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Current-induced conformational switching in single-molecule junctions constitutes a fundamental
process in molecular electronics. Motivated by recent experiments on azobenzene derivatives, we
study this process for molecules which exhibit two (meta)stable conformations in the neutral state,
but only a single stable conformation in the ionic state. We derive and analyze appropriate Fokker-
Planck equations, obtained from a density-matrix formalism starting from a generic model, and
present comprehensive analytical and numerical results for the switching dynamics in general and
the quantum yield in particular.

I. INTRODUCTION

Over the past few years the emerging field of molecular
electronics has fueled the interest in understanding the
physics of single-molecule transistors. Not only are there
promising technological applications, it has also been
shown that the presence of specific internal molecular de-
grees of freedom such as vibrations, spins, and different
chemical conformations leads to numerous novel quan-
tum transport phenomena that go beyond the physics
observed in other nanosized objects such as quantum
dots.1–14 An essential requirement for electric circuits of
nanoscale dimensions is a molecular device that can be
switched between two distinct conductive states. Because
of intrinsic bistabilities many single-molecule junctions
reveal switching behavior, e.g. involving cis and trans
isomers of a molecule.15–25

In this context, various types of switching mechanisms
that stimulate changes of the chemical conformation have
been discussed in the literature.15 Consider a molecule
that is either in the cis or in the trans configuration mod-
eled by a double-well potential as shown in Fig. 1(a). The
potential surface is characterized by an energy barrier W
between the two minima and an attempt frequency ω0,
which is determined by the curvature at the local mini-
mum. This energy barrier can be overcome by (i) thermal
activation. The rate for this process is given by

Γthermal ≃
ω0

2π
exp

(

− W

kBT

)

. (1)

For thermal energies kBT larger than the vibrational en-
ergy ~ω0, thermal activation dominates over (ii) quantum
tunneling, cf. Fig. 1(b). Switching due to quantum tun-
neling is also exponentially suppressed,26

Γquantum ≃ ω0

2π
exp

(

− W

~ω0/2π

)

. (2)

Both thermal and quantum tunneling do not require the
molecule to be out of equilibrium and, in principle, occurs
even at zero bias voltage. In addition, conformational
switching can also be induced by the applied current,
which drives the molecule out of equilibrium. (iii) Such

current-induced switching can be triggered by tunneling
events into and out of the molecule which are accom-
panied by the emission of a single vibron, as illustrated
in Fig. 1(c). Assuming that all relevant charge states
exhibit the same conformational bistability and ohmic
response,

Γcur-ind(V ) ≃ λG

e
(|V | − ~ω0/e) Θ (|V | − ~ω0/e) , (3)

i.e. the rate for such processes is proportional to the phase
space volume of electrons energetically available in the
reservoirs determined by the bias voltage V . Here G
is the conductance and λ the effective electron-vibron
coupling strength. Equation (3) can be derived treating
the electron-vibron coupling perturbatively.22 (iv) The
switching may also require several subsequent inelastic
tunneling events to overcome the energy barrier between
the cis and trans state, cf. Fig. 1(d). If the critical oscil-
lator state where the transition becomes possible is given
by n, the switching rate acquires the form22

Γcur-ind,n(I) ∼ In. (4)

In order to observe such a power-law dependence on
the current I the excitation of vibrons has to be in-
duced by the current, whereas vibrational de-excitation
has to be dominated by dissipative rather than current-

induced processes. The discussed switching mechanisms
(i)–(iv) have been found to play an important role in
oligo-phenylenevinylene (OPV3) derivatives which have
recently been investigated by Danilov et al.15 in a molec-
ular junction.

In the present paper we consider molecules which ex-
hibit conformational bistability only in the neutral state,
while the potential surface of the ionic state has a single
minimum. Due to an avoided level crossing this mini-
mum is typically in between the two minima of the dou-
ble well, cf. Fig. 1(e), e.g. as approximately realized in
azobenzene.27 Our main focus is on the regime of strongly
asymmetric couplings to the leads, corresponding to the
experimental setup of a scanning tunneling microscope
(STM) conductance measurement. Here the molecule
is strongly coupled to the substrate, while the coupling
to the tip is much weaker. This asymmetry has im-
portant consequences for the conductance and for the
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FIG. 1: Switching process induced by (a) thermal activation,
(b) quantum tunneling, (c) vibrational-assisted tunneling in-
volving the emission of a single phonon, and (d) the emis-
sion of several phonons. The switching process studied in the
present paper is sketched in (e).

dynamics of the passage of charge carriers. For ther-
mal energies large compared to the level-broadening due
to the coupling to the leads, the stationary current is
I ∼ e ΓtipΓsub/(Γtip + Γsub), where Γtip and Γsub are the
tunneling-induced level widths due to the coupling to the
tip and to the substrate, respectively. Thus, the current
passing through an asymmetric junction is, to a good
approximation, governed by the smaller rate only. The
molecule spends most of the time in the neutral state,
i.e. whenever an electron tunnels from the tip onto the
molecule, it continues into the substrate almost instan-
taneously, while the average waiting time until the next
tunneling event from the tip is long.

