and charge-Kondo effects. In the
case of symmetric devices, the mapping leads to a conven-
tional Anderson model with spin-independent hopping terms.
For this scenario, we have demonstrated the usefulness of the
mapping by deriving analytical expressions for nonlinear
transport in the negative-U model, both in the poor-man-
scaling and the fully developed Kondo regimes.

Applying the mapping in the opposite direction, we have
shown that an additional Zeeman field causes correlations in
the high-temperature transport through a positive-U device.
These correlations are reflected in super-Poissonian noise,
and can be directly related to pair-tunneling processes at
negative U for which enhanced Fano factors occur naturally.

In closing, we emphasize that the nonequilibrium physics
in the charge-Kondo regime remains a partially open ques-
tion for asymmetric molecule-lead couplings. Specifically,
for asymmetric couplings between the molecule and the
leads, the hopping terms in the corresponding positive-U
Anderson model become spin dependent, a situation not
commonly addressed in the Kondo literature to date.
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APPENDIX: HIGH-TEMPERATURE NOISE
CALCULATIONS

Our calculations of the current shot noise for pair tunnel-
ing are carried out by means of a generalized version of
Korotkov’s formalism,28 which is detailed in Ref. 29. This
method is based on a decomposition of the time-dependent
current into discrete contributions from individual tunneling
processes. The relevant processes labeled by �=1, . . . ,5 are
identified in Fig. 4. In addition to the transition rates, the
formalism requires as input the charge sif ,�

a �in units of e�,
transferred across junction a for a process of type � with
initial and final state i and f , respectively. For completeness,
these charge-transfer coefficients are summarized in Table II.
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Note that in distinction to Ref. 29, the absolute coefficients
obtain values larger than unity due to pair tunneling.

It is also possible to obtain a comprehensive analytical
understanding of the numerical results based on the Fano
factor formula derived in Ref. 37,

F = �Ni�
�ti

2� − �ti�2

�ti�2 +
�Ni

2� − �Ni�2

�Ni�
. �A1�

In other words, the Fano factor acquires two distinct contri-
butions: The first term in Eq. �A1� arises from the fluctua-
tions of waiting times ti, the second term reflects the fluctua-
tions of the number of transferred electrons Ni. Equation
�A1� is valid whenever the quantities Ni and ti are uncorre-
lated, and have fixed probability distributions independent of
i. Employing this formula, we analytically calculate the sepa-
rate Fano factors for cotunneling, unidirectional pair tunnel-
ing, and mixed pair tunneling in the following.

1. Cotunneling

For temperatures small compared to the applied bias
kBT�eV cotunneling transport is essentially unidirectional:
transitions with electron transfer in the direction opposed to
the applied bias can be neglected. The current is then deter-
mined by a single parameter, the cotunneling rate W. The
evaluation of Eq. �A1� is straightforward. The number of

transferred electrons per event is exactly one, and the fluc-
tuations of the transmitted charge vanish. The waiting times
ti follow an exponential distribution p�t�=We−Wt, so that the
first and second moments are given by

�ti� =
1

W
, �ti

2� =
2

W2 . �A2�

As a result, cotunneling leads to a Fano factor of unity,

F =
�ti

2� − �ti�2

�ti�2 = 1. �A3�

This explains the Poissonian noise in the regions dominated
by cotunneling in Fig. 2.

2. Unidirectional pair tunneling

We now consider the case of unidirectional pair tunneling,
i.e., transport is assumed to be caused by the following se-
quence of events: �i� An electron pair tunnels from the left
lead onto the molecule. �ii� The electron pair tunnels off of
the molecule into the right electrode. When evaluating the
Fano factor via Eq. �A1�, we consider events in one of the
two junctions. Without loss of generality, we choose the left
junction. Then, each event �i� transfers Ni=2 electrons, and
there are no fluctuations of this number. However, it is cru-
cial to note that the waiting time ti now consists of a sum of
two times, the waiting time for the event �i� in junction L and
the waiting time for event �ii� in junction R, ti= ti

L+ ti
R. Each

waiting time ti
L,R is exponentially distributed according to

pL�t� = W0→2
L exp�− W0→2

L t� , �A4�

pR�t� = W2→0
R exp�− W2→0

R t� , �A5�

where W0→2
L �W2→0

R � is the rate for the pair-tunneling transi-
tion in the left �right� junction. The probability distribution
P�t� for the sum of waiting times in the left and right junc-
tions is simply given by the convolution

P�t� = �
0

�

dtL�
0

�

dtRpL�tL�pR�tR���t − tL − tR�

=
W0→2

L W2→0
R

W2→0
R − W0→2

L �e−W0→2
L t − e−W2→0

R t� . �A6�

The resulting first and second moments of the total waiting
time are

�ti� =
1

W0→2
L +

1

W2→0
R =

W0→2
L + W2→0

R

W0→2
L W2→0

R , �A7�

�ti
2� = 2

�W0→2
L �2 + W0→2

L W2→0
R + �W2→0

R �2

�W0→2
L �2�W2→0

R �2 . �A8�

Substituting into Eq. �A1�, we obtain for the Fano factor

F = �Ni�
�ti

2� − �ti�2

�ti�2 = 2
�W2→0

R �2 + �W0→2
L �2

�W2→0
R + W0→2

L �2 . �A9�

Due to their phase-space behavior, the pair-tunneling rates
vary with gate voltage according to

