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Two Semester basic laboratory course for students of 
Physics, Geophysics, Meteorology and for Teacher  
Candidates with physics as first or second major. 

Aim of the Laboratory Course 
Introduction to the fundamental techniques of quantita-
tive experimental- and scientific methods in physics 
(measurement methods, measurement techniques, 
documentation, mathematical-statistical und practical 
evaluation methods / error calculations, critical discus-
sion and scientific conclusion, written report and 
presentation). Dealing with selected topics in physics 
in a deeper and complementary way. 

Core Rules 

 Preparation based on lectures and text books 
according to information contained in the script. 

 The experiments begin c.t. and students arriving 
more than 15 minutes later will be excluded from 
taking part. 

 The two page introduction (intended as part of the 
experimental report) is to be presented at the be-
ginning of the experiment. 

 The tutor introduces the students to the experi-
ment and makes sure that they are sufficiently 
prepared and if not, whether the work should be 
repeated at a later date. 

 The experiment and documentation of the results 
is made as quick as possible under the guidance 
of the tutor, whereby, time for further discussions 
of the physical background should be taken into 
account. 

 Evaluation of the experiment by means of tables 
and graphs takes place after about 3 hours with 
the help of the tutor. Thereafter, further work is to 
be done on the report (protocol). 

 The 4 hours are to be fully used to complete the 
protocol and can then only be cut short when the 
tutor hands out an attestation. 

 The total number of experiments (as a rule 11) 
must be completed within the laboratory course, 
whereby a maximum of 2 experiments can be re-
peated at the end of the course. 

 Attestations for all experiments must be noted at 
the latest on the last day of the course, otherwise 
the course can not be assessed and becomes in-
valid. 

Integration with the Physics Curricula 
Two laboratory courses (GP I and II) are scheduled 
after the respective lecture courses (Physics I and II). 
Restrictions with respect to the contents of the lectures 
are unavoidable due to the timescale and the place-
ment of the laboratory course. This is especially evi-
dent for students taking part in the vacation laboratory 
courses where subjects must be handled in advance 
without prior lecture material (Optics, Atomic Physics 
Quantum Phenomena). 

Organization 
Semester Course (weakly, 4 h) and Vacation Course 
(4 weeks, 12 h per week). 
Laboratory course in small groups. Pairs of students 
performing and evaluating an experiment. A tutor as-
sists a group of 3 pairs on the same or related experi-
ments. Good preparation before the experiment is 
important. A two page introduction to the subject mat-
ter is handed out before each experiment and is in-
tended as part of the evaluation . 
Course Schedule with Experimental Work, Evaluation 
and (as a rule) start of the written report (protocol). 
Work on the two page introduction to the subject mat-
ter (prepared beforehand), presentation of the experi-
mental findings with summary and critical discussion of 
the results. 
Course Material: Description of the experiment (script) 
containing information on the relevant physics, experi-
mental set-up and the tasks to be performed. Report 
book for the written experimental protocol – to be 
bought by the student. 

Evaluation 
Experimental certificate with grades according to 
ECTS (European Credit Transfer System). Point sys-
tem for the individual experiments. No tests or final 
seminar. 

Experiments 
Experiments with various grades of difficulty from sim-
ple experiments in GP I, to give a basic feeling for the 
methods involved in experimental physics, to experi-
ments with deeper physical background, which, for a 
fuller understanding, require higher lecture courses in 
physics. 

Note 
A sensitive indicator for physical understanding is the 
application of gained knowledge. The physical princi-
ples and the connections between phenomena should 
be demonstrated by dealing with the problems involved 
and by critical observation.  
As a part of scientific training, it is not the intention of 
the laboratory course to only impart „mechanical 
knowledge“ but it should lead to scientific thinking, i.e., 
answering questions of a physical nature or drawing 
conclusions from findings and laws through critical 
discussions in small groups and final evaluation of the 
observations and quantitative results. 
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BASIC LABORATORY COURSE IN PHYSICS 

Introduction to the fundamental techniques of quantita-
tive experimental- and scientific methods in physics: 
Measurement methods, measurement techniques, 
documentation, mathematical-statistical und practical 
evaluation methods (error calculations), critical discus-
sion and scientific conclusion, written report and 
presentation. Dealing with selected topics in physics in 
a deeper and complementary way.  

Two laboratory courses (GP I and II) scheduled after 
the lecture courses Physics I and II, however, with ref-
erence to the complete material handled in lecture 
courses Physics I-IV. 

Experiments and reports done in team work consisting 
of a group of 6 (3 pairs) under the assistance of a tutor. 

Completion of introductory reports on the subject matter 
and physical background, presentation of the experi-
mental findings with a summary and critical discussion 
of the results as an exercise in scientific writing. 

Introductory text books provided the basic knowledge in 
a clear and connected manner, but only in passing, 
mention the way to the working methods of physics. 
Physical knowledge comes about either through quanti-
tative observation of the natural processes, i.e., by 
means of experiments or by mathematical formulations 
of physical phenomena – theoretical work.  

Laboratory courses give a feeling for the experimental 
methods of physics. The aim of the basic course is to 
introduce the students to elementary experimental and 
scientific working methods and critical quantitative think-
ing. This includes setting-up and conducting an experi-
ment (measurement techniques and methods), docu-
mentation, evaluation (error calculations), discussion of 
the findings and scientific conclusions and finally 
presentation of the written report. 

The basic course intentionally places the scientific 
method in the foreground. The physical questions pre-
sented in the course have long been answered, and the 

experiments are to be understood as providing classical 
examples for methods and techniques which recur in 
current research. Yet physics is always behind the work 
and does not differentiate between simple and difficult. 
It is the physicist, whether “professional” or in training, 
who asks the questions and thus determines the stand-
ard.  

The laboratory course allows the student to tackle the 
work in an individual way so that the learning process is 
strongly self determined. Elementary and important 
prerequisites are curiosity and the ambition to under-
stand. 

Error Calculat ions 

A fundamental phenomena of experimental work is the 
fact that the evaluation of natural processes is never 
absolute and all results must be considered as approx-
imate. As a consequence, the empirical experimental 
data must be handled statistically in the form of error 
calculations. 

An important aspect of the laboratory course is to intro-
duce the student to the basic methods of error calcula-
tions. The first steps and basic exercises in error calcu-
lations are found in Annex I of this script (under the 
heading „ERROR CALCULATIONS”). (Practical exer-
cises in error calculations will be given out before the 
laboratory course begins and must be handed in at the 
date of the first experiment). Learning the skills of error 
calculations is then the aim of the subsequent experi-
mental work. 
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Topics and Exper iments 

The topics of the laboratory course are coordinated with 
the contents of the lecture course. The experiments 
range from simple to demanding. 

In some cases, due to organizational problems (espe-
cially in vacation courses), the topics handled in the 
experiments have not yet been discussed in the lec-
tures. This requires intensive self-preparation by the 
student. 

Preparat ion 

Successful experimental work requires good physical- 
and mathematical preparation using text books and the 
experimental script. The laboratory course has the spe-
cific aim of deepening ones knowledge of physical pro-
cesses and must be seen as complementary to the 
material handled in lectures and work done in tutorial 
exercises. 

Repor t  

The written reports serve not only as proof of experi-
mental work but also as an exercise in the method of 
scientific writing. Contents and form must be such that 
the interested reader is introduced to the topic and the 
questions to be answered in an efficient and concise 
way and is able to follow and understand the work and 
conclusions. This aspect must be kept in mind and it 
should not be limited to a mere presentation of meas-
ured data and calculations. 

Rules of the Laboratory Course 

Laboratory Report Book 

Laboratory regulations require that all experimental 
work from description to data recording and evaluation 
be presented in bound exercise books. Please bring 
suitable books (DINA4-chequered, no ring bound 
books) to the course. You should buy 2 – 3 books. Work 
done on loose or tacked paper leads to uncertainty as 
to its origin or loss of pages i.e. data.  

Additional pages (e.g. graph paper) must be glued to a 
thin strip of the inside edge of a book page so that both 
sides of the additional page can be used. Attaching 
pages with paper clips is not permitted. 

Graph Paper 

Graphs must be drawn on graph paper (mm paper, log-
paper; available in the laboratory). 

Written Preparation 

A written introduction to the topic and experimental task 
(as part of the report) must be presented before begin-
ning the experiment. This must be prepared by each 
student. Since, as a rule, one of the report books of a 
pair of students is in the hands of the tutor for correc-
tion, the affected student must write the introduction on 
loose paper and later glue it into his/her report book. 

The students must be able prove that they have pre-
pared the work through discussions with the tutor. 

Insufficiently prepared students will not be permitted to 
take part in the experiment. The experiment is noted as 
failed and must be repeated at a later date. If a student 
is rejected because of insufficient preparation, a collo-
quium can be set up by the head of the course to test 
the student. (The rules stipulate that no more than 2 
failures are allowed). 

Times of the Laboratory Course 

The courses begin punctually at 9.15 or 14.15 h. 

33/4 hours (9.15-13 h and 14.15-18 h respectively) are 
set for the work. After the experiment is completed, the 
remaining time is used to evaluate important parts of 
the data under the direction of the tutor (e.g., graphical 
presentations). 

Structure and Form of the Report 

The report is structured in two sections: Experimental 
documentation (measurement protocol) and the presen-
tation (basic theory, evaluation, conclusion and discus-
sion). The form is such that an interested reader can 
follow and understand the contents, results and conclu-

sions (and allows the tutor to make corrections in a 
reasonable time). 

The measurement protocol must be hand written and 
checked by the tutor for completeness and correctness. 
Thereafter the tutor gives an attestation. Measurement 
protocols without attestation will not be recognized. 

Handing Over the Report 

The reports should be started during the respective 
experiment and must be handed over at the date of the 
next experiment.  

Failure to hand over the report punctually leads to ex-
clusion from the next experiment. 

Missing- and Failed Experiments 

If a student misses or is expelled from an experiment 
then her/his partner must complete the experiment 
alone. 

The excluded partner must repeat the experiment on 
his/her own at a later date. (The date is set by the head 
of the laboratory course). 

Working in Partnership 

Normally students work in pairs, so that each is de-
pendent on other. Work in conjunction with your partner  
and discuss each experiment so that no problems occur 
in completing the report and the handing out of attesta-
tions. 

Attestations; Handing Out the Course Certificates 
The handing out of the course certificates only takes 
place after presenting the complete attestations. Attes-
tations can only be given by the responsible tutor.  
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Point System 
Each experiment is graded according to a point system. 
At the end of the course, the summed points serve to 
measure the total performance according to the rules of 
the ECTS (European Credit Transfer System).  

The grading is given in % of the maximum number of 
points. 
[100% – 81%]  = A (very good) 
[  80% – 61%] = B (good) 
[  60% – 41%]  = C (satisfactory) 
[  40% – 27%]  = D (sufficient) 
[          – 27%] = E (fail) 
 

 
 
 
 
Each experiment is individually graded, whereby a max-
imum of 5 points can be given. The performance points 
for each experiment corresponds to the ETCS grades.  
 
5  - 4.3 points  = A (very good) 
4  - 3.3 points = B (good) 
3  - 2.3 points  = C (satisfactory) 
2  - 1.0 points  = D (satisfactory) 
    < 1.0 point = E (sufficient) 
(successful completion of an experiment requires, as a 
minimum, a grade of 1 point). 
The assessment of the work done is based on the fol-
lowing categories: 

A: Basic knowledge and understanding of the physics 
involved, preparing for the experiment. 

B: Experimental ability (practical and methodical work 
and evaluation). 

C: Scientific discussion and report (evaluating the 
experiment and the results, written report).  

 

The points are noted on the group cards, report book, 
attestation certificates and the file cards by the tutor. 
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The report serves as an exercise in scientific writing and 
presentation. It should, on the one hand, be complete 
and on the other concise and efficient. As an orienta-
tion, refer to the model report below. 