The basic mechanism of current-induced switching now
follows from the Franck-Condon principle, which states
that the vibrational state does not change during the
much faster electronic tunneling processes in and out of
the molecule. The switching process is initiated by a
first transition from one of the two conformational states
into the charged state. After the molecule evolves on the
potential surface of the charged state, it eventually un-
dergoes a second tunneling transition from the charged

state into a conformational state, cf. Fig. 1(e). Clearly,
the switching probability strongly depends on the ratio
of the vibrational frequency in the charged state, ω, and
Γ = Γtip +Γsub. For ω ≫ Γ the molecule oscillates many
times between the two tunneling events, and the prob-
abilities for transitions from the charged state into the
two conformational states of the neutral molecule are of
the same order. In contrast, for the regime ω ≪ Γ rel-
evant for STM experiments,28 the ionic state survives
for much less than a full vibration period. Thus, the
molecule returns to its original conformation with high
probability, and conformational switching occurs rarely.
Such low-quantum-yield switching has been observed in
recent experiments.16,29,30 For instance, STM measure-
ments on azobenzene derivatives show that only one out
of 1010 tunneling electrons induces a switching event.16

It is this regime of low-quantum-yield switching in
asymmetric molecular junctions which is the principal
focus of the present paper. We focus on the regime of se-
quential tunneling relevant to STM experiments on pas-
sivated surfaces.31 We present a fully analytical treat-
ment of the quantum yield within a generic model sys-
tem. Specifically, we show that the temperature de-
pendence reflects a sensitive interplay of vibrational fre-
quency, tunneling rates, and charge-induced vibrational
deformation. Our results are obtained from a Fokker-
Planck equation which incorporates the molecule-tip and
molecule-substrate tunneling as well as dissipation of the
vibrational degree of freedom. A crucial assumption in
our approach is the quasi-classical treatment of the vibra-
tions. In this respect our approach is related to the for-
malism used for the description of transport through na-
noelectromechanical systems (NEMS) that have recently
received much attention.32–34

The paper is organized as follows. In Sec. II, we outline
the model. In Sec. III, we derive a set of quasi-classical
Boltzmann equations which describes the tunneling dy-
namics in the absence of dissipation. In Sec. IV, the
Boltzmann equation is extended to account for dissipa-
tion, resulting in a set of Fokker-Planck equations. A
formal solution for the quantum yield, which is based on
this Fokker-Planck equation, is derived in Sec. V. Finally,
the formal solution is analyzed in detail, both analytically
and numerically, in Sec. VI. We conclude and summarize
in Sec. VII. Some details are relegated to an appendix.

II. MODEL

We consider a vibrating single molecule which is cou-
pled to two reservoirs, which serve as source and drain
electrodes. The vibrational potential surface of the neu-
tral molecule is assumed to have the form of a double
well representing the cis and the trans state, whereas the
potential surface of the charged state is assumed to be
harmonic.

Vibrational relaxation in the neutral state is assumed
to be sufficiently fast so that tunneling events always
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start from one of the minima of the double well. This
permits one to approximate the double well potential by
two separate harmonic oscillators. The resulting three-
level system with states |cis〉, |trans〉, |1〉 is described by
the molecular Hamiltonian

Hmol = Hcis|cis〉〈cis| + Htrans|trans〉〈trans| + H1|1〉〈1|,
(5)

where

Hs = ǫs +
p2

2ms
+ Vs(x) (6)

denotes the vibrational Hamiltonian of subspace s = cis,
trans, 1. The variables x, p, and ms denote the nor-
mal coordinate, momentum, and reduced mass of the vi-
brational modes, and Vs(x) denotes the corresponding
potential within the harmonic approximation, Vs(x) =
msω

2
s(x − xs)

2/2, with oscillator frequency ωs and local
minimum xs. The parameter ǫs denotes the energies of
the relevant electronic states.

