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We present a measurement protocol for discriminating between two different quantum states of a
qubit with high fidelity. The protocol is comprised of a projective measurement performed on the
system with small probability (a.k.a. weak partial-collapse), followed by a tuned postselection. We
report on an optical experimental implementation of the scheme. We show that our protocol leads
to an amplified signal-to-noise ratio (as compared with straightforward strong measurement) when
discerning between the two quantum states.
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The notions of “state” and “measurement” were parts
of the early framework of quantum mechanics. Even
after several decades, these are still active and vibrant
concepts for study. In fact, the study of measurements
of a quantum system branched-off to many intriguing
sub-topics, including: quantum state discrimination [1–
5], weak values [6–15], the quantum Zeno effect [16–18],
and precision measurements [19, 20], to name a few. The
former is of great practical interest in quantum informa-
tion processing. The ability to optimally discriminate
between non-orthogonal quantum states depends on the
fidelity of the measurement apparatus and on the amount
of prior knowledge we have on the states between which
we want to distinguish. Determining whether an un-
known state is equal (or not) to a known one requires
repeated measurements with a high signal-to-noise ratio
(SNR). It may involve, for example, repeated strong pro-
jective measurements on replicas of this state. Here we
introduce a novel procedure, related to, but differing from
the protocol of weak values (WVs) [6]. Our protocol is
employed to enhance the discrimination-fidelity between
two quantum states. We then report on experimental
results involving classical light, which demonstrate the
practicality of our measurement protocol, denoted “null
weak value.” The two states to be discriminated are char-
acterized by two different linear polarizations which are
rotated with respect to each other over a large range of
angles.

A WV protocol consists in weakly measuring a system
by coupling it to a detector, and retaining the detector
output only if the system is eventually measured to be
in a chosen final state, |ψf 〉—postselection. The fact that
the result of a weak measurement can be anomalously
large when correlated with a subsequent strong measure-
ment (postselection) is one of the intriguing properties
of this protocol [6]. Recent efforts have employed this
concept for amplifying small signals both in quantum op-
tics [10–12, 21, 22] and in solid state physics [13]. The

large WV leads to a an amplification of the SNR for sys-
tems where the noise is dominated by an external (tech-
nical) component [12, 13]. When quantum fluctuations
(leading to inherent statistical noise) dominate, the large
WV is outweighed by the scarcity of data points, failing
to amplify the signal-to-statistical-noise [13, 23]. By con-
trast, the method presented here leads to high fidelity dis-
crimination between quantum states on the background
of quantum fluctuations. Our approach is based on a
two-step protocol: first a strong (projective) measure-
ment is performed on the system with small probability.
This leads to a partial-collapse of the system’s state, and
when no collapse takes place, the system experiences a
weak backaction [24]. Next, a strong measurement is
performed, and the result of the first measurement is
weighted conditionally on the outcome of the second mea-
surement.

In a typical state-discrimination scheme, a qubit is pre-
pared in one of two (known a-priori) possible states. The
goal is to ascertain in which of the two possible states
the qubit is. Here, we consider a more general scheme.
We wish to discriminate between a known qubit state
|ψ0〉 = α0 |0〉 + β0 |1〉 ≡ cos[θ0] |0〉 + sin[θ0] exp[iφ0] |1〉,
and another state |ψδ〉 = αδ |0〉+βδ |1〉 ≡ cos[θ0+δ1] |0〉+
sin[θ0+δ1] exp[i(φ0+δ2)] |1〉, where δ1, δ2 are a-priori un-
known. N replicas of each state can be measured, and
the respective outcomes are compared.

Let us begin with a straightforward state discrimina-
tion protocol, achieved through a standard strong mea-
surement of a qubit, Ms, where the occupation of the
state |1〉 is measured [25]. The probabilities to detect
the qubit in |1〉 in any single attempt are P (Ms,δ) =
sin2[θ0+δ1], P (Ms,0) = sin2[θ0]) for the states |ψδ〉, |ψ0〉,
respectively. We define the signal S to be the difference
between the number of positive detections in each case,

