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Universal spectral statistics of Andreev billiards: Semiclassical approach
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The symmetry classification of complex quantum systems has recently been extended beyond the Wigner-
Dyson classes. Several of the novel symmetry classes can be discussed naturally in the context of
superconducting-normal hybrid systems such as Andreev billiards and graphs. In this paper, we give a semi-
classical interpretation of their universal spectral form factors in the ergodic limit.
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[. INTRODUCTION billiard coupled to a superconducting lephdreev billiard,
cf. Fig. 1(b)] is sensitive to whether the classical dynamics of
Based on early work of Wignét], Dyson[2] proposed a the (norma) billiard is integrable or chaotic. These authors

classification of complex quantum systems according to theighowed that the proximity-induced hard gap in the chaotic
behavior under time reversal and spin rotations. The ergodigase isnot fully reproduced by semiclassical theory, the rea-
limits of the proposed symmetry classes are described by thgons for which have been discussed further in REf]. All
Gaussian orthogonal, unitary, and symplectic ensemblethese systems have in common that due to the presence of
(GOE, GUE, and GSFof random-matrix theory. These were the superconductor the combined electron-hole dynamics is
initially motivated by atomic nuclei and have since been ap0 longer chaotic even if the corresponding norirainsu-
plied successfully to a large variety of systems, most notablyperconductingbilliard is chaotic[13]. By contrast, we focus
chaotic and disordered quantum systd8ls More recently, here on a semiclassical approach to SN hybrid systems
an additional seven symmetry classes have been identifiatihere the combined electron-hole dynamics remains chaotic
[4], which are naturally realized in part by Dirac fermions in even in the presence of the superconductor. Such systems
random gauge field&hiral classes[5] and in part by quasi- €xhibit the universal spectral statistics of the Gaussian
particles in disordered mesoscopic supercondudi®fsor random-matrix ensembles for the new symmetry classes. We
superconducting-normalconductifgN) hybrid systemg7].  identify the class of periodic orbits contributing to universal
The common feature of the new symmetry classes is a mirrdieatures in the density of states near the Fermi energy and
symmetry in the spectrum: iE is in the spectrum, so is show that in this case, semiclassics reproduces the spectral
—E. The corresponding Gaussian random-matrix ensemblesfatistics predicted by random-matrix theory.
differ from the Wigner-Dyson ensembles in so far as their
spectral statistics, while still universal, is no longer station- Il. UNIVERSAL SPECTRAL STATISTICS

ary under shifts of the energy due to additional discrete sym- We briefly summarize the pertinent random-matrix results

metries. . .
Much insight into the range of validity of the Wigner- for the Gaussian ensembles corresponding to the new sym-
Dyson random-matrix ensembles has been gained from the ) b)
semiclassical approach to the spectral statistics of chaotic
guantum systems, based on Gutzwiller’s trace forrh&jaln NC

a seminal pap€Q], Berry gave a semiclassical derivation of insulator
the spectral form factor of chaotic quantum systems for the
Wigner-Dyson ensembles, partially reproducing the results

of random-matrix theory and clarifying its limitations. In this

paper we provide such a semiclassical interpretation, based ,
on Andreev systems, of a generalized form factor for the '
Gaussian random-matrix ensembles associated with the new \
symmetry classes termed and Cl (the pertinent Gaussian \SC

ensembles will be referred to &GE andCI-GE). insulator
There have bee_n several attempts to apply semiclassical FIG. 1. (a) Andreev scattering with a perpendicular magnetic
the_ory to SN hybrid sysjemBlO—lZ. Melselj e,t al. [10], field. (b) Andreev billiard—a part of the boundary is connected to a
pointed out that the gap induced by the proximity effect in ag,yerconductor where Andreev reflectioetrofiection takes place.
An example of a self-dual orbit is shown—the SN interface is hit
three times by an incoming electron and three times by an incoming

*Electronic address: gnutz@physik.fu-berlin.de hole. Each part of the trajectory is traversed twice in the same
"Electronic address: bseif@thp.uni-koeln.de direction—once as an electron and once as a hole. The singly tra-
*Electronic address: vonoppen@physik.fu-berlin.de versed orbit without electron-hole labels is a periodic orbit of the
$Electronic address: zirn@thp.uni-koeln.de virtual billiard and hits the SN interface three times.
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metry classes. For the Wigner-Dyson ensembl€JE, Here,S, denotes the classical action of the oriit, denotes