The full system is modeled by the Hamiltonian

H = Hmol + Hleads + Ht, (7)

where

Hleads =
∑

αk

ǫka†
αkaαk (8)

describes the non-interacting electrons in the two leads
(α =tip, sub), and

Ht =
∑

αk

tαa†
αk

(

|cis〉〈1| + |trans〉〈1|
)

+ h.c. (9)

represents the tunneling between the molecule and the
leads. We assume that tα is non-zero for the |cis〉 ↔ |1〉
(|trans〉 ↔ |1〉) transitions when x < x1 (x > x1). Here

a†
αk creates an electron with momentum k and energy ǫk

in lead α. We omit the spin index of these operators,
since we ignore spin-dependent transport phenomena in
the following.

III. BOLTZMANN EQUATION

The dynamics of the system is described by a set of
Boltzmann equations, which we derive within a density-
matrix formalism. The starting point is the von Neu-
mann equation,

dρ

dt
= − i

~
[H, ρ] , (10)

for the time evolution of the density matrix ρ of the sys-
tem, which has the formal iterative solution35

dρ(t)

dt
= − i

~
[Ht(t), ρ(0)]

− 1

~2

∫ t

0

dt′ [Ht(t), [Ht(t
′), ρ(t′)]] .

(11)

Here operators O with an explicit time argument are in
the interaction picture,

O(t) = ei(Hmol+Hleads)t/~ O e−i(Hmol+Hleads)t/~. (12)

The dynamics of the molecule is described by the reduced
density matrix which is obtained by tracing out the de-
grees of freedom of the leads,

ρmol(t) = Trleads ρ(t). (13)

Solving Eq. (11) for ρ relies on two approximations.35

The large-reservoir approximation allows us to write the
density matrix as a direct product,

ρ(t) ≃ ρmol(t) ⊗ ρleads, (14)

of the density matrices ρmol(t) and ρleads describing the
degrees of freedom of the molecule and the leads. In addi-
tion, we neglect effects of the molecule on the leads, which
are assumed to remain in separate thermal equilibria de-
spite the applied bias voltage and which are described by
Fermi distribution functions fα(ǫ) = 1/[e(ǫ−µα)/kBT + 1]
at chemical potentials µα. The Markov approximation
permits us to replace

ρmol(t
′) ≃ ρmol(t) (15)

in Eq. (11) and to replace the lower limit of integration
by minus infinity, which means that memory effects of
the molecular dynamics are ignored.

Furthermore, we assume ρmol(t) to be diagonal in the
conformational degree of freedom,

ρmol = |cis〉 ρcis 〈cis| + |trans〉 ρtrans 〈trans| + |1〉 ρ1 〈1| .
(16)

Superpositions of different charge states can be neglected
due to superselection rules,36,37 while superpositions of
the cis and the trans state are assumed to decay rapidly
due to fast vibrational relaxation in the neutral state.

Using Eqs. (14)–(16), tracing out the degrees of free-
dom of the leads, and opening the double commutator in
Eq. (11) gives

dρmol

dt
= − i

~
[Hmol, ρmol] −

∑

αk

|tα|2
~2

∑

s=cis,trans

∫ ∞

0

dτ

× (|s〉〈s| − |1〉〈1|)
{

eiǫkτ/~

(

fα(ǫk)e−iH1τ/~eiHsτ/~ρs

− [1 − fα(ǫk)] ρ1e
−iH1τ/~eiHsτ/~

)

+ h.c.

}

. (17)

Going to the Wigner representation of the density matrix,

Ws(x, p) =

∫

dy

2π~
e−ipy/~〈x +

y

2
|ρs|x − y

2
〉, (18)

allows for a semiclassical description of the vibrational
modes, where, in the quasiclassical limit, the Wigner
function Ws(x, p) describes the probability of finding the
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oscillator in state s = cis, trans, 1 at position x with
momentum p.

The Wigner transform of the terms in Eq. (17) is eval-
uated for the slow-resonator limit, ωs ≪ Γ, and the
sequential tunneling limit, kBT ≫ ~Γ. Details on the
calculation are explained in the Appendix. One finally
arrives at the following set of Boltzmann equations,

∂Ws

∂t
= {Hs, Ws} + R1→sW1 − Rs→1Ws, (19a)

∂W1

∂t
= {H1, W1} +

∑

s

(Rs→1Ws − R1→sW1) , (19b)

for s = cis, trans, with transition rates which are equiv-
alent to Fermi’s Golden Rule,

Rs→1(x, p) =
∑

α

Γαfα

(

H1(x, p) −Hs(x, p)
)

, (20a)

R1→s(x, p) =
∑

α

Γα

[

1 − fα

(

H1(x, p) −Hs(x, p)
)]

.

