Liquid/Semiconductor Interfaces through Vibrational Spectroscopy

R. Kramer Campen Physical Chemistry Department Fritz Haber Institute of the Max Planck Society

w/ Maria Sovago, Cho-Shuen Hsieh, Mischa Bonn, Ana Vila Verde

Outline

- I. Justification: why vibrational spectrocopy?
- II. Background: making vibrational spectroscopy interface specific: vibrational sum frequency spectroscopy
- III. Interfacial Solvent (Water): structure and dynamics
- **IV. Semiconductor Interface:** optical detection of surface phonons

Why vibrational spectroscopy?

Vibrations report, label free, on inter/intramolecular forces (and structure)

Macromolecules (proteins)

Spectrum of local oscillators modified by environment,

- 1. Through-bond coupling
- 2. Hydrogen bonding
- 3. Transition dipole coupling

Why vibrational spectroscopy?

Vibrations report, label free, on interatomic/molecular forces (and structure)

OH stretch modulated by anharmonic coupling to low frequency modes.

Interface specific vibrational spectroscopy

Vibrational Sum Frequency Spectroscopy

What is detected?

The field radiated by the second order induced polarization

Induced polarization can be expanded in a Taylor series

$$P \propto \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

Assuming two incident plane waves and just considering the second order term,

$$P^{(2)} \propto \chi^{(2)} \left(E_1 \cos \omega_1 t + E_2 \cos \omega_2 t \right)^2$$

$$E_{1}^{2} + E_{2}^{2}$$

$$E_{1}^{2} \cos 2\omega_{1}t + E_{2}^{2} \cos 2\omega_{2}t \quad \frac{1}{2}E_{1}E_{2}\cos(\omega_{1} + \omega_{2})t$$

$$E_{1}^{2}\cos(\omega_{1} + \omega_{2})t$$

Origin of Interfacial Specificity

Even order nonlinear susceptibilities

Second order nonlinear susceptibilities are third rank tensors

Changing the sign of all indices is equivalent to inverting the axes: the material response must change sign...

$$\chi_{ijk}^{(2)} = -\chi_{-i-j-k}^{(2)}$$

But, with inversion symmetry, all directions are equivalent so...

$$\chi_{ijk}^{(2)} = \chi_{-i-j-k}^{(2)}$$

For materials with inversion symmetry ($\chi^{(2)}=0$), inversion symmetry is always broken at interfaces.

Origin of Chemical Specificity

Raman scattering off an excited, coherent, vibration

$$\chi_{ijk}^{(2)} = N \sum_{i'j'k'} \langle R_{ii'} R_{jj'} R_{kk'} \rangle \beta_{i'j'k'}^{(2)}$$

$$\beta_{i'j'k'}^{(2)} = \sum_{q} \frac{M_{i'j'}A_{k'}}{\omega_q - \omega_{ir} - i\Gamma}$$

VSF active modes must be Raman and IR active.

III. Approaching the Interface from the Solvent Side: Interfacial Water Structure

The OH stretch at the air/water interface

Two (or three) qualitative populations

Is the double peaked feature general? Yes!

Double peaked feature appears at all interfaces

Kataoka,..., Cremer (2004) Langmuir, 20(5), 1662

Figure 7. VSFS spectra (symbols) and curve fits (solid line) of the CaF₂/H₂O/stearate interface at (a) neat CaF₂/H₂O and (b) 5.6, (c) 11.0, and (d) 18.0 μ M stearate. Spectra are offset for clarity.

Becraft and Richmond (2005) Journal of Physical Chemistry B, 109(11), 5108

Is the free OH feature general?

It appears at all hydrophobic interfaces

Fig. 4 SFG spectrum of a fused quartz surface modified by an OTS monolayer with full coverage in a neutral phosphate buffered solution of pH 7, in the region of 2800 to 3800 cm^{-1} . Also shown is the same spectrum at an enlarged scale (10 times) in the OH region.

Ye, Nihonyanagi, Uosaki (2001) PCCP, 3(16), 3463

Scatena, Brown, Richmond (2001) Science, 292, 908

What causes the double peaked feature ?

One idea: interfacial structural heterogeneity

Du,..., Shen(1993) Physical Review Letters, 70(15), 2313

What causes the double peaked feature ?

A second idea: symmetric/asymmetric stretch

How can we distinguish these scenarios experimentally

Isotopic dilution

lsFG/Iref.(a.u.)

Two peaks collapse to one

double peaked spectral feature ≠ water structure

Are the two peaks sym/asym?

[#]Gan,..., Wang (2006) <u>Journal of Chemical Physics</u>, 124, 114705.

Hypothesis one: two peaks are from a Fermi Resonance with the Bend Overtone

Hypothesis two: low frequency peak from collective effects (intermolecular coupling)

Computation suggests the low frequency peak is a the result of intermolecular coupling (vibrational delocalization).