The report consists of a measurement protocol and 
elaboration: 

 The measurement protocol is a documentation of 
the experimental procedure. 

It must contain all information with respect to exper-
imental set-up, data and observations from which 
one can completely understand and evaluate the 
experiment even after the equipment is dismantled. 

 Elaboration refers to presentation and communica-
tion. 

It contains a short presentation of the basic physics 
involved and the question posed, evaluation, sum-
mary and critical discussion of the results and the 
scientific conclusions. 

One of the most important aspects of a written report is 
its organization, i.e., how it is structured. The following 
describes a standard structure obligatory for the labora-
tory reports. 

Measurement Protocol 

The measurement protocol is structured as follows: 

Title (Experimental Topic) 

Name; Date 

 Names of the students carrying out the exper-
iment and of the tutor; date the experiment 
was done. 

Experimental Set-Up and Equipment 

 Drawing of the set-up; list of the equipment used 
and equipment data. 

Measured Values 

 Values with dimensions and units, error limits. 
Commentary on the error estimates. Data in the 
form of tables. 

 Other  Observations. 

Elaboration 
The elaboration must also be handwritten in the report 
book (machine written sections or formulae are glued 
onto the pages of the report). The elaboration is struc-
tured as follows: 

Title 
 (Experimental topic; name of the authors and the 

tutor; date of the elaboration) 

Basic Physics 
 A concise presentation of the basic physics with 

respect to the topic and the questions involved, the 
measurement method and the equations (copying 
directly from the literature is not allowed). 

 The presentation must give a short but complete 
overview of the essential aspects of the physical 
quantities studied and the laws governing them. It 
is not required to go into details as found in text 
books. 

 A description of the practical experimental meth-
ods is out of place here. 

Evaluation 
 A presentation of the evaluation in graphical form 

(on graph paper glued onto the  appropriate page 
of the text), evaluated parameters, intermediate 
results, final results and error limits. Error discus-
sion.  

 The derivation of the results must be simple to 
understand and check (no scribbled notes). 

Summary and Discussion of the Results 

Concise Presentation: 

 What was measured and how the measurements 
were made?  

 What were the results? (clear explanation of the 
results). 

How are the results to be assessed? (critical, qualitative 
and quantitative comparison of the results, with theoret-
ical expectations, literature values. Physical assess-
ment and conclusions, error discussion).
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(1) MODEL REPORT GPI 
  

(2) 
 

 (3) 

(4) 

 
(5) 

 

(6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SPRING PENDULUM 

Albert Ach, Paula Puh 

Physical Basis 

With an ideal spring, the restoring force is proportional to the 
displacement (Hook’s Law): 

(A)  xD F   

The proportionality factor D is called the spring constant. This 
law is examined in exercise 1. 

With (A) and using Newton’s Law of motion, we have, where m 
is the total mass displaced: 

(B)  xmxD   

A solution is: 

(C)  )(cos)( 0  txtx  

where x0 is the amplitude,    the frequency and    is a phase 
constant. Substituting (C) in (B) we have for the frequency: 

(D)  
m
D

   and  
D
mT 




 22  

The relationship (D) for the period T is examined in exercise 2. 

Equation (B) assumes that the total mass experiences the same 
acceleration. This is not true for the spring itself. At the attach-
ment point, the amplitude and the acceleration are zero. At the 
free end, they have the values of the attached mass. 

 
 

 
 

(1) 
 
 
 
 
 
 
 
 
 

(2) 
 
 
 

 

(3) 
 

(4) 
 
 
 
 
 

(5) 
 
 
 

(6) 
 
 
 
 
 

 

 
The adjacent model report serves as an example for the form and 
presentation of scientific writing required for the basic laboratory 
course. 

The physical groundwork must be prepared and worked out before the 
experiment begins. (If the report book is not available, the work must 
be hand written on loose pages and latter glued in the report book). 

 
 

 

 

Each report begins on a new page commencing with the title of the 
experiment. 

 
 

Headings must be used to clearly structure the report. 

 

The presentation of the physical groundwork gives a short and concise 
introduction to the topic and the questions involved: 

Which phenomena or principles are to be studied? 

Which measurement methods are used? 

 

The presentation must refer to the subject matter in a short and precise 
way. Long textbook-type discourses and mathematical derivations of 
formulae for elementary facts are not required. 

 

The presentation must be independently written. Literature references 
alone or the word for word copying of text is not permitted. 
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(7) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(8) 
 
 
 
 
 
 
 
 
 
 
 

 

 

The mass of the spring is accounted for by an effective mass at 
the free end which experiences the same acceleration and thus 
possesses the same kinetic energy as the spring itself. 

The velocity at the spring is linear: 

(E)  
0

0)(
x
xvxv   

The mass distribution along the spring is constant and for a 
spring element dx we have: 

(F)  
0x

dxmdm F  

Therefore the total kinetic energy is given by: 
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i.e., the mass of the spring is taken as a third of the original 
mass. 

Exercises 

1. Calculate the spring constant by measuring the displace-
ment. 

2. Calculate the spring constant by measuring the period of 
the spring pendulum. 

 

 

 
 

(7) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(8) 
 
 
 
 
 
 
 
 
 

 

Special facts and formulas must be explained or derived respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Repeating the purpose of the exercises serves as an orientation and 
helps to make clear the aim of the experiment. 
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(9) 
 

(10) 

(11) 

(12) 

(13) 
 
 
 
 

(14) 
 
 
 

(15) 

(16) 

 
 
 
 

(17) 
 
 
 
 
 

 

Measurment Protocol 
Paula Puh, Albert Ach; 
Tutor: Peter Pi; 
3.3.1981; Begin 10.15 am, End 12.20 pm. 

Equipment 

Stand with mirror scale (300 mm; scale divisions 1 mm). 
Spring with marker and dish (Apparatus 3). 
Weights(5/10/20/20´/50 g). 
Stop watch (accuracy 0.1 s). 
Balance "Sartorius"; (accuracy 0.05 g). 

Weights 

m5 =   4.99 g     (all mass errors with 0.05 g precision) 
m10 =  9.92 g 
m20 = 19.92 g 

(Measurements discarded because of zero-point readjustment). 

m5  =   5.00 g 
m10 =   9.90 g 
m20 = 19.90 g 
m20' = 19.95 g 
m50 = 49.90 g 

Mass of spring mF = 15.15 g 

Mass of marker and dish ms = 8.50 g 

Measurement of the period (exercise 2) 

Amplitude approx. 30 mm. 
The period of the unloaded spring could not be measured since it did 
not oscillate in a regular manner. 
The times were measured at the point were the displacement reverses. 
Measurements at intervals of 10 T were made to reduce reaction er-
rors. 
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(10) 
 
 

(11) 
 
 

(12) 
 
 

(13) 
 
 

(14) 
 

(15) 
 
 

(16) 
 
 
 

(17) 
 

 
 
 
 
 
 
 

 

 

The names of the authors and tutor are important in order to know who 
the report belongs to and who is responsible. 

The date is standard information. The time can be important for subse-
quent discussions on disturbing influences (temperature changes, 
mains voltage fluctuations, ...). 

For the reconstruction of the experiment and the interpretation of the 
data (e.g., error information) a listing of all the equipment with their 
important nominal data must be presented (type, manufacturer; error 
specifications). 

All equipment specifications must be noted as given (measuring range, 
sensitivity coefficients, scale divisions, error information, ...). 

Information as to where the experiment was conducted and which 
devices or probes were used is important for later reconstruction and 
comparison of results. 

Discarded values must be recognizable (e.g. by crossing out), but 
readable. Do not rub out or otherwise destroy data. 

Zero’s are also numbers; e.g. do not write down 5 g for the measure-
ment, but the correct value of 5.00 g. The number of digits in a value 
contains implicit Information on the accuracy and resolution of the 
value. 

A sketch of the experimental setup is descriptive and helps to under-
stand the connection between the equipment and quantities to be 
measured. In electrical experiments this is a circuit diagram, in optical 
experiments the ray path with the position of the optical components as 
an essential prerequisite for the physical understanding of the meas-
ured data. 

Write down all considerations and sundry information with respect to 
the measurements. 
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(18) Displacement of spring under load conditions (exercise 1) 
 
 

(19) 
 

(20) 
 

  Pos.    M      x  
 Weights Marker / g     / mm  
 none 2.5  0  
 5 17.0 5.00(5) 14.5  
 10 31.0 9.90(5) 28.5  
 10+5 45.5 14.90(7) 43.0  
 20 59.5 19.90(5) 57.0  
 20+5 74.0 24.90(7) 71.5  
 20+10 88.3 29.80(7) 85.5  
 20+10+5 102.5 34.80(9) 100.0  
 20+20' 116.0 39.85(7) 114.5  
 20+20'+5 131.5 44.85(9) 129.0  

 50 145.5 49.90(5) 143.0  

(21)  none 2.5    

´ 
 

(22) 

 
(23) 
(24) 

 

Period of spring pendulum (exercise 2) 

  10 T    M        T2  
 Weights       / s       / g           / s2  
 10 5.4 9.90(5) 0.29(4)  
 20 6.2 19.90(5) 0.38(4)  
 20+10 7.0 29.80(7) 0.49  
 20+20' 7.9 39.85(7) 0.62(5)  
 50 8.7 49.90(5) 0.76  
 50+10 9.0 59.80(7) 0.81  
 50+20 9.7 69.80(7) 0.94(6)  

  

Evaluation 
Displacement as a function of load 

See figure on the next page: displacement x vs. weight m. The meas-
urement gave the expected straight-line curve with gradient: 

D  g = (0.345 0.003) kg m-1 

 

 

 

 

(18) 
 

(19) 
 

 

(20) 
 
 
 
 
 
 
 
 

(21) 
 
 
 
 
 

(22) 
 

(23) 
 

(24) 
 
 
 
 
 
 
 
 
 
 

 

 

Each table must have a heading in order to see which measurements 
are involved. 

Do not confuse the units of length mm and cm. Many scale divisions 
(straight edges, rules, callipers) are calibrated in cm. The scale in ex-
ercise 1 has a mm-division. 

A scale can be read to an accuracy of better than one scale division 
(div.) by estimating between two divisions (estimation position; here 
the position after the decimal point). The error is found from the read-
ing conditions; here the upper limit is taken as the whole scale interval 
between two divisions ( 0.5 div). 

 

 
 
 
 
 
The last measurement was made as a control of the initial value (zero 
point). 
 
 
 
 
For a better overview, integrate calculated values in the table. 

Note all measurements as they are made; hence do not write "15 g" or 
only the calculated value 14.90 g but which weight was used. 

Only cite error calculations and error values without further comment 
when they are formally calculated according to the error propagation 
laws and include all initial errors. 
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(25) 
 

(26) 
 

(27) 
 

(28) 
 

(29) 
 

(30) 
 

(31) 
 

(32) 
 
 
 
 
 

(33) 
 
 
 

(34) 
 

(35) 
 

(36) 
 

(37) 

To  exercise 1: Displacement of a spring under load 

Coil Spring
Displacement x as a 
function of load (mass) m

20 40 60 80 100 120 140

10

20

30

40

50
m/g

x/mm

                    50.0 g
 Gradient =                     = 0.3448 g/mm
                145.0 mm 

                                         50.0 g
 Boundary gradient  =                       = 0.3472 g/mm
                                      144.0 mm 

 
To exercise 2: Period of a Spring 

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

    

T /s2

m/g

2

 

 
 

(25) 
 

(26) 
 
 

 
(27) 

 

(28) 
 
 

(29) 
 

(30) 
 

(31) 
 

(32) 
 
 
 

(33) 
 

(34) 
 
 

(35) 
 
 

(36) 
 

 (37) 
 

See annex II  GRAFISCHE DARSTELLUNGEN UND AUSWERTUNG 
VON FUNKTIONEN in this script for information concerning graphical 
representations. 