(20b)

Here Hs(x, p) = ǫs + p2/2ms + Vs(x) is the Wigner
transform of the harmonic-oscillator Hamiltonian and
Γα = 2π|tα|2να/~, where να denotes the density of states
in lead α, which we take as a constant. The Poisson
bracket appearing in Eq. (19) is defined as

{Hs, Ws} =
∂Hs

∂x

∂Ws

∂p
− ∂Hs

∂p

∂Ws

∂x
. (21)

Note that all rates in Eq. (20) depend only on x and
not on p if one assumes equal reduced masses ms for all
vibrational modes.

IV. FOKKER-PLANCK EQUATION

The set of Boltzmann equations derived in the previ-
ous section does not have a unique stationary solution in
the absence of electronic tunneling. In this case Eq. (19)
is solved by any function Ws that depends on Hs only,
since the Poisson brackets then vanish exactly. However,
a unique solution is obtained if we add the coupling to a
bath, which takes into account the damping of the vibra-
tions such that the system is driven back towards (local)
equilibrium. The relaxation of the molecular vibron due
to the presence of a bosonic bath can be modeled by the
Caldeira-Leggett Hamiltonian,38

HCL = Hvib + Hbath + Hcoupling, (22)

where

Hvib = ~ωb†b (23)

describes the vibron,

Hbath =
∑

q

~ωqb
†
qbq (24)

a bath of harmonic oscillators, and

Hcoupling = ~g(b† + b)
∑

q

(b†q + bq) (25)

the linear coupling between them. Here b†q creates a
phonon in the reservoir with frequency ωq and g deter-
mines the coupling strength. Treating both the bosonic
and fermionic coupling to the leads perturbatively, we
obtain a set of Fokker-Planck equations,38

∂Ws

∂t
= {Hs, Ws} + R1→sW1 − Rs→1Ws

+ γs
∂

∂p
pWs +

γs

2
ms~ωs coth

(

~ωs

2kBT

)

∂2

∂p2
Ws,

(26a)

∂W1

∂t
= {H1, W1} +

∑

s

(Rs→1Ws − R1→sW1)

+ γ1
∂

∂p
pW1 +

γ1

2
m1~ω1 coth

(

~ω1

2kBT

)

∂2

∂p2
W1,

(26b)

to lowest non-vanishing order in ~g. The damping rate
γs = 2πg2

∑

q δ(ωs − ωq) determines the magnitude of

the drift (terms proportional to the first derivative with
respect to the momentum) and diffusive motion (terms
proportional to the second derivative). Note that our
calculation ignores any effects of dissipation on the tun-
neling rates.

In the absence of electronic tunneling, the station-
ary solutions of Eq. (26) reduce to Gaussian distribution
functions,

Ws ∼ exp

[

− Hs(x, p)

~ωs coth (~ωs/2kBT ) /2

]

, (27)

where s = cis, trans, 1. If the vibrational energy is larger
than the thermal energy, ~ωs ≫ kBT , one obtains the
occupation probabilities of the ground state wave func-
tion of the harmonic oscillator, whereas for the reverse
case, ~ωs ≪ kBT , one obtains Boltzmann distribution
functions.

V. QUANTUM YIELD

The Fokker-Planck equation derived in Sec. IV al-
lows us to investigate the current-induced conformational
switching dynamics of the molecule. Specifically, we are
interested in the quantum yield which is the probabil-
ity for a single electron tunneling through the system to
switch the molecule. We calculate this quantity as the
conditional probability for the molecule to go, say, into
the trans state in the first tunneling event after excitation
from the cis state into the charged state at time t = 0.

We are interested in the regime where the molecule
spends almost all the time in the neutral state, i.e. ei-
ther in the cis or in the trans conformation, due to very
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asymmetric couplings to the leads. The rate for elec-
tronic tunneling from the molecule into the leads is as-
sumed to be much higher than all vibrational frequencies,
ωs ≪ Γ. Shortly after a transition from the cis state to
the charged state, the two Wigner functions Wcis and
Wtrans are equal to zero. In this case the equations of
motion (26) simplify to

∂Wcis

∂t
= {Hcis, Wcis} + R1→cisW1 + γcis

∂

∂p
pWcis

+
γcis

2
mcis~ωcis coth

(

~ωcis

2kBT

)

∂2

∂p2
Wcis,

(28)

∂Wtrans

∂t
= {Htrans, Wtrans} + R1→transW1

+ γtrans
∂

∂p
pWtrans

+
γtrans

2
mtrans~ωtrans coth

(

~ωtrans

2kBT

)

∂2

∂p2
Wtrans,

(29)

∂W1

∂t
= {H1, W1} − (R1→cis + R1→trans)W1. (30)

