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PROGRAMMABLE GAUGE FIELDS

We briefly review the relation between strain fields and
synthetic gauge fields in the geometry of Zhu et. al. [1],
and obtain some further useful formulas specifically for
the pseudoelectric field. Consider applying a force F
along the y direction in Fig. 1 in the main text. It leads to
a stretch by ∆y. Force balance along any cut at constant
y implies F = W (y)hY εyy(y) where σyy(y) = Y εyy(y) is
the stress along y, h is the “width” of graphene, and Y
is the Young modulus. This implies a y-dependent strain
controlled by the width function W (y),

εyy(y) =
F

hY

1

W (y)
. (1)

Thus, a narrowing width yields a strain gradient

∂εyy
∂y

= − F

hY

∂W (y)
∂y

W (y)2
. (2)

In order to obtain a constant gradient
∂εyy

∂y one needs to
choose a specific width function, given by

W (y) =
frL

fr(L− y) + y
W (0), (3)

where fr = W (L)
W (0) .

One can relate the force and the stretch ∆y. Using

∆y =
∫ L

0
εyy(y)dy, and Eqs. (1) and (3), we have

∆y = L
F

hY

1 + fr
2frW (0)

. (4)

Next we would like to obtain all the strain tensor
components in order to calculate the pseudo vector po-
tential from Eq. (1). We use the constitutive relations
σxx = Y

1−ν̄2 (εxx + ν̄εyy), σyy = Y
1−ν̄2 (εyy + ν̄εxx), and

σxy = 2Gεxy, as well as stress equilibrium
∑
i=x,y ∂iσij =

0. Here ν̄ is the Poisson ratio, and G = E
2(1+ν̄) the shear

modulus. Assuming uniaxial stretch we have

εxx + ν̄εyy = 0. (5)

Combining these relations one obtains [1]
∂εxy

∂y = 0 and
∂εxy

∂x = −(1 + ν̄)
∂εyy

∂y . For
∂εyy

∂y = const we have

εxy(x, y) = −(1 + ν̄)
∂εyy(x, y)

∂y
x. (6)

Thus, we determine the synthetic gauge fields in the de-

vice using Eq. (1) in the main text,

Ax = −c(1 + ν̄)εyy, Ay = −2cεxy, (7)

where c = tβ
evF

.

Consider an adiabatic time-dependent force of the form
F (t) = FDC +FAC cos(ωt). Using Eq. (1) and the above
relations we have

B(x, y, t) = 3c(1 + ν̄)∂yεyy = −3c(1 + ν̄)
F

hY

∂yW (y)

W (y)2
,

Ex(x, y, t) = c(1 + ν̄)∂tεyy = c(1 + ν̄)
∂tF

hY

1

W (y)
,

Ey(x, y, t) = 2c∂tεxy = 2c(1 + ν̄)
∂tF

hY

∂yW (y)

W (y)2
x. (8)

Relating F to the stretch ∆y(t) = ∆y + sin(ωt)∆yAC
using Eq. (4), and here ignoring ∆yAC , gives

B =

(
∆y

L

)(
1− fr
1 + fr

)
1

L
× 6c(1 + ν̄). (9)

The first, second, and third factors show the relation be-
tween the pseudomagnetic field and the relative stretch,
the narrowing percentage, and the overall dimensions of
the ribbon. The last dimensionfull factor can be esti-
mated for graphene using t

evF
≈ 2.5µm T. For a relative

stretch of 20%, fr = 1/2, and L = 1µm, as in Fig. 2 in the
main text, as well as β ≈ 2.5 and ν̄ = 0.17, this estimate
gives 3 Tesla, consistent with our COMSOL simulation.

Similarly, the pseudoelectric field along x reads

Ex(y, t) =

(
∆yAC
L

)
ω

(
1

1 + fr

W (L)

W (y)

)
×4(1+ν̄)c cos(ωt).

(10)
Note its y dependence as given by W (y)−1 ∝ fr(L−y)+y
from Eq. (3), consistent with our COMSOL simulations
in Fig. 2(b),(c) in the main text.

SUPPRESSING INTERVALLEY SCATTERING
USING SMOOTH EDGES

The pseudo QH effect described in this paper strongly
relies on the absence of intervalley scattering. Intraedge
intervalley relaxation will suppress the current by a factor
∼ e−L/Liv where L is the length of the edge and Liv is
the intervalley scattering length.