GOE, GSH, the average density of states is nonuniversal anits stability amplitude, and, is the primitive orbit traversal

random-matrix theory makes universal predictions onlytime. The explicit factot, arises because the traversal of the

about spectral fluctuations in the ergodic limit such as theperiodic orbit can start anywhere along the orbit. Inserting

correlation function this expression into the definition of the spectral form factor,
and employing the diagonal approximation, one finds

C(e)=(3p(E) 3p(E+e)) (1)
- . _ t2
of the deviationssp(E) of the densny_ of .state/s( E) from its Kwo, diad 1) = E t—p|Ap|25(t—tp)- (7)
mean valug(p(E)). A central quantity is the spectral form P H
factor
Finally, averaging over some time intervaAt and
1 e e using the Hannay—-Ozorio-de-Almeida sum rulel4]
Kwp(t)= mfmdee Cle). @ ELPE[t‘t+At]|Ap|2=At/t one obtains the result

The ergodic limit of the new symmetry classes differs from t
the Wigner-Dyson case by the fact that even the average Kwp,diad t) = t (8)
density of states has universal features close to the Fermi

energyw. Thus, in this case, we define a generalized spectrq}a"d for ty<t<ty, wheret, is the period of the shortest

form factor_ by.the Fourier transform of the expectation Valueperiodic orbit. This result agrees with the short-time behavior
of the (oscillating part of thg density of states:

of the spectral form factor predicted by the GUE.

— ” —iEt/h
K(t)—zf_dewp(E»e B (3) lll. SEMICLASSICAL APPROACH TO MAGNETIC
ANDREEV BILLIARDS

where E is the energy(measured relative tq.). For the We now turn to Andreev billiards—the central theme of

ensembleC-GE (classC is invariant under spin rotations, this paper. The novel element in SN hybrid systems is An-
while time-reversal symmetry is brokgrthis form factor is ey reflection converting electrons into hol@d vice
[7] versa at the interface to the superconducfsee Fig. 19)].
It In this process, the incoming electr@mle) acquires a phase
KC(t)=— g( 1— _)_ (4) —ie '*(—ie'"), wherea is the phase of the superconduct-
Uy ing order parameteA [15]. In the absence of a magnetic
) ) _ _ ) field, electrongholeg sufficiently close to the Fermi energy
Here,tH=2whgav is the Helsenperg time defined in terms.of (E<|A|<p) are reflected as holg®lectron, which then
the mean density of statgg, sufficiently far from the Fermi  1oa0e the electrotthole) trajectory backwardsretroflec-
energy(the oscillating part of the density of states is definedijor) 1 chaotic billiards, essentially all trajectories eventu-
as 8p(E) =p(E) —pal. Semiclassicallyp,, corresponds 1o 4y hit any given part of the boundary. Thus, if the billiard is
Weyl's law. For the ensembl@I-GE (classCl differs fromC o coupled to a superconductor any quasiparticle eventu-
by invariance under time reversathe short-time expansion gy hits the superconducting interface, leading to a periodic
is [7] orbit bouncing back and forth between two points on the
| sqperpqnductir]g interface. It follqws that a conventional cha-
KC(t)= —1+ —— +O([t[?). (5)  ofic billiard (without magnetic fiel that is coupled to a
2ty superconductor has a combined electron-hole dynamics that
] o ) ) is no longer chaotic. Instead, the resulting trajectories are all
Wigner-Dyson statistics can be applied even to a single chgseriogic, leading to nonuniversal behavior such as the
otic system by exploiting a spectral average. By contrast, thﬁroximity-induced hard gafl0,11 for time-reversal invari-
new symmetry classes require an ensemble average singgt systems.
they have 'universal feature§ 'in the vicinity of special ener- ope expects to recover universal spectral statistitg if
gies (Fermi energyu). For billiards one may average over the combinedelectron-hole dynamics is chaotic and periodic
shapes. o _ _ _ orbits are isolated as in conventional chadtiyperbolio
Before entering into the semiclassical analysis for the NeWystems. In Andreev billiards this occurs naturally when
symmetry classes, we briefly review the semiclassical derigme-reversal symmetry is broken by a perpendicular mag-
vation of the usual spectrql form factor of the GUE. Therepgiic field (symmetry clas<). In this case the retroflected
one starts from _the_GutszIer trace form_ula that relates thehole(electron does not retrace the trajectory of the incoming
oscillatory contributionsp(E) to the density of states to a gectron(hole), as electron and hole trajectories are curved in