We need not include any rates out of the cis and trans
states, since we are only interested in the first out-
scattering event. The drift and diffusion terms in Eq. (30)
for the charged state have been neglected. This is justi-
fied since the switching dynamics is controlled by times
t ∼ 1/ωs beyond which W1(t) is exponentially sup-
pressed. In contrast, dissipation becomes relevant for
much later times of order 1/γs. Note also that the dissi-
pative terms in the other two equations do not change the
overall probability to be in one of the charge states, but
only the detailed form of the distribution function within
each charge states. Consequently, dissipation affects the
quantum yield only through the initial vibrational distri-
bution function after an electron tunnels from the tip to
the molecule.

It is convenient to introduce action and angle variables
(S and θ) for the charged state,

x = −
√

2S

m1ω1
cos θ, p =

√

2m1ω1S sin θ, (31)

since this transformation generates a cyclic variable and
reduces the Poisson bracket to the simple form

{H1, W1} = −ω1
∂W1

∂θ
. (32)

Since Eq. (30) does not contain Wcis and Wtrans, it can
thus be solved independently,

W1(θ, S, t) = W1(θ − ω1t, S, t = 0)

× exp

[

−
∫ t

0

dt′
∑

s

R1→s(θ − ω1t
′, S)

]

.

(33)

We can now insert this result into Eq. (29). Integrating
over phase space yields
∫

dθ dS Wtrans(θ, S, t) =

∫

dθ dS R1→trans(θ, S)

×
∫ t

0

dt′W1(θ − ω1t
′, S, t = 0)

× exp

[

−
∫ t′

0

dt′′
∑

s

R1→s(θ − ω1t
′′, S)

]

,

(34)

where we made use of the fact that the integral of the
Poisson bracket over phase space vanishes.

The quantum yield is the total probability of going into
any trans state with position x and momentum p at any
time t > 0,

Y = lim
t→∞

∫

dθ dS Wtrans(θ, S, t). (35)

First we calculate the partial quantum yield, y(θ0, S0),
which is obtained if one assumes a delta function in phase
space for the initial distribution function of the charged
molecule, W1(θ, S, t = 0) = δ(S−S0) δ(θ−θ0). Then the
total quantum yield Y can be computed as an average
over all possible initial conditions W1(θ, S, t = 0),

Y =

∫

dθdS W1(θ, S, t = 0)y(θ, S). (36)

For the partial quantum yield we obtain

y(θ, S) =

∫ ∞

0

dt′ R1→trans (θ + ω1t
′, S)

× exp

[

−
∫ t′

0

dt′′
∑

s

R1→s (θ + ω1t
′′, S)

]

. (37)

Note that it depends on both xcis and xtrans because of
the position dependence of the rates R1→cis and R1→trans.
Making use of the periodicity of the rates in θ we can per-
form the integrations over complete periods, T1 = 2π/ω1,
and obtain

y(θ, S) =

∫ T1

0

dt′ R1→trans (θ + ω1t
′, S)

×
exp

[

−
∫ t′

0 dt′′
∑

s R1→s (θ + ω1t
′′, S)

]

1 − exp
[

−
∫ T1

0
dt′′
∑

s R1→s (θ + ω1t′′, S)
] .

(38)

In the regime of our interest, where the tunneling rate is
large compared to the oscillation frequency, ω1 ≪ Γ, the
exponential in the denominator is very close to zero and
can be neglected, such that

y(θ, S) ≃
∫ T1

0

dt′ R1→trans (θ + ω1t
′, S)

× exp

[

−
∫ t′

0

dt′′
∑

s

R1→s (θ + ω1t
′′, S)

]

. (39)
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This result has a clear physical interpretation. The ex-
ponential describes the conditional probability that the
molecule starting at phase space point S and θ at time
t′′ = 0 is still in the charged state at time t′′ = t′.

VI. RESULTS AND DISCUSSION

In what follows, we assume for simplicity that the three
oscillators of the cis, trans, and charged states centered
at xcis, xtrans, and x1 = 0, respectively, all have the same
reduced mass m and frequency ω. The damping rate is
thus the same for all vibrational states and we denote it
as γ.

The regime of interest is characterized by the inequal-
ities

Γtip ≪ ω ≪ Γsub. (40)

Moreover, we will assume that the tip-to-molecule tun-
neling is sufficiently weak,

Γtip ≪ γ ≪ ω, (41)

so that the vibrational mode thermally equilibrates in
both the cis and trans conformation after each tunneling
event. The nonequilibrium regime Γtip ≫ γ is clearly
interesting but beyond the scope of the present paper.