Graphical representations are to be drawn on original graph paper 
(mm paper, log-paper; obtained in the lab). (The adjacent graphs are 
shown only as examples). Graphs drawn for the lab courses are to be 
glued in the report protocol. 

 

For reasons of accuracy, the graphs shall not be drawn too small; The 
standard format in the lab course is DIN A4. 

For optimal use of the graph paper and for control purposes ensure 
that the scales selected for the axis are simple and do not contain odd- 
or complicated divisions (e.g., 1 unit per 30 mm or similar). 

Each graph must have a heading (what is represented under which 
conditions). 

The axes must be completely labelled (scale, quantities, units). 

 

All measured points must be shown. Error bars are sufficient for some 
representative values especially when they are constant. 

If the scatter of data is very small, then one must select a more sensi-
tive representation or one must take into consideration a numerical 
evaluation method. In border-line cases the accuracy of the resolution 
and the individual values for error estimation must be taken into ac-
count. 

If variables are transformed, then this must be taken into consideration 
when labelling the axes. 

It is sufficient to only consider one of the two possible boundary lines 
for error estimation. The errors results from the differences between 
the lines of best fit and the boundary lines. 

Draw the triangles used to calculate the gradients. They should be 
selected as large as possible (axes intercept points), to minimize draw-
ing and reading errors. 

The calculated gradients should be presented in the graph as a check. 

 

When writing down the gradients note that in general these are dimen-
sional quantities and their units must be given. 

Coil Spring
Period T2 as a
function of the
load (mass) m

                 (0.96-0.15) s2

 Gradient =                     = 0.012 s2/g
                       70 g 

                              (0.92-0.20) s2

 Boundary gradient =                      = 0.010 s2/g
                                     70 g 
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(38) 
 
 
 

(39) 
 

(40) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The errors m are negligible, the errors x lie at the limit of representa-
tion (point diameter).To estimate a boundary gradient an error of 1 mm 
in displacement was assumed taking into account drawing accuracy 
and scatter. 

With g = 9.8128(1) m/s2 (value taken from script, error negligible) we 
find for the spring constant: 

D = (3.383  0.024) N m-1 

Exercise 2: Displacement of a spring under load 

With the mass of dish and marker  mS, the effective mass of the spring 
according to (G) and the variable hanging mass m we then have ac-
cording to (D): 

m
D

mm
D

T FS

22
2 4

3
14 







 


  

The transformed representation of T2 against m (see previous page) resulted in 
the expected straight line with the gradient: 

12
2

)212(
4 


kgs
D

 

Thus, the spring constant D is: 

D = (3.29  0.55) N m-1 

The axis intercept is 

  2
FS

2

s05.015.0m
3
1m

D
4







 

  

Therefore, with the above value for the spring constant, the effective 
mass of the spring is: 

mF  = (13 13) g 

 

 
 

(38) 
 
 

(39) 
 
 
 

(40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The error calculation (error propagation, error estimation of parame-
ters) is an integral part of the evaluation. Error values and comments 
concerning the error calculations belong directly to the results. 

Writing down formal error calculations (equations for error propagation) 
is not required. However, error values must always be explained when 
individual or local aspects were taken into consideration in the estima-
tion of errors. 

 

Error intermediate values noted during the evaluation must be written 
down as a two-digit number. 
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(41) 
 
 

 
(42) 

 
 

 (43) 
(44) 

(45) 

(46) 

(47) 

(48) 
 

(49) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Whereby, we have taken the D-value from exercise 1 because of the 
better accuracy. The large error results partly from the poor quality of 
the measured data (error of the axis intercept 34 %), whereby the in-
crease to 100% results from forming the difference in the evaluation the 
relationship. 

In estimating the error, one must essentially take into consideration that 
the gradient and the axis intercept are correlated. This, however, was 
left out of consideration here since the error in D does not contribute 
and just like the mass of the scale was neglected. 

Summary and Discussion 

The determination of the spring constant of a coil spring by measuring 
the displacement as a function of load and by measuring the period 
gave comparable values. For the determination of the spring constant 
we used the values from the displacement exercise because of their 
better values: 

D = (3.38  0.03) N m-1 

The accuracy of the determination from the period could have been 
increased by increasing the number of periods. 

The qualitative and quantitative agreement of the measurements 
among each other and with the expected characteristics demonstrates 
the validity of Hooke’s Law (A) and the law of motion (C) with (D). 

In addition, from the measurement of the period as a function of the 
added weights one was able to determine the contribution of the mass 
of the spring itself. The result for the spring mass mF of (13  13) g is 
formally (still) in agreement with the value of (15.15  0.05) g deter-
mined by weighing and at least does not contradict the approach of an 
effective spring mass of 1/3 mF. However, the large error must be con-
sidered as unsatisfactory since at the other limit it allows the conclusion 
that the spring itself does not contribute to the mass. 

 

(41) 
 

(42) 
 
 

(43) 
 
 
 

 (44) 
 

(45) 
 
 
 
 

(46) 
 

(47) 
 
 

(48) 
 

(49) 
 
 
 
 
 
 
 

 

In special cases errors must be discussed. Which errors make the larg-
est contribution? What influences error propagation? 
 
With correlated quantities the maximum error must at least be calculat-
ed. (It is better to investigate the correlation).  
 
The summary and discussion must present the subject, aim and results 
of the experiment in a clear and essential way: What was investigated? 
How or according to which methods were the measurements made? 
Which results were found? How are the results to be scientifically as-
sessed? 
 
The results are to be compared qualitatively and quantitatively with one 
another or with literature values. 
 
Values are in agreement when the error intervals overlap. 
Values are compatible when the threefold error intervals overlap. Val-
ues are considered significantly different when the threefold error inter-
vals no longer overlap. 
 
A weighted mean value must be given for results with different errors. 
When one has results with very different errors, the final result is taken 
as that which is the most accurate. 

Results are given with the absolute error as the basis for comparison. 
The relative error is a measure of the accuracy. 
 
Errors of final results are rounded off and given as a single-digit. 

Errors must also be a part of the discussion. How can the accuracy be  
essentially improved?  
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STANDARD TEXT BOOKS GPI 
 

The following text books have been selected to provide 
the basic knowledge as required for the physics course 
and preparation for the lab work. A number of books 
were published in different editions and times so that 
information on the year of publishing was omitted. All 
books are available in the faculty of physics library. 

Compulsory literature 

[1]: GerthsenKneserVogel; 
Physik; 

Springer-Verlag 

[2]: Bergmann-Schaefer Band 1 

[3]: Bergmann-Schaefer Band 2 

[4]: Eichler Kronfeld Sahm 

 Das neue Physikalische Grundpraktikum 

 

Additional literature 

AlonsoFinn; 
Physik; 
Addison-Wesley bzw. Inter European Editions 

Atkins; 
Physik; 
de Gruyter 

KittelKnightRudermann; 
Berkeley Physik Kurs  
(1: Mechanik, 2: Elektrizität und Magnetismus,  
3: Schwingungen und Wellen, 4: Quantenphysik,  
5: Statistische Physik); 
Vieweg & Sohn 

Demtröder; 
Experimentalphysik 1-4; 
Springer-Verlag 

DransfeldKalviusKienleLucherVonach; 
Physik (I: Mechanik, II: Elektrodynamik,  

IV: Atome-Moleküle-Wärme); 
Oldenbourg 

FeynmanLeightonSands; 
Vorlesungen über Physik (I: Mechanik-Strahlung-
Wärme, II: Elektromagnetismus und Struktur der 
Materie); 
Oldenbourg 

HänselNeumann; 
Physik 1-3; 
Spektrum Akademische Verlagsanstalt 

Kohlrausch; 
Praktische Physik (3: Tafeln); 
Teubner 

Tipler; 
Physik; 
Spektrum Akademische Verlagsanstalt 

Martienssen; 
Einführung in die Physik (I: Mechanik,  
II: Elektrodynamik, III: Thermodynamik,  
IV: Schwingungen-Wellen-Quanten); 
Akademische Verlagsgesellschaft 

Otten; 
Repititorium der Experimentalphysik; 
Springer-Verlag 

PSSC; 
Vieweg 

Pohl, 
Einführung in die Physik (1: Mechanik-Akustik-Wärme, 
2: Elektrizitätslehre, 3: Optik-Atomphysik); 
Springer-Verlag 

ZinthKörner; 
Physik I-III; 
Oldenbourg 

Westphal; 
Kleines Lehrbuch der Physik; 
Springer-Verlag 

Optics 

BornWolf; 
Principles of Optics; 
MacMillan 

Fowles; 
Introduction to Modern Optics; 
Dover Publication Inc. 

Atomic- and Quantum Physics 

EisbergResnick; 
Quatum Physics of Atoms, Moleculs, Solids, Nuclei and 
Particles; 
Wiley & Sons 

Finkelnburg; 
Atomphysik; 
Springer-Verlag 

HakenWolf; 
Atom- und Quantenphysik; 
Springer-Verlag 

Beiser; 
Atome, Moleküle, Festkörper; 
Vieweg & Sohn 

Error Analysis 

Taylor; 
Fehleranalyse; 
VCH Verlagsgesellschaft 
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LINEAR MOTION GPI 
 

CASSY
Interface

USB

Motion Transducer
     BMW-Box

Wheel with
Light
Sensor

Pulling Weight

Air Track Rail

Glider

Blower

 

 

 

 

Key Words 

Newton’s equation of motion 

Law of motion with constant force and velocity depend-
ent frictional force; friction, eddy current damping. 

Aim of the Experiment 

To discuss Newton’s principle of motion and the equa-
tions of motion. Investigating the linear motion of a point 
mass. Deriving the law of motion (solving the law of 
motion) for constant and velocity proportional forces. 

Observing the influence of friction. Dependence of the 
friction forces on the variables of motion. 

Handling the computer supported experiment- and 
measuring system Cassy-Lab; see 
lab bench script). 

Literature 

Gerthsen Physik (22. Edition) Chapters 1.3, 1.6,  7.4.4 

Exercises 

1. Adjusting the air track and the measuring system. 

2. Investigating motions with constant force: Record-
ing and plotting distance/velocity/acceleration-time 
measurements for different combinations of mass 
(glider) and traction force (pulling weight) and 
checking the law of motion as a function of these 
parameters. 

3. Investigating motions under the influence of a ve-
locity proportional damping force (magnetic eddy 
current damping). Calculating the damping con-
stant from the time constant of the motion and from 
the limiting velocity. 

Physical Principles 

The glider on the air track is a rigid body, whose move-
ment is fixed by the rail and cannot perform any rota-
tional motion. The motion is thus one-dimensional and 
fully described by the application of the equation of 
motion on the center of gravity of the body. 

Under the assumption of a constant force F, the deriva-
tion of the law of motion by integrating the equation of 
motion is comparatively simple. Moreover, taking into 
account an additional frictional force v proportional to 
the velocity, the equation of motion becomes: 

(1)  
dt
dvmamvF   

Integration (after the separation of variables) results in 
the velocity-time law. Taking initial conditions as v0 = v(t 
= 0) = 0 gives: 

(2)  















 t
meFtv



1)(  

Be clear about the statement of this law. What happens  

 

in the limiting case for t  ? Discuss the time constant 
and the limiting velocity. 

 

Presentation of the Physical Principles in the Re-
port 

(as preparation for a part of the report): General presen-
tation and explanation of the principles of motion and 
equation of motion respectively. 

The essential contents of the introduction in the report 
shall be the above derivation of the law of motion under 
the influence of a constant accelerating force and the 
frictional forces. 

 

 

Equipment 

Air track with glider and additional weights. M5-nuts as 
pulling weights to provide a constant traction force. 
Permanent magnets for eddy current damping. 

Motion transducer: Small pulley wheel (with spokes) 
between a photo sensor; Cassy-sensor operating unit, 
which converts the time dependent pulses at the output 
of the photo sensor into analog signals proportional to 
the displacement, velocity and acceleration. 