sum over periodic orbitg, the same directioficf. Fig. 1(a)]. This allows one to express
1 the density of states semiclassically by a Gutzwiller-type
5p(E)= —Re>, toAe o/ (6) trace formula as a sum over the isolated periodic orbits of the
Th 5 combinedelectron-hole dynamics of the Andreev billiard,
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1 . .
5p(E): %Re% tpApe'SP(E)/ﬁ+'X. (9)

The orbit amplitudesA, are products of electron and hole
contributions,

_ h
A,=APAN, (10)
while the orbit actions are sums of electron and hole actions, FIG. 2. Star graph with five peripheral vertices connected to
. superconductors.
Sy(E)=SP(E)+S{V(E). (12)
Thus
The factort,, again reflects the arbitrary starting point of the
orbit andy denotes the accumulated Andreev phases. K(t)sg=—1 (15

Coherent contributions to the form the factor can be ex- ) ) )
pected from periodic orbits that retrace the same trajectory if} @greement with the random-matrix result predicted by
the same direction with the roles of electrons and holes in©GE (4) for short times. The self-dual approximation is
terchanged. Suchself-dual orbits are invariant under €XPected to hold foto,ta<t<ty wheret, is the traversal
electron-hole conjugation and the dynamical contributions tdime of the shortest periodic orbit artg the Andreev time
their action largely cancel due to the relati@‘;f’)(E)= (typical time until electron-hole conversion takes place
— Sg‘)(— E), so thatS,(E)=Et,. Moreover, the amplitudes
of electron and hole are just complex conjugates of one an-

other, givingA,=|A{?|2. The accumulated Andreev phase is  The semiclassical calculation of the form factor becomes
(—i)?*=—1 with s an odd integer. Keeping only the self- particularly transparent and explicit for quantum graphs,
dual periodic orbits—theelf-dual approximation-we find  which were recently introducdd 6] as simple quantum cha-
otic systems. Introducing Andreev reflection as a new ingre-
Sp(E)og= — iReE t |A(e)|zeiEtp/h_ (12) dient,_we showsemiclassicallythat the for_m factor of the
mh 5 PUP resulting Andreev graphtakes on the universal result. A
quantum graph consists of vertices connected by bonds. A

IV. SPECTRAL STATISTICS FOR ANDREEV GRAPHS

For the generalized form factor, this leads to particle (electron/holg propagates freely on a bond and is
scattered at a vertex according to a prescribed scattering ma-
K()sg=—22 thAff)Izﬁ(t—tp). (13  trix. For definiteness, we discuss star graphs Withonds of
p:sd equal lengthL. These have oneentral vertex andN periph-

) ) o _ eral vertices. Each bond connects the central vertex to one
This expression reveals the similarity to the diagonal apperipheral vertexct. Fig. 2.
proximation for the_ Wigner-Dyson form factors. However,  Andreev(stay graphs are obtained by introduciigom-
only onefactort, arises. plete electron-hole conversions at the peripheral vertices,

~ The Hannay—Ozorio-de-Almeida sum rule does not applyyhile the central vertex preserves the particle type. The
directly to the sum over self-dual orbitbeing a sum over quantization condition is

amplitudes of a subclass of periodic orhiffo deal with this
difficulty, we introduce avirtual billiard with the same dy- det(S(k)—1)=0, (16
namics as the Andreev billiard except that therenis ) ) )

particle-hole conversion at the SN interface. Thus, the virtuaWith the unitaryN <N matrix

billiard is an ordinary chaotic billiard with unusual reflection _ "

conditions at the SN interfadgetroflections. Primitive pe- S(K)=ScLD-LSc LD, L. (17
riodic orbits of the virtual billiard involve either even or odd
numbers of retroflections. Reintroducing electron-hole con
version, one observes that even orbits lead to non-self-du