S = Ns,δ −Ns,0 = N sin2 [θ0 + δ1]−N sin2 [θ0] , (1)

where Ns,δ = NP (Ms,δ), Ns,0 = NP (Ms,0). The signal
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FIG. 1. A tree diagram of the qubit state evolution un-
der subsequent partial-collapse measurements; the respective
probabilities are indicated: P (Mw) [P (M̄w)] is the probability
that the detector “clicks” [no “click”] upon the first measure-
ment. If it does “click”, the system is destroyed, hence there
are no clicks upon further measurements [this is marked by
a (red) X]. Note that following P (M̄w) (null detection of the
qubit), the weak backaction rotates |ψ〉 into |ψp〉.

is a function of two variables S(Ns,δ, Ns,0). The uncer-
tainty in the signal is then given by

∆S =

√(
∂S

∂Ns,δ

)2

∆N2
s,δ +

(
∂S

∂Ns,0

)2

∆N2
s,0

=

√
N sin2 [θ0 + δ1] +N sin2 [θ0] , (2)

where for the second equality we assumed Poissonian
noise (which is dominant for coherent light experiments
discussed below), ∆N2

s,δ = Ns,δ and ∆N2
s,0 = Ns,0. The

obtained SNR is

SNRstd =
S

∆S
≈
√

2 cos[θ0]δ1
√
N , (3)

where the approximation is for δ1 � 1.
We now turn to describe our new measurement pro-

tocol (null-WV) (cf. Fig.1). The qubit state is mea-
sured twice. The first measurement Mw is a strong (pro-
jective) measurement which is performed on the system
with small probability. Here the states {|0〉 , |1〉} are mea-
sured with probabilities {p0, p1}, respectively. For sim-
plicity, hereafter, we assume that only the state |1〉 is
measured with probability p1 = p, p0 = 0. If the de-
tector “clicks” (the measurement outcome is positive),
the qubit state is destroyed. Very importantly, hav-
ing a “null outcome” (no click) still results in a weak
backaction on the system. We refer to this stage of the
measurement process as “weak partial-collapse”. Subse-
quently the qubit state is (strongly) measured a second
time (postselected), Ms, to be in the state |ψf 〉 (click) or∣∣ψ̄f〉 (no click), where |ψf 〉 ,

∣∣ψ̄f〉 form a different qubit
basis than |0〉 , |1〉. We propose to discriminate between
the two possible initial qubit states via repeating the pro-
tocol for |ψ0〉 and |ψδ〉 and comparing the respective con-
ditional outcomes of P (Mw,0|M̄s,0) and P (Mw,δ|M̄s,δ),
i.e. [having a click the first time conditional to not hav-
ing a click the second time]. Events in which the qubit

is measured strongly (in the second measurement), Ms,
are discarded. In other words, we define our signal to be
S̃ ≡ P (Mw,δ|M̄s,δ)− P (Mw,0|M̄s,0).

Our protocol takes advantage of the correlation
between the two measurements. To shed some light
on its outcome we calculate explicitly the conditional
probabilities following the measurement procedure
sketched in Fig. 1. For example, if the first mea-
surement results in a “click” the system’s state is
destroyed and any subsequent measurement on the
system results in a null-result, implying P (Ms|Mw) = 0,
and P (M̄s|Mw) = 1. This represents a classical
correlation between two measurements. By contrast,
P (M̄s|M̄w) embeds non-trivial quantum correlations.
The first partial-collapse measurement of a given
preselected state |ψδ〉 results in the detector clicking
with probability P (Mw,δ) = p sin2[θ0 + δ1]. If no click
occurs [with probability P (M̄w,δ) = 1 − P (Mw,δ)],
the qubit’s state is modified by the measure-
ment backaction into |ψδ,p〉 =

[
cos [θ0 + δ1] |0〉 +√

1− p sin [θ0 + δ1] ei(φ0+δ2+φM ) |1〉
]
/
√
P (M̄w,δ), with

φM being the phase accumulated due to the measure-
ment procedure. A second strong measurement, Ms,
yields a click [no click] with probability P (Ms,δ|M̄w,δ) =
|〈ψf |ψδ,p〉|2