We argue that this assumption can be satisfied in the
modified device in Fig. 1. The idea is that any sort of
edge physics on the atomic scale, which typically contains
an irregular combination of zigzag and armchair edges,
produces intervalley scattering. However one can push
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FIG. 1. Device designed to suppress intervalley scattering at the effective edges. (a) Adding parallel gates allows one to
define three parallel regions in the quantum Hall regime with different filling factors. (b) Schematic electron trajectories in the
presence of the disorder potential, which is assumed to be smooth on the atomic scale. The exterior edge states are sensitive to
the graphene termination which is expected to cause intervalley scattering, while the internal interface modes are only sensitive
to the smooth potential and hence preserve the valley index. The total number of edge modes at each edge or interface are
indicated, and are equally split among the two chiralities.

the effective edges into the interior of the device, where
their scattering becomes dominated by the disorder po-
tential stabilizing the QH effect [2, 3] whose characteristic
length scale is typically assumed to significantly exceed
the atomic distance. As a result, the trajectories in the
interior of the sample will have an approximately con-
served valley quantum number.

Consider adding three gates along the device as shown
in Fig. 1(a), allowing independent control of the density
in the three regions. We envision these regions to sta-
bilize separate gapped QH states, with the filling factor
in the central region being ν1(= ±2,±6,±10 . . . ), con-
trolled by Vg1, and ν2 6= ν1 in the exterior regions which
is controlled by Vg2. In the bulk, the QH states consist
of localized states, and the different QH states are sepa-
rated by extended states, as shown in Fig. 1(b) where the
typical disorder length exceeds the atomic scale. While
the external edge mode trajectories between the ν2 re-
gion and vacuum are sensitive both to bulk disorder and
to atomically sharp irregularities of the physical edge of
the graphene sample, the interface edge modes between
the ν1 and ν2 regions are determined solely by the smooth
disorder potential. These two types of 1D modes are spa-
tially separated by the ν2 gapped QH region of localized
states.

The filling factors dictate the number of edge modes
at each interface. For a real magnetic field the number
of chiral edge modes is given by the filling factor ν, or by

the difference of filling factors at an interface between two
different QH states. But for a pseudomagnetic field these
modes are equally split at each edge into the two chiral-
ities, i.e., there are ν/2 modes moving in each direction.
As denoted in Fig. 1(b) the number of edge modes of
each chirality is ν2/2 at the exterior edge and |ν1− ν2|/2
at the interior interface between ν1 and ν2 filling factors.
Let us assume ν1 ≥ ν2 > 0 for simplicity.

Without intervalley scattering anywhere, the total two-
terminal conductance as determined by the number of
modes is dictated by the largest filling factor

I

Vext
|no iv scattering =

e2

h
ν1. (11)

In the presence of strong intervalley scattering we assume
that the external edge modes of the ν2 region are gapped
out and do not contribute. Then

I

Vext
|strong iv scattering =

e2

h
(ν1 − ν2). (12)

As a function of the gate voltage Vg1 controlling ν1 the
conductance will exhibit nearly quantized plateaus. The
AC pseudo QH effect will follow a similar behavior.

This analysis also implies that one can use such a de-
vice to probe the importance of intervalley scattering at
the outer edge and test the length scale Liv.
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AC PSEUDO HALL CURRENT IN THE
DIFFUSIVE REGIME

As the density is tuned through the extended PLL
states, bulk transport takes place. This means that the
pseudoelectric field leads to a finite valley current per-
pendicular to the edges of the sample. Since the electric
field is opposite for the two valleys, this leads to a val-
ley polarization near the edges, which eventually in the
DC limit leads to a diffusive current effectively screening
the external pseudo-E field and suppressing I. For finite
frequency, this opposing diffusive current does not fully
develop. We next present an approximate semiclassical
analysis of the current at finite frequency.

We comment on the validity regime of our semiclas-
sical approach which does not capture quantum effects
associated with the large pseudo-magnetic field, as op-
posed to a full quantum transport approach e.g. using
the Kubo formula. In the QH plateaus the conductance
is quantized, and one does not expect to gain significant
extra information from a fully quantum Kubo formula
approach. In the QH transitions on which we are now
interested, the localization length ξ diverges. While at
zero temperature the critical behavior is cut-off by the
system size (L,W ), at finite temperatures there is an ad-
ditional dephasing length Lφ smearing the QH transition
(see for example [3, 4]). Our semi-classical approach be-
low is valid for finite temperature such that L,W � Lφ,
which we assume. On the other hand, a full Kubo for-
mula approach would be necessary to capture the physics
at the QH transition for length scales smaller than Lφ.

We consider a transport equation for the current den-
sities of the two valleys ~j±, which includes a dissipative
conductance σ, a diffusion current, and a Hall effect, as
well as the continuity equation,

~j± = ±σ ~E(t)−D~∇n± ∓ (ωcτ)~j± × ẑ, (13)

0 = ~∇ ·~j± +
dn±
dt

. (14)

Here D is the diffusion constant. The currents ~j± and the
densities n± are related by the continuity Eq. (14), and
also satisfy boundary conditions jx(x = 0, y) = jx(x =
W, y) = 0. Again here we ignore intervalley scattering
and hence obtain uncoupled equations for the two valleys.