Here Sc (Sg) is the central scattering matrix for an electron
gpole). For definiteness, we chooft7]

periodic orbits in the Andreev billiard. By contrast, twofold 1
traversals of odd orbits are periodic and self-dual in the An- Scyk|=—e2”“<”N, (18)
dreev billiard as the roles of electron and hole are inter- \/N

changed in the second travergste Fig. 1b)]. We can now i i
interpret the sum over self-dual orbits in EG3) as a sum where S¢ by itself does not break time-reversal symmetry.

over odd orbits of the virtual billiard. Since on average half 1N matrix
of its orbits are odd, the Hannay—Ozorio-de-Almeida sum

_ aikL
rule for the virtual billiard gives L=e™l (19
toeltt+ At contains the phases accumulated when the quasiparticle
peltttatl At .
2 |A(e)|z:__ (14) propagates along the bondsié the wave number measured
p:sd P 2t from the Fermi wave numbgrFinally,
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FIG. 4. Periodic orbits contributing in the self-dual approxima-
class C tion (atm=5). The vertices in the diagram correspond to peripheral
vertices of the original star graph, full and dashed lines represent
L5 electron and hole propagation. In cla8s only the left diagram
contributes. In clas€l, the right diagram givesn additional con-

.................................. 20 tributions as the turning point can be any of tevertices.
K(r) 07|~ 10
T 0 Since the particle type changes at the peripheral vertices, the
R - —10 sequences must have even leng2m. The primitive tra-
—0.4+ T 1 -20 versal “time” [18] of a periodic orbit is,=4mL/r (wherer
o6 0 02 04 06 08 is the repetition numbgr the stability amplitude isA,
’ =1/N™, and the action is
—0.8 om .
A il
a4 S,=4mkL+ >, (—1)i*l27 1= 23
1 class CI P 1'21 ( ) . N (23
T I
0 0.5 , 1 L5 The accumulated Andreev phase is
FIG. 3. Form factors for clas€ (top) and Cl (bottom calcu- 2m i+1
lated numerically for a star graptfull lines) with N=100 bonds X= _mﬂ'_jzl (-1 &i;- (24)

(averaged over 50000 realizations and a short-time intefital

<ty) and as obtained from the Gaussian random-matrix ensemblefany the form factor becomes

C-GE andCI-GE (dashed lingsin dimensionless timer=t/t,, . '

The insets give the coefficienks,, as a function of “time”m/N. - ty * m

K(t)=2f dke *Y sp(k)) = N El Kmﬁ(t— NtH),
o M=

D.=—idiage* %) (20 (25

contains theAndreev phasesccumulated at the vertices,

where «; denotes the order-parameter phase at peripheréﬂ’ith the Heisenberg timm=4LN. .(<'> denotes the_ average
vertexi. Time-reversal symmetry is obeyed if all Andreev over Andreev phasesThe coefficients can be written as a

phases are either;=0 or a;=, but is broken otherwise. sum over periodic orbitp,,, with 2m Andreev reflections:

Accordingly, we build ensembles corresponding to the sym- m

metry classe< (uncorrelated Andreev phases with uni- KmZZE _<Apei8p(k:0)+ix>. (26)
form distributions in the intervdl0,27)) and Cl (uncorre- Pm T

lated Andreev phases taking values=0 or a;=m with ) o )

equal probability. Numerically computed ensemble aver- Km can be viewed as a form factor in discrete timeN.

ages are in excellent agreement with random-matrix results FOr graphs in clas€, only those periodic orbits survive
from C-GE andCI-GE, as shown in Fig. 3. the average over Andreev phases that visit each peripheral