[
P (M̄s,δ|M̄w,δ) = |〈ψ̄f |ψδ,p〉|2

]
. Finally, us-

ing Bayes theorem, we can write P (Mw,δ|M̄s,δ) =
P (Mw,δ)/[P (Mw,δ) + P (M̄w,δ)P (M̄s,δ|M̄w,δ)] =
Nw,δ/(Nw,δ + Np,δ), where the last equality is obtained
by taking the measured estimator for the conditional
probability [Theoretically Nw,δ = Np sin2[θ0 + δ1] is
the number of clicks in the first measurement and
Np,δ = (1 − p sin2[θ0 + δ1])|〈ψ̄f |ψδ,p〉|2 is the number of
no-clicks in the (second) postselection]. Note that if the
detector clicks in the first measurement, the protocol is
truncated, and no second step is to be carried out. This
finally leads to the signal

S̃ =
Nw,δ

Nw,δ +Np,δ
− Nw,0
Nw,0 +Np,0

. (4)

In complete analogy with the case of a single strong mea-
surement, we define the uncertainty in the signal

∆S̃ =

√√√√∑
i=w,p

∑
j=0,δ

(
∂S̃

∂Ni,j

)2

∆N2
i,j , (5)

where (∂S̃/∂Nw)2∆N2
w = [1/(Nw + Np) − Nw/(Nw +

Np)
2]2Nw and (∂S̃/∂Np)

2∆N2
p = N2

wNp/(Nw +Np)
4.

We focus on obtaining a large

SNRNWV = S̃/∆S̃ , (6)

for discriminating between the two states. The SNRNWV

depends on the choice of reference state |ψ0〉 and the
postselection basis |ψf 〉 ,

∣∣ψ̄f〉. For the purpose of the
present theoretical and experimental analysis it is suffi-
cient to discuss the case of states in a plane, i.e. δ2 = 0,



3

FIG. 2. A sketch of the experimental apparatus. Single
spatial mode light from a helium-neon laser (HeNe) passes
through a neutral density filter (ND) followed by a half-wave
plate (HWP) and polarizer (P1) to prepare the initial state.
During data acquisition, the HWP is used to maintain a con-
stant photon flux which is measured using a removable mirror
(RM). A glass window (W) weakly reflects vertically polarized
light. Photons that pass through the window are then pro-
jected onto a linear polarization state with a second polarizer
(P2). The photons in each spatial mode are passed through
colored glass filters to block background, collected via multi-
mode fiber and sent to single photon counting modules (DN ,
DW and DP ).

and φ0 + φM = 0. We propose two possible mea-
surement schemes for obtaining a large SNRNWV. In
the first scheme we choose the postselection such that
the reference state satisfies |

〈
ψ̄f
∣∣ψ0

〉
|2 = 0. This

means that the reference state |ψ0〉 would have always
clicked in the second measurement had it not been
first weakly measured. This implies P (Mw,0|M̄s,0) ≈ 1
(Np,0 ≈ 0). We call this scheme A. Alternatively,
in scheme B, we choose the postselection such that
|
〈
ψ̄f
∣∣ψp〉 |2 = 0: the weakly measured and, thus, ro-

tated state |ψ0〉 → |ψp〉 always clicks in the second mea-
surement, P (Mw,0|M̄s,0) ≡ 1 (Np,0 ≡ 0). Note that in
both schemes P (Mw,δ1 |M̄s,δ1) ∼ p sin2[θ0 + δ1]/ sin2[δ1]
for p � sin2[δ1]. Thus, SNRNWV(N) ∼ sin[δ1]/(sin[θ0 +
δ1]
√
p)
√
N which becomes large for p→ 0 (weak partial-

collapse). This is because the condition Nw,0 � Np,0
is satisfied vis-a-vis the null-WV of the reference state.
Varying δ1 such that | 〈ψδ| 0〉 |2 is increased leads to a de-
crease of Nw,0 and an increase of Np,0. A large SNRNWV

[cf. Eq. (6)] is obtained when P (Mw,δ1 |M̄s,δ1) crosses to
a regime where Nw,δ1 ≤ Np,δ1 .This happens first with
scheme A. Hence, scheme A produces a larger SNRNWV

for smaller δ1; scheme B leads to far larger SNRNWV for
larger δ1.