It is natural to assume that the asymmetric molecule-
electrode coupling goes along with asymmetric voltage
drops (although the latter are determined by capacitive
couplings rather than tunnel amplitudes). To be specific,
we will assume that the voltage V = Vtip − Vsub drops
entirely between tip and molecule,

Vtip ≃ V, Vsub ≃ 0. (42)

This has important consequences for the electronic trans-
port. Energy conservation for the electronic tunneling
from the cis state into the charged state requires

ǫ1 − ǫcis + V1(x) − Vcis(x) < Vtip. (43)

In the vicinity of x ≃ xcis this condition reduces to

ǫ1 − ǫcis +
1

2
mω2x2

cis < Vtip, (44)

which defines a threshold voltage beyond which tunneling
from tip to molecule becomes possible. For voltages not
too far below this threshold, tunneling from the molecule
into the substrate is always energetically possible, since
the corresponding condition for energy conservation,

ǫ1 − ǫcis + V1(x) − Vcis(x) > Vsub, (45)

is always satisfied for sufficiently large values of ǫ1 − ǫcis
and Vsub ≃ 0.

When the bias exceeds the threshold value Vc = ǫ1 −
ǫcis + mω2x2

cis/2, the steady-state current through the
molecule is given by

Icis ≃ e Γtip, (46)

10
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Γsub/ω = 5

Γsub/ω = 10
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FIG. 2: Partial quantum yield y(θ) as a function of phase
space angle θ for different ratios of the electronic tunneling
rate Γsub and the vibrational frequency ω.

i.e. it is essentially governed by the slower tip-to-molecule
tunneling. Due to the Franck-Condon principle, the vi-
brational distribution function in the cis state will be left
unaltered during the tunneling process. Due to the as-
sumption Γtip ≪ γ and for thermal energies kBT ≫ ~ω,
the stationary solution of Eq. (26) in absence of tun-
neling reduces to a Boltzmann distribution function,
cf. Eq. (27). Thus the initial distribution function of
the charged state is

W1(θ, S, t = 0) =
ω

2πkBT
exp

[

−Hcis(θ, S) − ǫcis
kBT

]

.

(47)
Notice that if the bias voltage is in the vicinity of the
threshold voltage Vc, the distribution function becomes
truncated during tunneling due to energetic restrictions.
Apart from the initial distribution function, the switching
dynamics is mostly determined by tunneling processes
from the molecule into the substrate. Since these pro-
cesses are not affected by energetic restrictions, their
rates are essentially constant, independent of tempera-
ture and bias.

We begin our analytical analysis by deriving the partial
quantum yield y(θ, S). We approximate R1→trans(θ, S) =
Γsub for |θ| > π/2 and zero otherwise. Similarly, we take
R1→cis(θ, S) = Γsub for |θ| < π/2. Then, we find for
ω ≪ Γsub

y(θ) ≃ exp

[

−Γsub

ω

(π

2
− θ
)

]

. (48)

Note that the quantum yield depends only on the phase
space angle θ and not on the action coordinate S. This
is a direct consequence of the harmonic potential surface.
Phase space angles θ > 0 correspond to positive initial
velocities and thus lead to a higher quantum yield as
compared to θ < 0. Plots of the partial quantum yield
for different values of Γsub/ω are shown in Fig. 2.

For θ = 0 the partial quantum yield is approximately
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exp (−Γsubπ/2ω). This result has a simple physical in-
terpretation, since π/2ω is just a quarter period of the
harmonic motion on the potential surface.

For the case where the initial distribution function
W1(θ, S, t = 0) is given by Eq. (47), i.e. the thermal
distribution in the cis state, the total quantum yield is
readily obtained from Eqs. (36) and (39),

Y =
ω

2πkBT
exp

(

−mω2x2
cis

2kBT

)

×
∫ +π/2

−π/2

dθ exp

[

−Γsub

ω

(π

2
− θ
)

]

×
∫ ∞

0

dS exp

(

− ωS

kBT
+

mω2|xcis|
kBT

√

2S

mω
cos θ

)

.

(49)

We now change the action variable to J = ωS/kBT and
introduce the large parameter L = mω2x2

cis/2kBT . More-
over, it is useful to write the second large parameter
Γsub/ω = αL, where α denotes the ratio of the two large
parameters. Note that α increases with temperature and
can be interpreted as a measure of temperature. With
these definitions, we find

Y =
exp (−L)

2π

∫ +π/2

−π/2

dθ exp
[

−αL
(π

2
− θ
)]

×
∫ ∞

0

dJ exp
(

−J + 2
√

LJ cos θ
)

. (50)

If the dominant contribution to the θ-integral comes from
a region which does not include θ ≃ π/2, the integration
over J can be performed by saddle-point integration due
to L ≫ 1. This can be made explicit by introducing
x = J/L. Doing so and performing the saddle-point in-
tegration over x, we obtain

Y =

√

L

π

∫ +π/2

−π/2

dθ cos θ exp
{

−L
[

α
(π

2
− θ
)

+ sin2 θ
]}

.

