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Liquid antiferromagnets in two dimensions
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It is shown that, for proper symmetry of the parent lattice, antiferromagnetic order can survive in two-
dimensional liquid crystals and even isotropic liquids of pointlike particles, in contradiction to what common
sense might suggest. We discuss the requirements for antiferromagnetic order in the absence of translational
and/or orientational lattice order. One example is the honeycomb lattice, which upon melting can form a liquid
crystal with quasi-long-range orientational and antiferromagnetic order but short-range translational order. The
critical properties of such systems are discussed. Finally, we draw conjectures for the three-dimensional case.
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Ferrofluids, i.e., suspensions of small ferromagnetic parstage for the discussion of the possibility of antiferromag-
ticles in a carrier liquid, have been studied quite extensivelynetism in the liquid crystal formed upon melting. Surpris-
[1]. These materials are really liquid superparamagnets withingly, for certain lattices melting can even producesotro-
out long-range magnetic order in the absence of an appliegic liquid that retains antiferromagnetic order.
magnetic field. However, there is no fundamental reason why The Nelson-Halperin-Young theof$,9] predicts two dis-
true ferromagnetism should not exist in a liquid. The strongtinct melting transitions. The one at the lower temperature
short-range exchange interactions are not strongly affecteseparates a 2D solid with quasi-long-range translational or-
by the absence of crystalline order, as shown by the existenater from a liquid crystal with short-range translational but
of amorphous ferromagnefg]. quasi-long-range orientational ordgtQ]. This transition is

The present paper addresses the question of whather due to the unbinding of pairs of dislocations. Dislocations
tiferromagnetic liquids which one could call “antiferroflu- are pointlike in 2D and can be thermally created in pairs or
ids,” are also possible. On first sight, the answer seems to bmultiplets of vanishing total Burgers vector. Pairs of disloca-
no. Common sense tells us that the huge frustration in &ons with opposite Burgers vector have an attractive loga-
liquid destroys antiferromagnetic order. To construct an anfithmic interaction, similar to vortex-antivortex pairs in the
tiferromagnetic liquid one would thus look for liquids that 2D XY model. The resulting BKT-type transition is charac-
partially retain structural order, i.e., liquid crystals. In fact, terized by a jump of Young’s modulushe stiffness against
antiferroelectric liquid crystals have been studied extensivelyension, which is finite and universal just below the transi-
[3]. These materials consist of long, polar molecules so thation and zero above. In the liquid-crystal phase bound pairs
antiferroelectric order appears rather naturally in their smecef disclinationsexist, which are defects of the orientational
tic phases. order. This order is destroyed at a higher transition tempera-

The question we want to discuss here is whether liquidsure where disclination pairs unbind. Since their interaction
(including liquid crystaly consisting ofspherical particles  is logarithmic in the presence of free dislocations, the tran-
with a spin degree of freedom can sustain antiferromagnetisition is also of BKT type. Note that one or both transitions
order. At least in two dimensions this is possible, as we shownay be replaced by a first-order transition.
below. We consider two-dimensionéD) systems, since in What happens if the particles carry a spin with a tendency
two dimensions the theory of melting is much further devel-to order antiferromagnetically? We restrict ourselves to bi-
oped than in three. The relevance for three-dimensional syspartite lattices. Then the spins showelerder in the clas-
tems is briefly discussed afterwards. We introduce spin ansical ground state, if frustrating longer-range interactions are
isotropy to obtain a finite-temperature phase transitionnot too strong. For most simple lattices such as the square
Specifically, we think of the antiferromagnetic order param-lattice elementary dislocatio41] frustrate the magnetic or-
eter having eitheXY or Ising symmetry. In the first case der, as illustrated by Fig. 1. There is a line of maximally
there is a Berezinkii-Kosterlitz-Thouled8KT) transition  frustrated bonds ending at the dislocation. This line could
[4] and the low-temperature phase has quasi-long-range oend at another dislocation of opposite Burgers vector. The
der. In the second case there is an Ising-type trandiibto  energy of such a pair ignear in their separation and the pair
a long-range-ordered phase. is confined. This is indeed the case for Ising sgih&]. On