We measure the null-WV protocol and its amplified
SNR using an optical technique, where the qubits are
replaced by photons from a dramatically attenuated co-
herent beam with measurements performed by single-
photon detectors. The experimental setup is sketched
in Fig. 2. A linearly polarized, 633 nm helium-neon
laser is attenuated to the picowatt level before the prepa-
ration of the initial state of the photons. We encode
this state in the polarization degree of freedom; this is

done by passing the beam through polarizer (P1), giving
|ψδ〉 = cos[δ1−θ0] |0〉+sin[δ1−θ0] |1〉 where {|0〉 , |1〉} cor-
respond to the horizontal and vertical polarization states,
respectively. We perform a partial-collapse (weak) mea-
surement by sending the photons through a glass win-
dow (W) set at Brewster angle. The window therefore
weakly reflects vertically polarized light, with probabil-
ity [26] p = 0.15, and passes horizontal light with near
unit probability. We set the second polarizer (P2) in the
transmitted arm to strongly project the photon into the
state

∣∣ψ̄f〉 which is represented by scheme A or B , as de-
sired. The photons are then detected with single photon
counting modules in each port and their arrival times are
recorded.

From the recorded arrival times, we can separate pho-
ton detection events into time bins and determine the av-
erage number of photons Nw and Np and their variances
as we vary the input and post-selection states. For the
data included here, we count photons for approximately
5 s, with time bins of 150 µs and 25 ms for the null-WV
and standard schemes, respectively. These times are cho-
sen to ensure that each method uses an equal number of
prepared photons per measurement. We subtract dark
counts, which constitute much less than 1% of the total
counts on average.

We consider each scheme mentioned above for θ0 = 0.1
rad and plot the results in Fig. 3. We find that, for
scheme A, we can discriminate between the two states
with a higher SNR than the standard scheme over the
whole range of angles considered. Similarly, while the
SNR of the standard technique nearly coincides with that
of scheme B for small angles, we see that the sensitivity
of the two schemes diverge quickly for larger angles; in
this regime (δ1 ≈ θ0), the null-WV scheme B is signif-
icantly better. The curves represent the expected SNR
from the theory above assuming modest errors in the cal-
ibration of polarizer angles and reflection/transmission
probabilities. The reflection and transmission probabili-
ties for 633 nm light were calculated (and verified exper-
imentally) using the Fresnel equations; the total number
of photons per measurement was measured using the re-
movable mirror, including effects from detection efficien-
cies. The deviation from the data is due to the technical
noise present in the detectors (e.g., dark current) which
was not included in the theory.

In conclusion we have presented here a new protocol
based on a weak partial-collapse measurement followed
by a tuned postselection. Our protocol enables one to dis-
cern between quantum states with better accuracy than
a standard measurement would allow. We demonstrate
the feasibility and effectiveness of our protocol by dis-
criminating between different polarization states of light.
By contrast to earlier protocols [5] tuned to discriminate
between two prescribed states, the present one consists
of a two-step correlated outcome measurement. It facil-
itates the study of an amplified SNR for a wide range
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FIG. 3. A graph of the theoretical and experimental
SNR obtained for different measurement schemes. Scheme
A (red) and B (blue) correspond to the null-WV technique
(SNRNWV). The parameter δ1 denotes the distance between
the measured and the reference state; it is varied by changing
the angles for the input polarizer P1. For a given P2 and W
(cf. Fig. 2) the reference state is determined by finding P1
for which |

〈
ψ̄f

∣∣ψ0

〉
|2, |

〈
ψ̄f

∣∣ψp〉 |2 is minimal for schemes
A, B , respectively. The standard scheme (black) is that de-
fined by Eq. (3), and is represented by a single polarizer with
no weak measurement. Dots correspond to calculations from
data and lines correspond to the theoretical predictions. Each
scheme used approximately the same number of photons, with
N ≈ 11250 per measurement.

of possible polarizations of one of the states, which is
not a-priori known. Three features distinguish our pro-
tocol from earlier implementations of WVs [10–13]: (i)
Here we make use of a partial-collapse measurement, in
which the system experiences a weak backaction only for
a subset of all possible measurement outcomes; (ii) In
conventional WV-amplification procedures one needs to
employ two entangled degrees-of-freedom: the “system”
which serves as a WV-amplifier and is subsequently post-
selected and the “detector”. In the present procedure
there is a single degree-of-freedom employed; the detec-
tor is classical, hence no explicit use of quantum entangle-
ment is required to achieve amplification; (iii) We obtain
a SNR amplification versus inherent quantum and statis-
tical fluctuations, and not only against external detector
noise.
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