Photo sensor and computer supported measuring sys-
tem (Cassy-Lab-System) for data acquisition (velocity-
time data) and evaluation. 

 

Experiment and Evaluation 

The velocity-time measurements are made on the air 
track and evaluated with the Cassy-Lab.-System. Infor-
mation on handling the computer and calling the pro-
gram are found in the lab bench script. Further infor-
mation on measurement and evaluation methods, in-
cluding data output are self-explained through the menu 
functions. 
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Exercise 1 
Before beginning the experiment, ensure that the air 
track and motion transducer are horizontally aligned. 
The glider (without pulling weights) must not move on 
the air track when the blower is on. One cannot obtain 
perfect adjustment due to the high sensitivity of the 
equipment and internal warping of the rail but tries to 
get the best adjustment possible under the given condi-
tions. Test the setup comprehensively by recording 
force-free motions (tipping the glider). 

Apart from frictional forces, disturbances can also occur 
through turbulence resulting from too high blower pow-
er. The recommended blower settings are found in the 
lab bench script. 

Exercise 2 
The mass of the glider is changed by adding weights. 
Traction forces are implemented by attaching small nuts 
on a thread running over a pulley wheel; the masses of 
the nuts are measured on the balance in room 1.02. 
The experiment is evaluated from the printouts of the s(t 
2 ), v(t) and a(t) curves and additionally, the table of 
values of v(t) measurements. 

Verify the equation of motion by plotting the results of 
the measurements in a suitable form and discuss the 
results. 

Exercise 3 
Eddy current damping of the motion is achieved by 
placing one or two permanent magnets in a recess in 
the glider. As a preliminary to the experiment, note the 
following parameters (mass of the glider, traction force 
or mass of pulling weight respectively, number of damp-
ing magnets). 

According to equation (2) the damping constant  is 
determined from the limiting velocity and from the time 
constant of the exponential term. The measurements 
are evaluated from the printouts of the v(t)-diagram and 
the logarithmic evaluation requires the printouts of the 
v(t)-table. 

For the logarithmic presentation and evaluation, the 
limiting velocity v  must be subtracted from the meas-
ured values. A first estimate follows from the data for 

large time values. Furthermore, the criterion for a con-
sistent value of v   is the linearity of the logarithmic 
curve. If the values for large times lie too high then too 
much was subtracted (the estimate for v  too high), if 
the values lie too low then the converse is true (the 
estimate for v  too low). 

This test is very sensitive and may, under the circum-
stances, require an iterative procedure (finding the best 
fit with pencil and rule). 

 

Supplementary Questions 

 
1. To a first approximation, the accelerated mass is    

that of the glider. How do the following influence 
the acceleration: 

- the pulling weights? 
- the pulley wheel? 
- the mass and stiffness of the thread? 
 
In the approach to the equation of motion with velocity 
proportional damping, the traction force is taken as 
constant. Is this true for the given experimental proce-
dure? 
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GRAVITY PENDULUM GPI 
 

 
 

 

Key Words 

Rotation of rigid bodies; torque; 
moment of inertia, Stein’s Theorem. 

Free, harmonic oscillations (rotating pendulum), 
Law of motion. 

Reduced pendulum length; Reversing pendulum. 

Aim of the Experiment 

Investigation of the oscillations of a gravity pendulum. 

Deeper insight into error calculations and error discus-
sions in the framework of the comparatively high accu-
racy of the apparatus. 

Literature 

Standard text books (see list). 

[1]: Chapter 1.4, 2.2, 2.3 

[2]: Chapter 22.1, 22.3 

Exercises 

1. Measuring the period of a gravity pendulum (ped-
dulum without weights) as a function of the ampli-
tude. 

2. Measuring the acceleration due to gravity by the 
reversing pendulum method (pendulum with addi-
tional weights). 

 

Physical Principles 

The equation of motion for the rotation of a rigid body 
about a fixed axis is: 

(1)    2

2

dt
dIM 

  

where M is the torque, I the moment of inertia and  
angle of rotation. For a (physical) pendulum with a 
restoring torque M = - s m g sin  (s distance from 
fulcrum to center of gravity, m mass), and under the 
approximation sin  =  one has from (1) a harmonic 
oscillation with a frequency or period found from the 
eigenvalue equation of the trial solution: 

(2)   gsm
IT  20  

By introducing the reduced pendulum length L = I/(m 
s) one establishes an analogy to the mathematical 
pendulum: 

(3)   g
LT  20  

The solution of the equation of motion with the correct 
torque - s m g sin  leads to a series expansion: 

(4)
 





























 ...
2

sin
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2
sin
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0TT

 

i.e. to an amplitude dependence of T. If only the first 
term is taken into account and again one approximates 
sin  by  we have: 

(5)   









 


16
1

2
0

0TT
 

Reversing Pendulum 

For a given pendulum the calculation of the moment of 
inertia I and the center of gravity distance s can be 
difficult. One characterizes the reversing pendulum 
as a measurement method or arrangement where the 
expression I/(ms) leads back to a simple to measure 
length. 

If one expresses the moment of inertia, according to 
Stein’s Theorem, as being composed of a „form com-
ponent“ Is (moment of inertia to center of gravity axis) 
and a „point mass component“ ms2, then we have 
from (2): 

(6)   gsm
smIT s

2

2 
  

Equating this relationship for two values s1 and s2 
allows one to search for two center of gravity distances 
(fulcrums) for which the pendulum has the same peri-
od. One gets a quadratic equation with the solutions: 
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(7a)    12 ss   

(7b)    
1

2 sm
Is s  

The first solution is trivial and brings no further useful 
information. If one forms the sum of the distances for 
the second case one gets the reduced pendulum 
length L: 

(8) L
sm

I
sm

smIs
sm

Iss ss 



1

2
1

1
1

21

 

If one arranges two fulcrums on a line through the 
center of gravity of the pendulum, each with a different 
distance to the center of gravity, so that both fulcrums 
give the same period, then the distance between the 
fulcrums is equal to the reduced pendulum length L. 

Presentation of the Physical Principles 

(As preparation for part of the report): Presentation of 
the solution of the equation of motion in the approxi-
mate form for a linear restoring moment. 

Calculation of the moment of inertia of a linear mass 
distribution and the proof for exercise 2. 

Apparatus and Equipment 

Pendulum (steel bar, ca. 1.70 m long) with two sym-
metrically arranged fulcrums (edge blades) and addi-
tional weights (see title page). 

Hand stopwatch (resolution 1/100 s). photo-sensor 
controlled quartz timer (accuracy 10-5, resolution 1/100 
s). 

Experiment and Evaluation 

To Exercise 1 

For comparison purposes, the measurements must be 
carried out with a hand stopwatch as well as with the 
quartz timer. In both cases, the accuracy and the    
reproducibility must be investigated and consideration 

given to the extent of the measurements (number of 
periods). The maximum swing amplitude (at the end of 
the pendulum is) approx. 30 cm. 

When investigating large amplitudes please displace 
the pendulum carefully to avoid collisions with other 
parts of the apparatus! 

Evaluation is made by plotting the period against the 
square of the amplitude. 

The calculation of the period follows from the geomet-
ric dimensions and the acceleration due to gravity g 
found in the lab bench script with the application of 
Stein’s Theorem. The pendulum is idealized as a 
linear body. In addition, the given data can be used to 
take into  

 

account the notches in the bar and the edge blades. 
Compare and discuss the theoretical- and experi-
mental results. 

To Exercise 2 

The measurement requires that the weights be at-
tached to the pendulum bar. The larger weight must be 
positioned between the edge blades, the smaller 
weight   outside the edge blades so that the red arrow 
mark points to the notch mark A. In this form of the 
pendulum, the reduced length is given by the distance 
between the edge blades (L = 0.9941 m  0.0002 m), 
however, the position of the center of gravity can be 
changed, especially by moving the larger mass. 

An asymmetric search for a position with equal period 
for both fulcrums is unsatisfactory for two reasons. 
Firstly, a search for the correct position is a matter of 
chance and successive approximation. Secondly, all 
measurements needed to reach this position would no 
longer contribute to the result and its accuracy. It is far 
more advantageous to measure the period as a func-
tion of the position of the larger weight successively for 
both fulcrums and to plot the results in a common 
diagram. One should get an intercept point T1 = T2, 
whose position and accuracy is determined by the 
totality of all measurements. 
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ELECTRICAL MEASUREMENT 
TECHNIQUES GPI 

 

 
 

Key Words 
Current conduction; Current (charge current); Electric 
voltage. Kirchhoff’s laws. Resistance; Ohm’s law. 
Electrical work and power. 
Wheatstone Bridge; Compensation measurement. 
Internal resistance of measuring equipment and current 
sources. 
Alternating current; RMS-values. Impedance (alternat-
ing current resistance). 
Phase shift and alternating current power. 
Capacitor and capacitance; Coil and self-induction. 
R-C circuit (time constant) and L-C circuit (natural fre-
quency, damping constant). 

Aim of the Experiment 

Electric circuits and measuring equipment and the use 
of electric quantities are elementary aids in all fields of 
physical experiments and the associated fundamental 
principles of measuring techniques can not be restricted 
to the theory of electricity. The main aim of the experi-
ment is to provide an introduction to measuring tech-
niques with the basic quantities, voltage, current and 
resistance and to get acquainted with the respective 
equipment. Furthermore, the aim is to communicate, in 
a logical manner, simple models of the current conduc-
tion mechanism. 

The concept of the experiment is mainly to get practice 
in working with experimental- and measuring equip-
ment. A deeper understanding of the basics of some of 
the electrical circuits is provided in later experiments. 

Literature 

Standard literature (see list of the standard text books). 

Exercises 

The exercises are ordered according to subject matter.  
The requirement is to work on 4 exercises from different 
subject areas; two from A-D and two from E-G. 

Subject area A (Current, voltage and resistance; Kirch-
hoff’s laws. Internal resistance of measuring equipment. 
Voltage- and current divider; Voltage- and current 
sources. Internal resistance. Power matching): 

A1. Setting up, measuring and calculating the value of 
the resistance of a  "cube-circuit"  comprising 100  
resistors with "diagonal" current flow. 

A2. Plotting the characteristic curve of a voltage divider 
under load conditions. 

 

 

 

 

 

 

Subject area B (Voltage and current sources. Internal 
resistance. Power matching): 
B1. Measuring the internal resistance of a battery 

and the apparent internal resistance  of a con-
stant voltage source (power supply unit). 

Subject area C (Bridge methods): 
C1. Measuring a very small resistance (copper 

wire) with a bridge circuit and determining the 
specific resistance of copper. 

Subject area D (Current conduction mechanisms. Char-
acteristic curves): 
D1. Plotting the characteristic curve of a metal 

conductor (lamp bulb) or a semiconductor 
(NTC-resistor). 

D2. Measuring the temperature dependence of the 
resistance of a metal or semiconductor. Calcu-
lating the temperature coefficient (in the case 
of a semiconductor, from the logarithmic plot of 
the measurement). Determining the mean en-
ergy difference between valence- and conduc-
tion electrons in semiconductors. 

 
Subject area E (Frequency generator, Oscilloscopes; 
Characteristics of alternating currents): 
E1. Observing an alternating-, a triangular- and a 

square-wave voltage with the   Oscilloscope 
and at the same time making root-mean-
square (rms) measurements of the voltages 
with a multimeter. Compare the different re-
sults of the voltage values  (amplitude, rms val-
ues) and the frequencies with each other. 

Subject area F (Capacitor and Coil): 

F1. Setting up an  R-C circuit. Periodic excitation 
with a square-wave voltage and recording the 
charge-/discharge curve. Checking the ex-
pected functional dependence  and calculating 
the time constant. Compare with the expected 
value from the values of the capacitance and 
resistance. (Additional exercise: Observing the 
discharge curve of the R-C circuit with very 
small and very large resistance and interpret-
ing the results). 
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F2. Setting up an  L-C circuit. Periodic excitation 
with a square.wave voltage and recording the 
oscillation curve. Checking the expected func-
tional dependence and calculating the natural 
frequency and damping constant. Compare 
with the expected value from the values of the 
inductance and resistance of the coil and the 
capacitance of the capacitor. 