We solve these equations under simplifying assump-
tions of (i) no y−dependence of neither the width
W (y) → W nor the fields E(y) → E, and (ii) the AC
electric field points along the x direction only. Then
the y component of Eq. (13) gives jy = ωcτjx, with
jx,y ≡ (j+)x,y, and the x component of Eq. (13) yields
the differential equation

[1 + (ωcτ)2]jx = σE +
D

iω
∂2
xjx, (15)

with boundary condition jx(0) = jx(W ) = 0. The elec-

tric field is the real part of Eeiωt and the current contains
both in and out of phase components. From the diffusion
time across the width of the sample

τT ≡
W 2

D
, (16)

we form a dimensionless parameter ωτT (which takes very
low values in our system as estimated below). One re-
casts the differential equation in terms of dimensionless
coefficients, a dimensionless variable x̃ = x/W , and a
source term,

jy =
ωcτ

1 + (ωcτ)2
σE +

1

i(ωτT )(1 + (ωcτ)2)
∇2
x̃jy, (17)

with boundary conditions jy(x̃ = 0) = jy(x̃ = 1) = 0. It
is solved by

jy(x, t) =
σE(ωcτ)

1 + (ωcτ)2
× j̃(x/W )

j̃(x̃) = 1 +

[
e−A − 1

eA − e−A
eAx̃ + (A→ −A)

]
, (18)

where A2 = i(ωτT )[1 + (ωcτ)2]. Having solved for j+
(valley K), we can obtain ~j− by replacing B → −B and
E → −E. Flow lines and the current profile as function
of x̃ are plotted in Fig. 2.

At high frequency screening does not have time to de-

velop. With A → ∞ we have jy(x, t) = σE(ωcτ)
1+(ωcτ)2 , except
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FIG. 2. Plot of the current distribution Eq. (18) in the diffu-
sive regime as function of frequency ω. The parameter A ∝ ω
takes the values 10, 3.3, 2. In the high-frequency regime the
current is in phase with the electric field, except near the
boundaries, since screening is not effective. At low frequen-
cies we obtain the parabolic current distribution in Eq. (19)
which is primarily out of phase.
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right on the edge. This current is in phase with the elec-
tric field.

At low frequency we expect a strong suppression of
the current due to screening. Expanding the solution for
small A, corresponding to low frequency, we obtain

jy −−−−−→
ωτT�1

i

2
σE · (ωcτ) · (ωτT ) · x

W

( x
W
− 1
)
, (19)

which is out of phase with respect to the electric field. We
see the suppression factor (ωτT ) due to the scrreening ef-
fect, which becomes efficient when ωτT � 1. Integrating
over the width of the sample yields

I =

∫ W

0

dxjy(x) =
i

12
σEW · (ωcτ) · (ωτT ). (20)

We now estimate the diffusion time τT = W 2/D for
a width W ≈ 0.5µm. For the diffusion coefficient D
we use Einstein’s relation σ = De2dn/dEF with σ ≈
e2

h a typical value for the longitudinal conductivity at
QH transitions [5, 6]. Here we estimate dn/dEF very
crudely by assuming a density of states of a clean LL,
B
Φ0
δ(E − ELL), spread due to disorder over an energy

given by the LL spacing ~ωc = vF
√
~eB. This estimate is

equivalent as an order of magnitude to the Dirac density
of states dn/dEF = 2

π
kF
~vF with kF determined from the

electronic density of a full LL, k2
F ∼ B

Φ0
. For B = 3T

this gives kF ∼ 102µm−1 and we obtain D ∼ 0.01m2s−1

giving a time of τT ≈ 10−10 s. For a typical piezoelectric-
mechanical frequency ω ≈ 107Hz we have ωτT ∼ 10−3.

[1] S. Zhu, J. A. Stroscio, and T. Li, Phys. Rev. Lett. 115,
245501 (2015).

[2] R. Prange and S. Girvin, Springer New York (1990).
[3] Y. Imry, Introduction to mesoscopic physics (Oxford Uni-

versity Press, 2002).
[4] H. Wei, D. Tsui, M. Paalanen, and A. Pruisken, Phys.

Rev. Lett. 61, 1294 (1988).
[5] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang,

M. Katsnelson, I. Grigorieva, S. Dubonos, and A. A.
Firsov, Nature 438, 197 (2005).

[6] S. D. Sarma, S. Adam, E. Hwang, and E. Rossi, Rev.
Mod. Phys. 83, 407 (2011).