(51)
Finally, at sufficiently low temperatures, α < 1, we can
also perform the angular integration by the saddle-point
method. Finding the saddle point, we obtain that the
optimal θ is given by

θ0 =
1

2
arcsinα. (52)

The existence of an optimal θ reflects the competition
between the following trends: The larger the initial θ,
the smaller is its weight in the initial distribution func-
tion, but the larger is the corresponding partial yield.
Performing the saddle-point integration, we obtain our

central analytical result for the quantum yield,

Y ≃
(

1 +
√

1 − α2

2
√

1 − α2

)1/2

× exp

{

−L

2

[

α (π − arcsinα) + 1 −
√

1 − α2
]

}

.

(53)

It is instructive to analyze various limits of this equa-
tion. At very low temperatures, α ≪ 1, the expression
(53) for the quantum yield takes the form

Y ≃ exp

(

−π

2

Γsub

ω

)

. (54)

This reflects the fact that at low temperatures, the initial
distribution function is very narrow and is well approxi-
mated by δ(S −mωx2

cis/2)δ(θ). Thus, switching requires
that the system stays for a quarter oscillation period in
the charged state. At larger temperatures where α is
close to but still smaller than one, we find

Y ≃ 1√
2(1 − α2)1/4

exp

[

−L

(

π

4
+

1

2

)]

. (55)

This result is remarkable in that the exponential suppres-
sion is stronger than what one would expect for thermal
activation, namely exp(−L). This suggests that there
exists a “critical” temperature where there is a sharp

crossover between current-induced switching and pro-
cesses closely related to thermal activation, originating
from θ ≃ π/2.

Indeed, it is straightforward to compute the contri-
bution to the quantum yield Y in Eq. (50) from angle
variables θ in the vicinity of π/2 which were previously
neglected. To do so, we start with Eq. (50), expand the
exponent for θ ≃ π/2, and obtain

Yπ/2 ≃ L

2π
exp (−L)

×
∫ ∞

0

dθ̃

∫ ∞

0

dJ exp
[

−L
(

αθ̃ + J − 2
√

Jθ̃
)]

.

(56)

Changing integration variables to t = Lθ̃ and j = LJ , we
note that the last term in the exponent can be neglected
in the limit of large L. Then, the integration becomes
elementary and we obtain

Yπ/2 ≃ ω

2πΓsub
exp (−L). (57)

Thus, we indeed confirm that for α close to unity,
the dominant contribution is no longer current-induced
switching, but rather thermal-activation processes. Since
L ≫ 1 there is a sharp crossover between both behaviors
when the exponents in Eqs. (53) and (57) coincide. This
happens for a critical αc determined by

αc

2
(π − arcsinαc) =

√

1 − α2
c , (58)
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FIG. 3: Total quantum yield Y as a function of the inverse
temperature 1/T for different ratios of the electronic tunnel-
ing rate Γsub and the vibrational frequency ω. Solid lines:
numerical integration of Eq. (49). Dashed lines: quantum
yield for T < Tc, Eq. (53). Dotted lines: quantum yield for
T > Tc, Eq. (57).

which yields αc ≃ 0.63.
The critical αc translates into a critical temperature

kBTc = αc
ω

Γsub

mω2x2
cis

2
. (59)

For T < Tc, cis-trans switching is dominated by current-
induced switching while thermal activation takes over for
T > Tc. Since L is typically a large parameter, this
crossover will typically be sharp. It is important to note
that this crossover occurs long before the thermal broad-
ening of the initial distribution function becomes compa-
rable to |xcis|.

These analytical results are compared to numerical
evaluations of Eq. (49) in Fig. 3 (solid lines) where the
quantum yield is shown as a function of temperature.
For T < Tc, the yield can be approximated by the expres-
sion for current-induced switching [dashed lines, Eq. (53)]
while for T > Tc, it is mostly thermally activated [dotted
lines, Eq. (57)]. The existence of a sharp transition for
T close to Tc can be clearly seen in the figure.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the current-induced
conformational switching in single-molecule junctions.
Our study is motivated by recent STM experiments on
azobenzene derivatives, which we model as having two
stable conformations in the neutral state (cis and trans),
while the potential surface of the charged molecule only
exhibits a single minimum [Fig. 1(e)]. Current flow
through such a conformational switch is characterized
by telegraph noise since the two conformations will in
general be characterized by different conductances and
switching between the conformations occurs rarely.