Subject area G (Alternating current resistance and al-
ternating current power): 

G1. Determining the alternating current resistance 
of a capacitor as a function of the frequency. 
Checking the functional dependence of the fre-
quency and determining the capacitance of the 
capacitor. 

G2. Determining the alternating current resistance 
of a coil as a function of the frequency. Check-
ing the functional dependence of the frequency 
and determining the inductance (self-induction 
coefficient) of the coil. 

G3. Setting up an R-C voltage divider (high-
pass/low-pass). Measuring the divided voltag-
es as a function of the frequency and determin-
ing the capacitance of the capacitor from the 
transfer frequency. 

 

Physical Principles 

Detailed presentations on the subject matter are found 
in all basic text books on physics. In the following we 
will present a short discussion on the relationships re-
quired for the calculations in the exercises. 

 

Resistance R 

The (direct current) resistance R is defined as the ratio 
of the voltage U to the charge current strength I in a 
conductor: 

(1)  










I
U

I
UR  

Relationship (1) defines and is used for calculating the 
positive definite quantity "resistance". It is not a law 
giving statements on the quantities involved or the func-
tional dependence of resistors as given by Ohm’s law. 

For a homogeneous conductor, the resistance is pro-
portional to the length  and inverse proportional to the 
cross-sectional area A: 

(2)  
A

R 
  

The (temperature dependent) material constant  is 
called the specific resistance. 

Ohm’s Law 

Ohm’s law specifies the idea of a constant resistance: 

(3) constR   

In general the resistance depends in a complicated way 
on the voltage, the current, the temperature or other 
parameters and only as a limiting case do metals at (not 
too low) and constant temperature follow Ohm’s law.  

Kirchhoff’s Laws 

Currents and voltages in branched circuits are de-
scribed by the Kirchhoff’s laws for the elementary com-
ponents of nodes and closed loops making up a net-
work: 

In each node, the sum of all currents vanishes: 

(3a)    0kI  

In each closed loop in a circuit the sum of all voltages is 
zero: 

(3b)  0 kU  

From these laws one can derive the rules for the series- 
and parallel connection of resistors.  

 

Internal Resistance of Voltage- and Current Sources 

When doing calculations on circuits one must take into 
account that real voltage- and current sources possess 
a finite internal resistance across which a part of the 
source voltage U0 (primary voltage, electromotive force) 
drops under load conditions, so that the output voltage 
UK (terminal voltage) drops depending on current. The 
actual behavior of real circuit elements or components 
must, in the model picture, be substituted by an equiva-
lent circuit diagram: 

 

RiU0

UK  
 

Internal Resistance of Measuring Instruments 

Measuring instruments for voltage and current also 
have their own (finite or non-vanishing) internal re-
sistance and in some cases must be taken into account 
during measurements. 

In classical moving-coil measuring instruments (analog 
multimeters) the internal resistance (resistance of the 
moving coil plus the series resistance when measuring 
voltages or shunts when measuring currents) depends 
on the respective measuring range. 

Digital multimeters have, in general, a constant internal 
resistance when measuring voltages (input resistance 
of the measuring circuit; typical 10 M), but different 
shunt resistances when measuring current. 

Bridge Methods 

Bridge circuits can be used to increase the accuracy 
and sensitivity of measurements or to lessen the effect 



GP                                                                                                                                                                                                          ELECTRICAL MEASUREMENT TECHNIQUES-20- 

 

of the measurement on the test object (Wheatstone 
bridge, compensation bridge). In the present case, a 
very small resistance is to be measured (whereby the 
current-voltage measurement is difficult in practice) with 
the aid of a bridge circuit containing suitable reference 
resistors (see block schematic of the circuit under Ex-
periment and Evaluation (Subject Area C)). 

Relationships between Current and Voltage for R, C 
and L 

From the definitions of R, C and L, the general relation-
ships between voltage and current are: 

(1)  IRUR   

(2)  
dt
dUCIC   

(3)  
dt
dILUL   

The signs arise under the additional consideration of the 
orientations of the quantities, whereby "cause" und 
"effect" are in the opposite direction (Lenz’s rule). With 
respect to the sign convention of a positive current from 
plus to minus "flowing out of a source" a negative cur-
rent flows through the resistor from minus to plus "into 
the resistor" and is connected with a proportional (coun-
ter-) voltage (the voltage drop). At the capacitor a (neg-
ative) current "into" the capacitor leads to a build up of 
(counter-) voltage and vice versa. An increase in current 
in a coil leads to an induced (counter-) voltage and vice 
versa. 

The resistance R, capacity C and the self induction 
coefficient L as formulated above characterize ideal 
resistors, capacitors and coils. Real circuit elements 
only behavior approximately as R, C and L and in par-
ticular with coils one must, even with the simplest con-
sideration of coil resistance and other effective re-
sistances using an equivalent  circuit diagram, take into 
account an additional R. 

Impedance (Alternating Current Resistance) 

The Impedance Z (ac resistance) for sine-wave voltag-
es and currents is defined as the ratio of voltage- to 
current amplitude: 

(4)  
0

0

I
UZ   

Alternating Current Power 

The average time-value of the alternating current power 
is given by: 

(5)   IUIUP ,cos00   

Presentation of the Physical Principles 

(as preparation for part of the report): A short descrip-
tion and discussion of the selected circuits with details 
of the required basic relationships and derivation of the 
equations for the measurements. 

 

 

 

 

 

Apparatus and Equipment 

Plug-in circuit board (experimental board). Cables. 

Voltages sources (power supply unit, function genera-
tor). 

Various resistors and circuit components in plugable 
modules, on  plug-in boards or in a temperature bath. 

Fluorescent lamp ("energy saving lamp") with terminals 
for voltage- and current measurement. 

(Digital-) multimeter to measure various electrical quan-
tities. Oscilloscope.  

Experiment and Evaluation 

With respect to the experiment and to the measuring 
equipment note the information in the lab bench script! 
In particular, the error data of the individual pieces of 
equipment are noted in the script. 

The limit values for Current and Voltage of the 
Components must be kept to! 

It is essential that the power supply units labeled with 
"Strombegrenzung 200 mA" (limiting current 200 mA) 
are used. On the lab benches other similar power sup-
ply units are available which are not limited to this cur-
rent and can deliver 2.5 A. Here the danger exists that 
components may become overloaded and get damaged 
due to an unintentional circuit fault. 

Subject Area A 

To Exercise A1 

Resistors are connected together to form a „cube“. 
When calculating the expected total resistance, make 
use of the symmetry properties of the circuit. 

To Exercise A2 

A 10-step rotary potentiometer is used as a voltage 
divider. The load resistor is present on the plug-in circuit 
board with the unknown resistor ( 200 ; the exact 
value is to be measured with a multimeter). 

Subject Area B 

To Exercises B1 and B2 

Plot the voltage current characteristic curve of a 1.5 V 
battery (monocell) and the power supply unit. The load 
is provided by five resistors (3.3 - 56 ) on a small 
circuit board. To measure the characteristic curve of the 
power supply unit it is advantageous to use an open 
circuit voltage of just under 2 V (for optimal utilization of 
the resolution of the multimeter). 
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Subject Area C 

To Exercise C1: 

The measuring bridge is formed by a fixed voltage di-
vider in one branch of the circuit and the copper wire 
and the 10-step rotary potentiometer (1 k) in the other 
branch. A digital multimeter is used as the zero instru-
ment. 

 

Rx

Ra Rb

100 

Potentiometer

R0

U or I = 0

U

Cu Wire Probe

0,1 

 
 

Which currents or voltages are to be expected when the 
bridge is not compensated? Take note that because of 
the low-ohm arrangement, high currents can destroy the 
potentiometer! 

Determine on hand the result the specific resistance of 
copper and compare this value with the literature value! 

Subject Area D 

To Exercise D1 

The components consist of a 24 V lamp and a NTC-
resistor (negative temperature coefficient) on a small 
circuit board. Think about a clever use of the power 
supply unit in case surprising results are observed with 
the NTC-resistor! 

To Exercise D2 

Observation of the temperature dependence of the 
(specific) resistance can be made by placing probes 
(copper wire, semiconductor material) in a heat bath up 
to ca. 100 °C and directly measuring the resistance 
value with a multimeter. 

For copper one should determine the linear temperature 
coefficient of the resistance by graphical means. For the 
semiconductor probe, the energy gap between valence- 
and conduction electrons (specified in J and eV) can be 
determined by evaluation of a half-log plot of the re-
sistance against 1/T. 

 

Subject Area F 

To Exercise F1 

The R-C circuit is formed by a capacitor (0.1 F / la-
beled RCK), a resistor (18 k) and the function genera-
tor connected in series and excited with a square-wave 
voltage ( 50 Hz). The current I = f(t) can be observed 
with the oscilloscope as a voltage drop across the resis-
tor. Optimize the settings at the oscilloscope and make 
a table of t-U values. For evaluation make a suitable 
linearization of the measurements. 

In addition, observe the current in the circuit when a 
small resistor (1 k) is used and the voltage at the 
capacitor when a large resistor (1 M) is used and 
interpret the results. 

To Exercise F2 

The L-C circuit is formed by the parallel connection of a 
coil (labeled ZAS), a capacitor (1 F / labeled LCK), the 
function generator and the oscilloscope to observe the 
wave forms. The circuit is excited with a square wave 
voltage ( 50 Hz). The period is evaluated by measuring 
the time for as many periods as possible; to evaluate 
the damping constant, the amplitude values can be 
more exactly measured by shifting the curve to the fine 
scaled middle line on the screen of the oscilloscope. 

In addition, make a drawing of the complete voltage 
spectrum. 

Subject Area G 

To Exercise G1 and G2 

Use the 1 F capacitor or the coil ZAS. Think about a 
suitable gradation of the frequencies to measure the 
frequency dependence of the alternating current re-
sistance of the capacitor. Assess the measurements 
qualitatively (expected functional behavior) and quanti-
tatively (parameter C or L) by appropriate graphical 
presentations. 

To Exercise G3 

Make a voltage divider circuit using the 0.1 F capacitor 
and the 18 k resistor and measure the voltages across 
R and C as a function of frequency. Note in particular 
the pair of values where the voltages at the resistor and 
capacitor are equal (transfer frequency). Plot the values 
on double log paper and calculate the capacitance of 
the capacitor from the transfer point. Compare this 
value with a "direct measurement" using a multimeter. 

 

Supplementary Questions 

How large is the mean drift velocity of conduction elec-
trons when a current of 1 A flows through a copper wire 
of 1 mm diameter (conduction electron density ca.1 per 
atom, i.e., 1029 m-3). How large in comparison is the 
mean thermal velocity of the conduction electrons when 
these are considered as a classical gas? (Due to the 
Pauli Exclusion Principle, the thermal velocities lie actu-
ally an order of magnitude above this estimation).
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ROTATIONAL MOTION GPI 

Scale

Additional
Weights

Cord Pulley

Mark

Stopwatch
Hanging Weight

t/s

 

Key Words 

Rotational motion of rigid bodies. 

Torque; Moment of inertia, Steiner’s theorem. 

Equation of motion. 

Frictional forces. 

Aim of the Experiment 

Investigating the equation of motion for the rotation of 
rigid bodies about a fixed axis; testing Steiner’s theo-
rem; investigating the contributions of friction. 

Introduction to elementary measurement- and evalua-
tion techniques and error calculations. 