In either case using HDO allows more straightforward access to structure

III. Solvent to Interface: Dynamics

Probing dynamics: IR pump – VSF Probe

Probing reorientation of the free OH

Developing intuition for the signal

Free OH relaxation is intermediate

A brief simulation interlude

- •Simulation box is 30*30*60 Å.
- •Periodic boundary conditions.
- •NVE at T = 300 K.

Simulation run for 2 ns (step = 1 fs).SPC/E potential.

Free OH reorientation is diffusive (in MD)

Free OH has a preferred distribution in $\boldsymbol{\theta}$

Consistent with diffusion in a potential

Model reorientation as diffusive in a potential

$$\frac{\partial \rho}{\partial t} = \frac{D_{\phi}}{\sin^2 \theta} \frac{\partial^2 \rho}{\partial \phi^2} + \frac{D_{\theta}}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial \rho}{\partial \theta} + \frac{D_{\theta}}{k_B T} \frac{\partial \rho}{\partial \theta} \frac{\partial V}{\partial \theta} + \frac{\rho D_{\theta}}{k_B T \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial V}{\partial \theta}$$

$$V(\theta) = \frac{k_B T}{2 \left(\Delta \theta\right)^2} \left(\theta - \theta_0\right)^2$$

Fitting 2D diffusion model to simulation output

 $D_{\phi} = 0.32 \text{ rad}^2/\text{ps}, D_{\theta} = 0.36 \text{ rad}^2/\text{ps}$

III. Solvent to Interface: Dynamics

MD results describe data without adjustable parameters

Free OH reorientation relative to bulk

Bulk (arb orient) $D_{\phi} = 0.1 \text{ rad}^2/\text{ps}$ $D_{\theta} = 0.1 \text{ rad}^2/\text{ps}$ Free OH $D_{\phi} = 0.32 \text{ rad}^2/\text{ps}$ $D_{\theta} = 0.36 \text{ rad}^2/\text{ps}$

<u>On average</u>, free OH reorient ≈ 3x faster than bulk

Phonon spectroscopy in bulk α -qtz

TABLE II	. Phonon	frequencies	oſ	α-quartz	at	0	Κ	at	Г
(cm ⁻¹).									

Theory			Experi	Experiment*			
		A_1	modes				
238.9			2	219			
339.3			3	358			
461.7			4	469			
	1061.2 1082			82			
то	1	LO	то	LO			
A ₂ modes							
341.4	3	65.7	361.3	385			
493.4	5	40.5	499	553			
762.4	7	84.7	778	791			
1056.5	12	18.3	1072	1230			
		Er	nodes				
133.3	1	33.4	133	133			
261.3	2	63.2	269	269			
377.6	3	89.2	393.5	402			
443.8	4	98.6	452.5	512			
690.8	6	94.5	698	701			
791.7	8	03.9	799	811.5			
1045.0	12	09.5	1066	1227			
1128.1	11	23.9	1158	1155			

Gonze, Allan, Teter (1992) Physical Review Letters, 68(24), 3603

Probing these modes optically (IR or Raman) depends on:

- 1. Mode symmetry
- 2. Tranverse (couples to IR) v. longitudinal (does not)

VSF phonon spectroscopy in bulk α -qtz

Liu and Shen (2008) Physical Review B, 78(2), 024302

VSF probes both IR and Raman active transverse optical phonons: a simplified phonon spectrum that reflects bulk symmetry.

IV. Solid to Interface

VSF surface phonon spectroscopy on α qtz and amorphous SiO₂

VSF surface phonon spectroscopy on α qtz for tracking surface reconstruction

Conclusions

- Using VSF spectroscopy one can probe <u>both</u> interfacial solvent (most work on water) <u>and</u> surface phonons at *buried interfaces*.
- 2. Adding additional pulses to VSF experiments makes it possible to probe structural and energy relaxation dynamics with interfacial specificity.
- 3. Future work: optically probing the association of interfacial molecules with particular surface sites.

Related Publications (from our previous work the results of which were discussed above)

- 1. Sovago, Campen, Wurpel, Müller, Bakker, Bonn (2008) Vibrational Response of Hydrogen-Bonded Interfacial Water is Dominated by Interfacial Coupling, <u>Physical</u> <u>Review Letters</u>, 100, 173901
- 2. Sovago, Campen, Bakker, Bonn (2009) Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation, <u>Chemical Physics</u> <u>Letters</u>, 470, 7
- 3. Hsieh, Campen, Vila Verde, Bolhuis, Nienhuys, Bonn (2011) Ultrafast Reorientation of Dangling OH Groups at the Air-Water Interface Using Femtosecond Vibrational Spectroscopy, <u>Physical Review Letters</u>, 107(11), 116102
- 4. Vila Verde, Bolhuis, Campen (2012) *Statics and Dynamics of Free and Hydrogen-Bonded OH Groups at the Air/Water Interface*, <u>Journal of Physical Chemistry B</u>, 116(31), 9467