TABLE II. All nonvanishing charge-transfer coefficients sif ,�
a

characterizing the current contributions of individual processes.
Sketches of the various processes �=1, . . . ,5 are depicted in Fig. 4.

s02,�
a a=L a=R s20,�

a a=L a=R

�=1 2 0 �=1 −2 0

2 0 −2 2 0 2

3 1 −1 3 −1 1

s00,�
a a=L a=R s22,�

a a=L a=R

�=4 1 1 �=4 1 1

5 −1 −1 5 −1 −1

FIG. 4. �Color online� Elementary processes for the transitions
�0�→ �2� and �0�→ �0�. The label “2” signals an additional factor
of 2 due to two incoherent spin contributions. The diagrams for the
processes corresponding to the transitions �2�→ �0� and �2�→ �2� are
obtained by reversing the direction of all arrows.
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W0→2
L �

�L
2

h
�eV/2 − �d − U/2���eV/2 − �d − U/2� ,

�A10�

W2→0
R �

�R
2

h
��d + U/2 + eV/2����d + U/2 + eV/2� ,

�A11�

valid in the limit of low temperatures. Consequently, for a
symmetric device the rates are identical at the degeneracy
point 2�d+U=0, and the Fano factor resulting from Eq. �A9�
is F=1. Away from the degeneracy point, one rate loses
phase space while the other gains phase space. As a result,
for approximate alignment of the two-particle level with one
of the Fermi energies �d+U /2� ±eV /2 one rate nearly van-
ishes and the other one remains finite. The corresponding
Fano factor is F=2. This dependence of the Fano factor on
gate voltage is clearly reflected in the numerical results de-
picted in Fig. 2. Interestingly, for asymmetric devices unidi-
rectional pair tunneling leads to Fano factors F�1 even at
the degeneracy point. In the limit �a /�a�→�, one obtains a
Fano factor of F=2.

It is worth noting that Eq. �A9� also yields the Fano factor
for sequential tunneling when replacing �Ni�=2 by �Ni�=1,
as well as W0→2

L →W0→1
L and W2→0

R →W1→0
R . The crucial dif-

ference between sequential and pair tunneling is that sequen-
tial rates are independent of gate voltage as long as the level
position remains in the bias window. Accordingly, the Fano
factor for sequential tunneling in a symmetric device is equal
to 1/2.

3. Mixed pair tunneling

Finally, we consider mixed pair tunneling, i.e., the trans-
port mode typical for pair tunneling in asymmetric junctions.
Two electrons enter the molecule from the left lead �rate W1�,
and subsequently split up to leave the molecule via the left
and right junction, respectively �rate W2�. Let us consider the
right junction. Here, exactly one electron is transferred for
each combined process of pair tunneling onto and off of the
molecule. The waiting time again consists of a sum of two
exponentially distributed random times, exactly as in the uni-
directional pair-tunneling case. All arguments given there
can be reapplied for the case of the mixed pair-tunneling
case, resulting in

F =
W1

2 + W2
2

�W1 + W2�2 . �A12�

Formally, this is identical to the result for sequential tunnel-
ing. Once again, the important difference is the gate-voltage
dependence of the pair-tunneling rates. While the phase-
space behavior of the rate W1 is given by Eq. �A10�, the
splitting pair rate scales as

W2 �
�L�R

h
�2�d + U���2�d + U� . �A13�

Consequently, the Fano factor for the mixed pair-tunneling
process varies between F=1 and F=1/2, depending on the
coupling ratio and gate voltage.

4. Interpretation of the full Fano factor

The full Fano factor, Fig. 2, can now easily be interpreted
in terms of the contributions from the previously discussed
processes. Outside the pair-tunneling regime, cotunneling is
the only relevant process and leads to a Fano factor equal to
1. Inside the pair-tunneling regime, cotunneling, as well as
unidirectional and mixed pair tunneling coexist. The result-
ing Fano factor is given by a weighted average of the indi-
vidual Fano factors. This comprehensively explains the
qualitative features of the numerical results in Fig. 2, and the
fact that the Fano factor does not fully reach the value of 2
naively expected for pair tunneling.

For completeness, we briefly comment on the conse-
quences of asymmetric coupling �L��R on the shot noise in
the negative-U model. As discussed for current-voltage char-
acteristics in Ref. 6, the degree of coupling asymmetry plays
an important role in determining the relevant transport pro-
cesses. As a result, the noise characteristics crucially depend
on the ratio �R /�L, see Fig. 5. These plots show results for
the finite-bias Fano factor as a function of gate voltage, and
for different coupling ratios. For devices with large asymme-
try, �a /�a��1, unidirectional pair tunneling is suppressed
and mixed pair processes take over.6 As a result, the Fano
factor is reduced, and sub-Poissonian noise dominates the
transport, see Fig. 5. The influence of unidirectional pair-
tunneling close to the degeneracy point is reflected in re-
maining super-Poissonian traces for moderate asymmetries.

FIG. 5. �Color online� Fano factor as a function of gate voltage
at finite bias �eV=5010−3 �U � � for different magnitudes of junc-
tion asymmetry �L /�R. The dominance of mixed pair-tunneling
processes for asymmetric junctions reduces the super-Poissonian
noise and leads to Fano factors below 1.
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