Literature 

[1]: Chapter 2.2, 2.3 

[2]: Chapter 10.2, 10.3 

Exercises 

Investigating uniformly accelerated motion 

 - Measurement of distance-time dependencies, 
 -  Measurement of torque-time dependencies and 
 -  Measuring frictional losses 

for different moments of inertia (with and without addi-
tional masses). 
1. Qualitative and quantitative testing of the equation 

of motion. Measuring the time dependence of the 
angle of rotation (with fixed torque) and the time 
dependence of the torque (with fixed angle of rota-
tion). Determining the moment of inertia (with and 
without additional masses) of the wheel from the 
measurements and comparing the results with the 
calculated values from Steiner’s theorem. 

2. Discussing the influence of friction and frictional 
models (dependence of frictional forces and mo-
ments of friction on the various parameters of mo-
tion) from the results of the measurements. 

Physical Principles 

For the rotational motion of rigid bodies about a fixed 
axis, the equation of motion is analogous to that for 
translational motion 

 (1)    
dt
dIM 




 

with the torque M = r  F, the moment of inertia I and 
the angular velocity  = d/dt. The general formulation 
of (1) with angular momentum L is: 

 (2)    
dt
LdM


  

from which follows the conservation of angular momen-
tum for a closed system (M = 0). The moment of inertia 
is defined as: 

(3) dmrI
V
 2  

and can be calculated for homogeneous and symmetric 
bodies by a suitable decomposition in volume elements 
dV and the transformation dm = dV. If the axis of 
rotation lies a distance a from the center of gravity, one 
obtains as the moment of inertia (Steiner’s theorem): 

 (4)    2amII s   

where Is is the moment of inertia of the body with re-
spect to an axis parallel to the axis of rotation and pass-
ing through the center of gravity. 

The law of motion for the time dependence of the angle 
of rotation follows from the integration of the equation of 
motion for a constant torque with the initial conditions 0 
and 0 : 

 (5)   00
2

2
 tt

I
M  

Friction 

Friction occurs through interactions in the microscopic 
boundary or "contact" regions on the surface or inside 
materials (internal friction in fluids). The actual process-
es are often complex and difficult to describe analytical-
ly. They are then taken into account by a suitable hypo-
thetical assumption (constant static friction, velocity 
proportional friction, dependence on the square of the 
velocity, ...). 

With the bicycle wheels used for this experiment, bear-
ing friction and air friction occur, whereby their influ-
ences in the framework of the given measuring accura-
cy (reading errors when measuring rotation angles, 
subjective errors when making time measurements with 
a hand stopwatch) with respect to the kinematics, lie at 
the detection limit and suitable measuring- and evalua-
tion methods must be employed. 

With the simple (but unrealistic?) assumption of a con-
stant moment of friction MR one has the possibility of 
varying the torque and plotting the data, suitably linear-
ized, so that an additional constant portion of the torque 
can be recognized as an axis intercept. The law of mo-
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tion (5) gives (for a fixed angle of rotation n and with 
0 = 0 = 0 as the linearized function M(1/t2): 

 (6)   2

12
t

IMM nR   

The influence of friction is made clearer when consider-
ing the energy loss of the hanging weight when the cord 
again rises after reaching its end point, whereby the 
initial height would again be attained if no friction were 
present. From the measurements of this energy loss 
(the difference in height of the hanging weight) as a 
function of the other parameters of motion, one can 
deduce more exact statements concerning the contribu-
tion of friction. 

Representation of the Physical Principles 

(as preparation for part of the report). Present a state-
ment and short discussion of the equation of motion and 
its solution for the present case (uniformly accelerated 
rotational motion of a rigid body about a fixed axis). 

Derivation of Steiner’s theorem. Calculating the moment 
of inertia of a rigid cylinder. 

Apparatus and Equipment 

Rotating body (bicycle wheel with a pulley on the axel; 
see figure on the title page). cord, attached weight to 
provide a constant torque. Additional weights on the 
wheel to provide a defined changed of the moment of 
inertia. Set of weights; Balance. 

Hand stopwatch (1/10 s). 

Metal rule, sliding caliper. 

Experiment and Evaluation 

General Information 

A small offset weight is attached to a spoke of the wheel 
to compensate for unbalance. If necessary, remaining 
unbalance is taken into account by suitable measure-
ment techniques (measuring in both directions of rota-
tion and averaging). 

When measuring with additional weights, take note of 
the geometrically correct attachment of the weights 

If need be, also take into account the weight of the 
spring at the end of the cord and the diameter of the 
cord. (To select the number and position of the measur-
ing points see also GRAFISCHE DARSTELLUNGEN 
UND GRAFISCHE AUSWERTUNG VON 
FUNKTIONEN in the annex to the GPI script). 

The arrow marks at the wheels are fixed so that when 
the cord is completely unwound (reversal point of the 
hanging weight) the arrow points to the zero mark on 
the scale. Fractions of a rotation during reverse motion 
must be estimated. 

To Exercise 1 

Four series of measurements are to be made  

 

 
 
 
 zn

n

z

IIMt
IMt

IIMt
IMt









0

0

0

0

,;
,,;

,,;
,,;

 

and evaluated by plotting in a linear representation  
against t 2 and M against 1/t 2 respectively (determina-
tion of the moment of inertia from the slope of the  
straight line curves; determination of a constant fraction 
of the moment of friction). 

 

To Exercise 2 

Calculation of the work done by friction for the individual 
measurements from the difference in height of the 
hanging weight after the weight rises and comparing 
and discussing the result with the other experimental 
data (total weight of the wheel or load force on the axel; 
mean velocity) in the frame work of simple models of 
friction. 

Supplementary Questions 

1. The accelerated falling mass does not act with its 
full weight on the pulley of the wheel. Why not? 
What does the complete equation of motion look 
like and how can one estimate the size of the ex-
pected maximum error? 

2. How can one explain the difference between static 
and dynamic unbalance using a simple example of 
a rigid body (ideal dumbbell)? 

3. How can one take into account the reversal of the 
hanging weight when considering the work done by 
friction? 
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HARMONIC OSCILLATIONS GPI 
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Key Words 
 
Free and damped oscillations 

Forced oscillations; Resonance behavior (absorption) 
and phase shift (dispersion). 

Aim of the Experiment 
 
Mathematical treatment of forced oscillations. Mathe-
matical approach and stationary solution of the equation 
of oscillation. Resonance curve; Frequency depend-
ence of the amplitude (absorption) and the phase shift 
(dispersion). General solution of the equation of oscilla-
tion and observation of the swinging behavior. 

The experiment aims to consolidate and deepen ones 
physical understanding of forced and free oscillations 
using a classical teaching model of an oscillator (Pohl’s 
Wheel). 

Literature 

[1]: Chapter 1.4, 4.1.2, 4.1.3 

[2]: Chapter 20.3, 20.4, 21.1, 21.2 

Exercises 
 

1. Investigation of free and damped oscillations. Re-
cording the amplitude as a function of time. Deter-
mining the eigenfrequency and the damping con-
stant of the system. 

2. Investigation of forced oscillations. Recording the 
amplitude as a function of time. Determining the ei-
genfrequency and the damping constant. 

3. Qualitative observation of the phase shift between 
exciter and oscillator as a function of the excitation 
frequency. 

4. Observation of the swinging behavior for the reso-
nance case and for an excitation frequency close to 
the resonance. 

Physical Principles 
 

Oscillation phenomena are elementary features of na-
ture. The harmonic oscillator is the simplest model of a 
system as the basis for the understanding of oscillating 
phenomena. A harmonic oscillator can be mathemati-
cally analyzed without too much difficulty and experi-
mentally realized to a good approximation. 

The Harmonic Oscillator 
 
The prerequisite for harmonic oscillations is a system 
possessing two degrees of freedom for the energy and 
which is bound to a state of rest by a linear force law  
(linear restoring force). The following presentation gives 
a formal treatment of the problem with the solution of 
the equation of motion in the foreground. Consideration 
is given to a one-dimensional system with x(t) as the 
variable (amplitude). The derivation is representative for 
the solution of analogous differential equations found in 
similar problems in physics (see experiments 
ALTERNATING CURRENT CIRCUITS and 
COUPLED OSCILLATIONS). 

 

 

Free (undamped) Oscillations 

The equation of motion for a linear restoring force is: 

(1)   0 xx Dm   

Differential equations of this type (linear differential 
equations with constant coefficients) are solved mathe-
matically by complex exponential functions. As a trial 
solution select 

 (2)     texx it 0     (where x(t) is a 
complex quantity ) 

Setting this function and its second derivative in (1) 
results in the characteristic  equation for the frequen-
cies. As a solution we find: 

(3)   02 
m
D

  or

 0
m
D

 

Two special solutions with the frequencies + 0 and - 0 
are obtained. These are termed the eigenfrequencies of 
the system. 

The general solution of the differential equation is made 
up of the sum of both special solutions with two arbitrary 
constants, which may also be complex: 

 (4)     tt eet 00 i
2

i
1

  CCx  

Finally the mathematical result must lead back to the 
physical problem. As a physical solution one takes from 
(4) those functions which are real for all times t. Since 
the exponential expression are complex conjugates, x(t) 
is real when C1 and C2 are also complex conjugates. 
Writing 

(5) 
 i

1 2
1 eAC

     and     
*

1
i

2 2
1 CC  eA

 

it follows that: 
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(6)  
        tt eeAtx 00 ii

2
1

 

or 

(7)      tAtx 00 cos  

Writing the constants in the form 

(8) 
 211 i

2
1 AA C

   and   
  *

1212 i
2
1 CC  AA

 

gives: 

(9)  tsinAtcosA)t(x 0201   
Both formulae (7) and (9) of the equation of motion are 
equivalent. The constants A and ß or A1 and A2 are 
determined by the initial conditions of the system x(t = 
0) = xo and   00 xx  t  and can be described by 
them. Thus the solution (9) takes on a clearer form. 

Free, Damped Oscillations 
 

The equation of motion, taking into consideration a 
velocity proportional frictional force is: 

 (10)  0xDxkxm    

Using the same trial solutions as in the undamped case, 
one again gets two particular solutions with two fre-
quencies. The trial solution (2) leads to a characteristic 
equation: 

(11)  
12

2

i
m4
k

m
D

m2
ki 

 

With the following substitutions 

(12)  
22

024

2
1  and  

2
 

m

k
m
D

m
k  

the general solution has the form: 

(13)    tttt eeeet 11 i
2

i
1

  CCx  

The physically meaningful solutions are given by the 
condition x(t) real for all t. Since under strong damping 
conditions the frequency 1 in (12) can become imagi-
nary, it is necessary to distinguish between cases when 
discussing the solutions. 

 

 < 0:   Oscillating case 
 
The frequency remains real and the exponential ex-
pressions with i 1 t are thus complex conjugate so that 
C1 and C2 must also be complex conjugate. The solu-
tion evolves up to the factor e -  t exactly as in the case 
of the undamped oscillation: 

(14)        teAtx t
1cos  

or: 

(15)   tsinAtcosAe)t(x 1211
t  

 

with the constants: 

(16 a,b)  

0
00

2  and  01 
 xx

AxA


  

>0:   Creeping Case 

The frequency becomes imaginary. One can transpose 
0 and  and bring the imaginary unit i in front of the 
total expression: 

(17)   

   21
2
0

2
, ii   

The solution is then: 

(18)  tt CC)(x 2
21

   eet  

Since both exponential parts are real, but of different 
magnitude, x(t) is only then real for all t when the con-
stants C1 and C2 are also real. They again serve to 
match the initial conditions. Under this very strong 
damping, the motion looses its periodic character and 

passes over into a monotone, exponential decay to a 
state of rest. With increasing damping, the term 1 de-
cays quickly indeed, the time constant 2, in contrast, 
becomes smaller and in the limit of infinite damping 
approaches zero. The frictional forces become so large 
that movement is hardly possible and the system 
creeps slowly to its state of rest. 

 = 0   and   1 = 0:   Aperiodic Limiting Case 

Between the oscillating- and creeping case lies the 
special case =0 with 1=0. Direct substitution of 1=0 
in (14) or (15) gives only a description for the special 
initial conditions A or A1  0 and 0x . 