As appropriate for STM setups, we consider a molec-
ular junction with strongly asymmetric coupling to tip
and substrate and treat current flow within the sequen-
tial tunneling approximation. The latter is justified in
setups with passivated substrates. Our central finding is
that there exists a rather sharp crossover between two
qualitatively different switching mechanisms as a func-
tion of temperature. For low temperatures, the switching
process is induced by tunneling electrons when the vibra-
tional coordinate is close to the minimum of the cis state.
We call this process current-induced switching. Beyond a
critical temperature, switching is strongly dominated by
tunneling processes which occur close to the maximum
of the barrier between the cis and the trans states. We
refer to this process as thermally activated. Remarkably,
this happens long before the temperature becomes of the
order of the barrier height.

Experimentally, the two switching mechanisms are
readily distinguished by their different temperature de-
pendences. While the current-induced switching exhibits
only weak temperature sensitivity, thermal activation
processes follow Arrhenius behavior, see Fig. 3. More-
over, our results predict that the quantum yield de-
pends exponentially on the tunneling rate to the sub-
strate which makes it highly sensitive to the level of pas-
sivation of the substrate.

Our results leave several avenues for future research.
It would be interesting to analyze the quantum yield as
a function of voltage for voltages in the vicinity of the
threshold for tip-to-molecule tunneling. Most important
would be an extension to include the resonant broaden-
ing of the molecular orbital by the molecule-substrate
coupling, which would make our results applicable to ex-
periments with non-passivated substrates.

Acknowledgments

We would like to thank J. I. Pascual for helpful discus-
sions. Support by the Deutsche Forschungsgemeinschaft
through Sfb 658 as well as the BMBF through DIP is
gratefully acknowledged.

Appendix

In this Appendix, we show how to obtain the Boltz-
mann equation (19) from the master equation (17) in the
sequential tunneling regime. We assume that the oscil-
lators of the cis, trans, and charged states centered at
xcis, xtrans, and x1 = 0, respectively, all have the same
reduced mass m and frequency ω, which allows all cal-
culations to be done explicitly. It is evident that the
underlying arguments also extend to the more general
case.

Projecting Eq. (17) on, say, the cis state (the derivation
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for the two other states proceeds analogously), we obtain

dρcis

dt
= − i

~
[Hcis, ρcis] −

∑

αk

|tα|2
~2

∫ ∞

0

dτ

×
{

eiǫkτ/~

(

fα(ǫk)e−iH1τ/~eiHcisτ/~ρcis

− [1 − fα(ǫk)] ρ1e
−iH1τ/~eiHcisτ/~

)

+ h.c.
}

. (60)

The Wigner transform of this equation reads

∂

∂t
Wcis(x, p) = {Hcis(x, p), Wcis(x, p)}

− 2
∑

αk

|tα|2
~2

Re

∫ ∞

0

dτe
i

~ [(ǫk+ǫcis−ǫ1)τ−px̃τ−(x−
xcis

2 )p̃τ ]

×
{

fα(ǫk)Wcis

(

x − x̃τ

2
, p +

p̃τ

2

)

− [1 − fα(ǫk)] W1

(

x +
x̃τ

2
, p − p̃τ

2

)}

(61)

with x̃τ = xcis [cos (ωτ) − 1] and p̃τ = mωxcis sin (ωτ).

The first term in the right-hand side in (61) denotes the
Poisson bracket between the classical Hamiltonian and
the Wigner function of the cis state.

Computing the sum over momenta k in the wide-band
limit, one realizes that the integrand in (61) decays ex-
ponentially with the temperature. Since we are consider-
ing the slow-vibration limit (ω ≪ Γ) and the sequential-
tunneling regime (~Γ ≪ kBT ), we can therefore expand
(61) for ωτ ≪ 1 to obtain

∂

∂t
Wcis(x, p) ≃ {Hcis(x, p), Wcis(x, p)}

− 2
∑

αk

|tα|2
~2

Re

∫ ∞

0

dτe
i

~ [ǫk+ǫcis−ǫ1−mω2xcis(x−xcis/2)]τ

× {fα(ǫk)Wcis (x, p) − [1 − fα(ǫk)] W1 (x, p)} . (62)

The remaining integral over τ is easily evaluated and
guarantees energy conservation for the rates entering the
Boltzmann equation (19).
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