Our arguments employ the theory of 2D melting devel-the other hand, for two-componenXY) spins Fig. 1 does
oped by Nelson, Halperin, and Youp@], which is based on not show the lowest-energy configuration. Rather, the spins
the BKT renormalization group theofy,7]. We first briefly  relax to spread the frustration more evenly. In effect, the
review this theory. Then we discuss melting of a lattice withdislocation dresses withalf a vortex(or antivortey in the
antiferromagnetic order for the normal case that antiferroNeel order[8]. The dislocation interaction is now again loga-
magnetism is strongly frustrated by meltifgj. This sets the rithmic, but with a contribution from the half vortices. The

interplay of dislocation-unbinding and magnetic transitions
in this case has been studied in Ri]. It is obvious that
*Electronic address: timm@physik.fu-berlin.de magnetic order cannot survive the dislocation unbinding,
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FIG. 1. Square lattice antiferromagnet with an elementary dis-
location. The magnetic order is maximally frustrated along the
heavy dashed line. FOXY spins this configuration is unfavorable ~ FIG. 3. A more complicated lattice. Here neither dislocations
and the spins will relax to spread out the frustrat[@). As the  nor disclinations frustrate the magnetic order.
result, the dislocation dresses with half a vortex.

for the honeycomb lattice, which already has a two-site ba-
sis. On the other hand, for the square lattice the order reduces
the set of translations and dislocations exist that frustrate the
magnetic order.

However, antiferromagnetism need not be destroyed at the We now turn 1o the Upper, d|sc_||na_t|on_-unb|nd|ng transi-
lower melting temperature, if dislocations do not frustrate the_t'on' For the honeycomb lattice, d|sc!|nat|ons are character-
magnetic order. One example is the honeycomb lattice. Ai¢€d Py the angle modulo 22 by which the bond angle
elementary dislocatiofil1] does not frustrate the antiferro- changes if one goes around the deféct4]. The elementary
magnet, as shown in Fig. 2. Since all possible dislocationgisclinations[11] of the honeycomb lattice and the corre-
are superposition of elementary ones, none of them frustrateonding liquid crystal are-27/6 disclinations centered at a
the order. Consequently, free dislocations above the loweiexagonal plaquette. Thus, the defects have a five- or seven-
melting temperature do not carry vorticity and thus the exis-Sided plaquette at their core, which obviously frustrates the
tence of free dislocations does not preclude antiferromagmagnetic order. Furthermore, there are paths of arbitrarily
netic (long-range or quasi-long-rangerder[13]. large length around the defect that consist of an odd number

When do dislocations not frustrate the magnetic orderdf bonds. For theXY model, the spins again relax to reduce
This is the case if their Burgers vectors connect two siteshe energy and the disclinations dress with half vortices.
with the same spin direction, i.e., on the same sublattice. Theonsequently, the magnetic transition temperature cannot lie
Burgers vector can be any lattice vector of the lattice withoutabove the disclination-unbinding temperature.
spins. Hence, all dislocations do not frustrate if any transla- The next question is whether there are lattices for which
tion by a lattice vector leaves the spins invariant. Or, in otheheither dislocations nor disclinations frustrate the magnetic
words, if magnetic ordering does not reduce the set of transsrger, The lattice in Fig. 3 satisfies the criterion for non-
lational symmetry operations of the lattice. This is the cassirating dislocations. Furthermore, elementary disclina-

tions with a change of the bond angle ky27/3 do not
frustrate either, as illustrated by Fig. 4. If the appearance of
magnetic order does not reduce thréentational symmetry,
i.e., does not remove rotation axes or reduce their multiplic-
ity, all disclinations are compatible with antiferromagnetic
order. In this case antiferromagnetic ordmm exist in the
isotropic liquid above the upper melting transition. There is
another way to express the condition for the existence of
non-frustrating dislocations and disclinations for bipartite
lattices: Magnetic order in the isotropic liquid is possible if
the corresponding lattice does haweo nonequivalent sub-
lattices i.e., one cannot be mapped onto the other by any
translation or rotation or combination thereof. Then antifer-
FIG. 2. Honeycomb lattice antiferromagnet with an elementaryromagnetic ordering does not reduce the lattice symmetry. At
dislocation. Evidently the defect does not frustrate the magnetidligher temperatures the liquid should eventually loose the
order and, consequently, does not dress with fractional vorticity. hidden order that is expressed by the nonequivalence of two

since free dislocations car(ractiona) vorticity and act like
free vortices[4,8]. Of course, the magnetic transitianay
take place at dower temperature than the dislocation un-
binding.
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liquid. This mode leads to the characteristic behavior of the
magnetic susceptibility of an antiferromagn#&6].