One gets the general solution by inspecting the limit of 
(15) with (16): 

(19)  
 

 
1

1
0010 


 tsintcoset xxx)(x t    

In the limit cross-over point: 

(20)   tt





 1

1
0

sinlim
1

 

and for the aperiodic limiting case one again gets a non-
periodic motion: 

(21)    tt xx)(x     etet 00  

The aperiodic limiting case provides for the fastest re-
turn of an oscillating system back to its rest state. 

This is of major importance in measurement technology. 
Measuring instruments often represent oscillating sys-
tems whereby aperiodic damping is the fastest method 
for the displayed value to reach equilibrium or a state of 
rest.  

Forced Oscillations 

The system is periodically excited with frequency  by 
an additional external force. By neglecting a special 
zero point for the time one can write without constrain-
ing the generality and without further phase constants: 
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(22)   tcosDkm 0Fxxx    

Compared to the previous approaches, the differential 
equation has become inhomogeneous. The general 
solution (22) is formed by summing the solution (14) or 
(15) of the associated homogenous equation with an 
arbitrary particular solution of the inhomogeneous equa-
tion. As a particular solution of the inhomogeneous 
equation one assumes that for large times, the system 
also oscillates with the external frequency  and with 
constant amplitude whereby a phase shift appears 
compared to the initial excitation. The trial solution for 
this stationary case is thus: 

(23)     tAtx s cos)(  

Basically it is possible to correctly express the cos-
function, as in (6), by complex e-functions and calculate 
the result. However, one gets the same result more 
simply with a general complex expression: 

(24)    
tieFt  0)(F  

and the trial solution 

: 

(25)        t
s eAt ix  

whereby the physical circumstances are mirrored by the 
real part of (24) or the magnitude and phase of (25). By 
differentiation, substitution and elimination of i t one 
gets: 

(26)    0
2 i FeAkmD i

s  

 

and: 

(27)  


kmD
FeA i

s i2
0

 

or setting D/m = ω02 and k/(2m) = δ: 

(28)  


i2
/

22
0

0 mFeA i
s

 

Thus the amplitude of the stationary solution depends 
on the excitation frequency . From (28) one gets the 
complex representations with respect to the relation-

ships between magnitude and phase and real- and 
imaginary parts: 

(29)  

 
  22222

0

0

4

/




mFAA ss

     and: 

(30)    
22

0

2tan




 

Since in the general solution the damped term has 
practically decayed after a sufficiently long time (see 
swing behavior below), one designates the stationary 
solution as a forced oscillation in the narrow sense. 

Resonance Curves 

The behavior of the amplitude as a function of the exci-
tation frequency A() (resonance curve) and also the 
phase shift () is strongly dependent on the degree of 
damping. Examples of the behavior are given in the 
following figures. The position of the resonance curve is 
determined by the eigenfrequency (characteristic fre-
quency) of the undamped system, the width is deter-
mined by the damping. 

2
maxA

 



A()



F0/D

2 

Resonanzkurve

 
Figure: Resonance Curves from Top to Bottom for 

                 Damping Ratios /0 = 0.05; 0.1; 0.2 and 1  

 

 

 

 

 

                      Phase Shift (Dispersion Curves) 

 

Figure: Phase Shift (Dispersion Curves from 
Top to Bottom) for the same Damping 
Ratios. 

Physically, the behavior is easy to understand, howev-
er, mathematically (from 30) only after taking into con-
sideration the nature of inverse functions. 

Under small damping conditions the oscillator amplitude 
can become very large (resonance catastrophe), 
whereby the transition region of the phase shift be-
comes very small (phase jump). 

For small deviations 0    and 0 - =  (detun-
ing), i.e. for comparatively narrow resonance curves 
under small damping conditions, equation (29) can be 
transformed and simplified to give the approximation: 
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(31)       000
22

0 2  

(32)  

 
2

0

0

12 












mFAs

 

In this approximation, the maximum of the curve lies at 
=0, and the amplitude achieves the maximum value: 

(33)   0

0
max 2

mFAA
0 



 

For the case =   we have: 

(34)     222
max

0

0
0

AmFA 




 

The damping constant can be determined from the half-
width of the curve at  

2/AA max
 

Swing Behavior 

The general solution of forced oscillations consists of 
the general solution (e.g. 14) of the homogenous equa-
tion for the oscillating case and the particular real solu-
tion (25): 

(35)        tAteAtx s
t coscos)( 0  

At the beginning of motion, the system is impressed 
with the stationary term as well as excited with a free, 
damped oscillation. The superposition of both terms of 
(35) leads to a complicated behavior called the swing 
behavior. Clear relationships are found for the case - 
small damping (<<0) and with an excitation frequency 
close to the eigenfrequency (  0). If one selects the 
initial conditions xo=0 und 0x , then to a good approx-
imation we have: 

(36)          tetAtx t
s 0coscos)(  

The superposition of both oscillations results in a beat 
with half the difference frequency  - 0/2, which, 

however, decays with e-t, with the motion slowly going 
over into the stationary state. 

The largest possible amplitude in the swing behavior is 
reached when both cos-terms have opposite signs due 
to the difference of both frequencies. Under very small 
damping conditions the switch-on peak can come close 
to the value 2As, i.e. almost double the magnitude of the 
stationary amplitude. 

For the case  = 0 the swing behavior is simplifier 
further. The phase shift  is then /2 and from (36) we 
have: 

(37)     teAtx t
s 0sin1)(  

 

After switch-on, the system performs an oscillation with 
exponentially increasing amplitude and an amplitude 
working against the limit As of the stationary case. The 
following figure shows the relationship of the swing 
behavior of the stationary oscillation and the free, 
damped decay together with the excitation oscillation. 

Erzwungene Schwingung                  Freies Ausschwingen

"Systemantwort"

Anregung

 

Presentation of the Physical Principles 

(As preparation for part of the report): A short descrip-
tion of how the problems are approached and the re-
sults of the calculations and the physical interpretation 
in the framework of the practical exercises. 

Apparatus and Equipment 

Copper wheel acting as an oscillating system, held on 
ball bearings and connected to a spiral spring. The 
system is damped by an eddy current brake. Periodic 
excitation through a motor drive and eccentric-and-rod 
mechanism (Pohl’s Wheel, see sketch on title page). 
Motion measurement transducer: Small pulley, with 
thread and weight placed between the arms of a photo-
sensor. Operating unit to convert the time dependent 
pulses at the output of the photo-sensor into analog 
signals proportional to amplitude, velocity and accelera-
tion. 
Computer supported measuring system (Cassy-Lab-
System) for data collection (velocity-time values) and 
evaluation. Hand stopwatch. 

Experiment and Evaluation 
 
Pohl’s wheel can be set in motion by hand or periodical-
ly excited by means of a motor drive. Damping is set in 
six steps (0, 1, 2, 3, G = limit case, K = creep case) 
using the eddy current brake and the associated power 
supply unit. 
The measurements for the exercises should be carried 
out with damping stage 2. The transducer records the 
amplitude. A thread attached to the wheel is guided 
over the periphery of the wheel and then over a small 
pulley. The pulley with holes runs between the arms of 
a photo-sensor. The output of the photo-sensor delivers 
a stream of pulses whose frequency is proportional to 
the velocity of the wheel. The pulses are electronically 
processed and the output of the operating unit delivers 
analog voltage signals for amplitude (s), velocity (v) and 
acceleration (a). The velocity signal (v) is suitable for 
the measurements. A dc voltage component is super-
imposed on the output signal, which especially inter-
feres with the subsequent log-presentation of the data. 
This dc voltage component can be suppressed by con-
necting a capacitor in the line of the floating potential 
between transducer and CASSY-Lab.-System. 

 

Attention:  When evaluating the results pay at-
tention to whether the calculations are done with 
the frequency f or angular frequency ω. 
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Exercise 1 

The measured data (amplitude as a function of time) 
are recorded with the aid of the CASSY-Lab-System by 
a computer. Refer to the general information on CASSY 
in the script and special information on using the pro-
gram in the lab bench script. 

 

Exercise 2 and 3 

The torsion pendulum is periodically excited with the 
motor. The speed of the motor is continuously variable. 

The frequency is set with a potentiometer, however, the 
display only shows arbitrary units fort he frequency. The 
real values are determined by the CASSY-Lab-System 
and at the same time, the constancy of the amplitude is 
checked (decay of the swing behavior). 

The amplitude values can be read directly from the 
scale of the torsion pendulum or determined with the 
data acquisition system. One must wait a sufficient 
length of time for each measurement point until the 
swing behavior has decayed. 

The resonance curve is first recorded with measure-
ment points in coarse steps (for about each full rotation 
of the frequency setting at the potentiometer) and plot-
ted during the experiment (amplitude as a function of 
frequency in scale divisions of the potentiometer). After 
plotting the rough form of the curve more exact inter-
mediate values can be determined in the interesting 
regions (rising- and falling edges, maximum). Due to the 
steepness of the curve in the resonance region, it is 
important, when setting the potentiometer values to take 
into account the mechanical play of the adjusting knob. 

The phase shift between the excitation and the oscilla-
tion of the wheel can be qualitatively observed by 
means of the pointer at the wheel and the drive rod. The 
observations are to be compared with the theoretical 
prediction. 

Exercise 4 ( done without damping) 

In order to observe the swing behavior outside the res-
onance, the frequency should not be too strongly de-
tuned to enable clear observation of the typical switch-
on spikes. The amplitude-time dependence is registered 
with the CASSY-Lab.-System. For the case of non-

resonant excitation, compare the exponential behavior 
at the begin of swing and during decay with the ex-
pected value. 

CASSY 

 

SWITCH ON 

 

Voltage Supply SENSOR-CASSY (12V) 

Switch computer on 

═>Log on with Username: „praktgast“ 

═>Pass word „PhysPrakt“ 

 

Start Cassy-Lab by clicking the CassyLab icon (if 
necessary switch power supply off/on again, or re-
start program in case of problems) 

═>   Close the Enable (freischaltung) window (soft-
ware is already enabled) 

═>   Settings 

═>   Click the active channel (input-/output) (color 
changes to red) 

═>   Now make the sensor input settings (also with 
F5) 

═>   Make parameter settings 

- e.g. Trigger (supports the comparability of 
different measurements) 

- e.g. Repeat measurement 
═>   Right mouse key (before, during or after the 
        measurement) 

- e.g.: zoom / thereafter, „disable 
zoom“ 

- e.g.: change axis: log-or  x2 coordi-
nates 

- e.g.: set mark and measure differ-
ence (bottom left). 

 

  ............... 

═>   F9 starts and stops the measurement (the 
button is colored if repeat measurement is 
set). 

 
═>    Left mouse key marks points on curves. At 

the same time, values in the table are 
marked. Moving the arrow up and down 
marks the next point or value in the curve or 
table respectively; 
 

 Print: click icon button (prints curve or table) Desk 
                  jet HP 600 
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 COUPLED OSCILLATIONS GPI 

S

Storage
oscilloscope

1 2

s

k

m

1 = 0 2

 = 2 r
r

Accelerometer

Hall Sensor

PC
LP

 Input

 Key Words  

Coupled oscillations, coupled pendulums; normal oscil-
lations (basic- or fundamental oscillations); beats. 

Aim of the Experiment 

Classical experiment for a quantitative discussion on 
coupled oscillations. Coupled oscillations form an im-
portant extension of the oscillations of isolated systems. 
Furthermore, they are closely related to wave phenom-
ena. The experiment has, as an addition goal, the ex-
emplary handling of an eigenvalue problem. 

Literature 

[1]: Chapter 4.1.1 

[2]: Chapter 22.1, 22.3 

Exercises 

1. Alignment of the individual pendulums (gravity 
pendulum) to the same swing time. Measuring the 
natural frequencies and comparing the results with 
the value calculated from the dimensions of the 
pendulum. 