Following previous work on quantum grapf$6], we  Vertex an even number of times—half as incoming electron
write the density of states ik space as and half as incoming hole. In the self-dual approximation,
only those orbits contribute whose total phase due to the

p(K)=pat Sp(k), (21 scattering matrix of the central vertex vanishes. As the phase
factors due to scattering between bomdsdj for electrons
with p,,=2NL/7 and obtain the exact trace formula and holes are complex conjugates of one another, this re-

quires that the periodic orbits contain equal numbers of scat-
terings fromi to j as electron and hole. This leads to the
orbits sketched in Fig. 4: Awdd number of peripheral ver-
tices are visited twice, once as an electron and once as a hole.
as a semiclassical sum over periodic orlgtsf the graph. First, the peripheral vertices are visited once, alternating be-
Here, periodic orbits are defined as a sequenge, . .. i tween electrons and holes, and subsequently the vertices are
of peripheral vertices, with cyclic permutations identified. visited again in the same order but with the roles of electrons

1 o
Sp(k)= ;ReZD tp A/ St ix (22)
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and holes interchanged. Thus, these orbits have the samd diag(e™'*), with a specific Andreev phase; for each
structure as the self-dual orbits discussed above for the Arlead. Time-reversal invariance demands=0 or a;= .

dreev billiard. We haveAp=1/Nm, S,=4mkL, and x
=mm. The number of such orbits of lengtimRis N™/m,
where the denominatan reflects the identification of cyclic

Then a detailed correspondence between billiard and star
graph is obtained by substitutingS:-£— Syc(E) and
LSEL—SNc(—E) (with a more general central scattering

permutations of peripheral vertices. With these ingredientsmatrix). Thus, the form factor of these billiards can be ob-

we find the short-time result

KS o= — 1+ (- )"=KH=—1, 27)

where?(t) is the time-averaged form factor. This reproduces

the result predicted bg-GE.

tained in the self-dual approximation in complete analogy
with the star graph.

VI. CONCLUSIONS

We considered the universal spectral statistics for ergodic

For classCl, the average over the Andreev phases re$N hybrid systems belongi_ng to the new symmetry classes,
quires only an even number of visits to each vertex. In theén the semiclassical approximation. While it was known that

self-dual approximation, this leads to additional orligee
Fig. 4) and to the result

cl _ _
m,sd—

K 1+(—-1)™2m+1)=KS(t)=—1, (29

semiclassics has problems in some types of Andreev systems
[10,11], we showed both for billiards and for quantum graphs
that the universal spectral statistics of the random-matrix en-
semblesC-GE andCI-GE as reflected by the appropriately
generalized form factor is correctly reproduced by semiclas-

the leading order term for short times predicted by the corsical theory. An important condition for finding the universal

responding random-matrix ensemi@}é¢-GE.

V. ANDREEV BILLIARDS WITHOUT MAGNETIC FIELD

Finally, we come back to Andreev billiards without mag-
netic field(classCl). As explained abovéin Sec. Ill), holes
necessarily retrace the electron trajectory,

spectral statistics is that treombinedelectron-hole dynam-
ics of the Andreev system is classically chaotic. In particular,
this requires that the hole does not retrace the trajectory of
the incoming electron. In clag3, this is naturally the case in
magnetic Andreev billiards. We related the universal features
in the density of states to self-dual periodic orbits, which are

thus leading gy ariant under electron-hole exchange. Our results clarify

nonisolated periodic orbits and nonuniversal spectral statisjnger which conditions to expect spectral statistics described

tics (hard gap. Universal spectral statistics €l can, how-
ever, be found in such Andreev billiards withone-channel
leads. The reason for this is that Andreev billiards with

by the novel random-matrix ensembles.
The results presented can be extended to the symmetry
classe®D, DIII, and the chiral classes. We also note that our

leads containing one channel each can be mapped 10 Staly ;1 for Andreev graphs remain valid for a rather large

graphs. The quantization condition for Andreev billiards with
N leads is[12]

det(S(E)—1)=0. (29

Here S(E) is theNX N Andreev billiard scattering matrix

S(E)=Suc(E)D_Sic(—E)D, (30)

with Syc(E) the scattering matrix describing the coupling of
the N channels by the normal region. The matrié2s de-
scribing Andreev scattering in the leads are diagobal=

class of central scattering matric&. . Finally, by going
beyond the self-dual approximation in Andreev graphs, it is
possible to extract the orbits contributing to the form factor
to linear order int (weak localization corrections These
extensions will be discussed elsewhgt8].
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