How can these considerations be applied to three-
dimensional systems? In three dimensions melting typically
proceeds by a first-order transition directly to the isotropic
liquid. Nevertheless a dislocation-unbinding mechanism may
apply[14,17-19. To obtain an isotropic liquid, disclinations
also have to unbind14]. They usually do so at the same
temperature, but this does not invalidate our criterion for
antiferromagnetic fluids. Note also that our arguments never
took advantage of the two dimensionality. Thus it may be
inferred that also in three dimensions antiferromagnetic lig-
uids can exist if the underlying lattice haso inequivalent
sublattices

Finally, we turn to possible experimental realizations. A

FIG. 4. The core of a-2#/3 disclination for the lattice shown soft 2D XY antiferromagnet is the Skyrmion crystal in the
in Fig. 3. The defect does not frustrate the magnetic order. guantum Hall system close to filling facter=1 [8,20-23.

kyrmions are topological excitations of the ferromagnetic
antum Hall state, which carry a quantized electric charge.
Upon changing the filling factor away from=1, the extra

Even if dislocationg(or disclination$ do not dress with charge appears in the form of Skyrmions. The in-plane mag-

vorticity, their energies depend on the magnetic order, Sincgetization ofa Skyrmiqn has a vortgxlike structure. Itg direc-
part of the interaction is of magnetic origin. Conversely, duelion can be characterized by a singier angle ¢, which
to frustration of the magnetic interaction at larger distance§0uples antiferromagneticalf23,24. The classical ground
structural order affects the vortex energies. We now arguétates of the Skyrmion system are various lattice types
why this subdominant coupling leaves the principal picturel8.25. One is a honeycomb lattice, albeit probably outside of
unchanged, focusing on dislocations and vortices. The inteithe realistic parameter range.
action energy of dislocations is proportional to Young's A straightforward realization of an Ising pseudospin
modulus, which we expect to be a continuous function of themodel is a binary alloy(in 2D or three dimensional 3D
vortex density. Since the vortex density itself is a continuousAnother example is a system of vortices and antivortices,
function of temperature through the vortex-unbinding transi-which are prevented from annihilating, e.g., by an additional
tion [4,15], the parameters entering in the BKT theory of Coulomb repulsion. The vorticity then constitutes the Ising
dislocation unbinding are continuous through the magnetidegree of freedom. It has been suggested that such a vortex
transition. A similar argument can be made for the change ofystem is formed when holes are doped into the antiferro-
the vortex energy due to dislocations. If one tunes themagnetic cuprate$26,27. These charged vortices might
strength of magnetic vs nonmagnetic interactions, thdorm a strongly anisotropi¢stripe crystal at low tempera-
dislocation-unbinding and vortex-unbinding transitions thustures[28,29,27. It should be interesting to apply the ideas of
cross in a tetracritical point and both the structural and theéhe present paper to its melting9].
magnetic order show a universal BKT jump at this point. To conclude, we have shown that there is no fundamental
This is drastically different from the normal case of, e.g., thereason why 2D, and possibly 3D, antiferromagnetic liquids
square lattice, where for strong magnetic interactions the twshouldnot exist. Their existence is determined by the struc-
transitions merge into a single one, at which only one ordeture of the underlying lattice: If dislocations do not frustrate
parameters shows universaljump [8]. the antiferromagnetic order, antiferromagnetic liquid-crystal
Next, we briefly commend on the low-energy collective phases are possible. One example is the honeycomb lattice.
excitations of liquids with antiferromagnetic quasi-long- If, in addition, disclinations also do not frustrate the mag-
range order. First, there is the usual longitudinal acoustimetic order, it can even survive in isotropic liquids. The crys-
phonon branch. The liquid crystal phases differ from the isotal phase must have two inequivalent sublattices for this to
tropic liquid in that they have massive topological excita-be possible. The resulting “antiferrofluids” would support
tions, i.e., the disclinations. In addition, f&Y spins there is spin waves with linear dispersion besides longitudinal
a linearly dispersing spin wave mode in all liquid phases. Itgohonons. It would be worthwhile to search for experimental
presence is one main characteristic of an antiferromagnetiealizations of this new phase of matter.

subsystems. Note, however, that this cannot happen throu
disclination unbinding, but will probably take place at a first-
order transition.
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