2. Excitation of the symmetric and anti-symmetric 
normal oscillation and measurement of the natural 

frequency as a function of the coupling strength. 
Calculation of the coupling factor. 

3. Excitation of beats for the different couplings and 
calculation of the coupling factor from the beat fre-
quency. 

4. Calculation of the spring constant of the coupling 
springs from the plot of the coupling factor against 
the square of the coupling points (distance of the 
coupling points from the fulcrum of the pendulum). 
Direct determination of the spring constant from the 
measurement of the swing time of free oscillator 
with an added weight. Comparing and discussing 
the results. 

Physical Principles 

For the following formal treatment of the problem, we 
shall investigate the simplest case of two coupled pen-
dulums of the same length and mass (symmetric cou-
pling; see figure). The structure of the problem of cou-
pled harmonic oscillators is always the same and the 
results of this special simple example can be carried 
over, without difficulty, to other cases. 

The treatment of two coupled oscillators corresponds to 
a large extent to that of a simple oscillating system and 
does not involve any fundamental difficulties. The com-
plete formal execution and interpretation is, however, 
much more substantial and tends to become tortuous. 
For this reason, the following presentation is purposely 
held short to highlight the essential features of the 
methods used in solving the problem and deliberately 
foregoes a detailed explanation of all aspects. It pre-
sumes good knowledge of the simple harmonic oscilla-
tor (see experiment HARMONIC OSCILLATIONS). 

S

s

k

m

1 = 0 2

 = 2 r
r

 

Equation of motion 

The torsional constant Mg as a result of gravity (sin  = 
to a first approximation) and the coupling moment Mk for 
pendulum 2 with pendulum 1 in the state of rest (spring 
constant D; coupling distance r) are: 

(1a,b)  2
2

2  rDMundsgmM kg  

The (coupled) equation of motion for two equal pendu-
lums with moment of inertia I is given by: 

(2a)        021

2

11 
I
rD

I
sgm  

(2b)     012

2

22 
I
rD

I
sgm  

The following abbreviations are used: 

(3a,b)  
sgm

rDf
I

sgm 2
2  and  

where o2 is the frequency of the individual free pendu-
lums. The ratio of the coupling quantity Dr2 to the tor-
sional constant mgs is called the coupling factor f. The 
(coupled) equations of motion of the system are then: 
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(4a)       0)1( 2
2

1
2

1   ff  

(4b)         01 2
2

1
2

2   ff  

This is a linear system of equations treated with the 
formalism of matrix- and vector algebra. In matrix nota-
tion one gets (where we write vectors in bold type and 
matrices are additionally underlined): 

(5)       0 Ω    with 

(5a)   
 

  
















2
0

2
0

2
0

2
0

1      
     1

ff
ff

Ω  

The homogeneous linear differential equation (5) with 
constant coefficients (analogous to the case of a simple 
harmonic oscillator) is solved by a trial solution with 
complex exponential functions (see script HARMONIC 
OSCILLATIONS): 

(6)      tiet  Z  

where the constants Z form a vector. For the second 
derivative one gets: 

(7)     titi ee   ZEZ 22  

where E is the unit matrix. From the equation of motion 
we then have: 

(8)    02  ZEΩ  

This (homogeneous, linear) characteristic system of 
equations has only a non-trivial zero solution (Z=0) 
when the determinant in the bracket vanishes: 

(9)  
 

  0
1

1
22

0
2
0

2
0

22
0 




ff
ff

 

Equation (9) has four solutions (in the general case, 
from N coupled oscillators, 2N solutions), given by the 
eigenvalues j. Substituting j in (8) gives  
(up to an arbitrary factor) the associated eigenvectors 
Zj: 

(10a) s 01    s1 ZZ 









1
1

 

(10b) s 02   s2 ZZ 









1
1

 

(10c)   af  2103   a3 ZZ 










1

1
 

(10d)   af  2104  a4 ZZ 










1

1
 

After collecting real valued functions we find that the 
amplitude i of the i-th oscillator is represented by the 
sum of N normal oscillations: 

(11)      jj

N

1j
iji tcosAt  



 

Note that the phase i is not dependent on i and that the 
Aij for fixed j are given by the eigenvector Zj (up to a 
common factor). Thus there are exactly 2N free con-
stants, determined by the initial conditions 
 0i and  0i . 

For the special case of two equal oscillators we have for 
the normal frequencies: 

(12a,b) 01  s      and     fa 2102   

The associated amplitudes obey the conditions: 

(13a) ss AA 21    (symmetric oscillation) 

(13b) ss AA 21   (anti-symmetric oscillation) 

In the general case, (11) leads to complex, non-periodic 
motions (already for N=2), however, by selecting suita-
ble initial conditions one can excite pure normal fre-
quencies. All oscillators then swing with a pure sinusoi-
dal motion (up to the sign) with the same phase and an 
energy exchange between the systems does not take 
place. 

Beats 

Beats are understood as phenomena occurring by the 
superposition of oscillations of comparable frequencies, 
i.e. for  . Weakly coupled, equal pendulums 
are an example. With the help of the addition theorem 
for trigonometric function, equation (11) can be repre-
sented as a product of a fast oscillation with slowly 
changing amplitude: 

(14a)     ttAttt  coscoscos 101  

(14b)     ttAttt  sinsinsin 102  

with frequencies 

 (15a,b) 
2

sa 
      and     

2
sa 

  

and initial conditions 010  , 002   and 

02010   . 

Beats result when the energy is alternately and com-
pletely transferred from one pendulum to the other. 
Phase jumps occur at the zero-crossover of the slowly 
changing functions (see figure below); the energy flow 
between oscillators changes direction at these posi-
tions. 

1,2

t

t
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Presentation of the Physical Principles 

(As preparation for part of the report): A short descrip-
tion of how the problems are approached and the re-
sults of the calculations, especially the calculation of the 
frequencies and the relative amplitudes of the normal 
oscillations and a detailed physical interpretation in the 
framework of the practical exercises. 

Apparatus and Equipment 

Two equal gravity pendulums; coupling spring; 

Hand stopwatches; 

Hall Effect angle recorder or accelerometer (G-sensor) with 
operating unit;  

Storage oscilloscope PCS100; pc; printer. 

Experiment and Evaluation 

The measurements are made on two gravity pendulums 
coupled by a spring. The pendulums are made of metal 
rods with a weight (m1) screwed to each end (see figure 
below and sketch on the title page). The weight can be 
moved to adjust the swing time and is fixed by a counter 
nut (m2). 

The dimensions of the pendulums are: 
 

Rod   1 = (0.026 ± 0.001 m 

   2 = (1.069 ± 0.01) m 

   Distance x adjustable (x  0.995 m) 

   mo = (1.048 ± 0.002) kg 
 

Weight  h1 = (0.0593 ± 0.0002) m 
   m1 = (1.359 ± 0.001) kg 
 

Counter nut h2 = (0.0180 ± 0.0002) m 
   m2 = (0.074 ± 0.001) kg 

D
S

Center of Gravity S

Rod  m0

Coupling Point

(Fulcrum)

 

The moment of inertia of a linear mass distribution of 
length  with respect to the fulcrum at one end of the 
mass is: 

(16)  2

3
1 mI   

The eigenfrequencies and the frequencies of the normal 
oscillations are measured with stopwatches. Ensure 
sufficient accuracy. 

Evaluation of the beats (plot of amplitude as a function 
of time) is done with a small Hall- effect sensor in a 
constant magnetic field (permanent magnet) mounted at 
the fulcrum of one of the pendulums. Since the Hall 
voltage is proportional to the sine of the angle between 
the magnetic field and the probe, it can be used as the 
signal for the displacement for small amplitudes. A 
small operating unit delivers the output signal. The 
signal is recorded by means of a storage oscilloscope 
PCS100 and pc. Operating instructions are found in the 
lab script. 

The Hall sensor with downstream operational amplifier 
is prone to interference and as an alternative an accel-
erometer (G-sensor) with operational amplifier can be 
used for angle measurements. 

One should try out which of both angle transducers 
delivers the best interference -free results. 

To Exercise 1 

Before beginning the measurements, the swing times of 
the pendulums must be so aligned that the relative 
difference is  10-3. 

The swing times are to be measured and compared 
with the value calculated from the dimensions of the 
pendulums. 

To Exercise 2 

When conducting the measurements, ensure that the 
amplitudes are so selected that the coupling spring is 
still under tension even the pendulums are closest to 
each other during the swing phase. The distance of the 
coupling points from the fulcrum points is given in the 
lab script. 

To Exercise 3 

Beats are excited for three coupling points and recorded 
with the PCS100. 

To Exercise 4 

The coupling factors are calculated from the measured 
frequencies. For the quantitative assessment of the 
measurement (comparison of experiment and theory) 
and for evaluation, the coupling factors are plotted 
against the square of the coupling points (distance of 
the coupling point from the fulcrum). The spring con-
stant of the coupling spring is determined from the gra-
dient of the curve together with the torsional constant. 

A small weight is available which can be used to excite 
oscillations in coupling spring. The spring constant is 
again calculated from the swing time. 
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FALLING BALL VISCOSIMETER GPI 
 

 

Key Words 

Laminar Flow. 

Internal friction, Viscosity; Drag, Stoke’s- and Hagen-
Poiseuille Law. 

Turbulent flow and Reynolds number. 

Aim of the Experiment 

Investigating the drag, internal friction, viscosity and 
laminar flow around a ball falling in a liquid; Stoke’s 
Law. Temperature dependence of the viscosity. 

. 

Literature 

[1]: Chapter 3.3 

[2]: Chapter 16.2 and 18.1 

Exercises 
1. Measuring the velocity of steel balls, with 

known and unknown radii, falling through a liq-
uid as a function of the temperature of the liq-
uid. 

2. Investigating the dependence of the viscosity 
of glycerol as a function of temperature. De-
termining the viscosity of the glycerol at 20 C 
and comparing the result with the literature 
value. 

3. Determining the unknown radii of steel balls 
from the measurements and comparing the re-
sults with direct measurements made with a 
micrometer. 

4. Setting up and solving the equation of motion 
with the boundary conditions v(t=0) = 
v0 = 0 and v(t  ) = v  and estimating the 
time and distance respectively where the ball 
sinks with almost constant velocity. 

Physical Principles 

Liquids (continuous media) have the property of laminar 
or turbulent flow. The frictional forces arising in laminar 
flow are determined by the viscosity  (coefficient of 
internal friction). Stoke’s Law applies for the frictional 
force R when a ball moves in a viscous fluid: 

(1)  vrR  6  

where r is the radius and v the velocity of the ball. 

If a ball drops under the influence of gravity in a liquid, 
then the force of gravity G, diminished by the amount of 
the buoyancy force A, works against the drag (frictional) 
force R. After a certain time and independent of the 
initial velocity and because of the velocity dependence 
of the drag, a state of balance is reached in which the 
sum of all forces vanishes: 

(2)  0 RAG  

The ball then falls with constant velocity from which one 
can calculate the viscosity. 

Temperature Dependence 

In liquids, the internal friction originates from the action 
of intermolecular forces and decreases with increasing 
temperature. In many cases, the temperature depend-
ence follows a functional progression given by: 

(3)    T
B

AT e  

Presentation of the Physical Principles 

(As preparation for a part of the report): Aside from the 
method of measurement (measurement equations), a 
short presentation should be given on the themes inter-
nal friction and laminar flow and the definition of viscosi-
ty. 

Equipment 

Stand cylinder with ring markings and thermometer; 
filled with glycerol (see figure on the title page). Refrig-
erator. Steel balls of various sizes. Tweezers. Paper 
and 2-Propanol to clean the balls Stopwatch. Metal rule. 
Micrometer. 

Experiment and Evaluation 

The measurement of the temperature dependence of 
the viscosity throws up a number of problems: The 
temperature, as a state variable, presupposes thermo-
dynamic equilibrium, which is very difficult to achieve in 
practice. The following experimental procedure is thus 
prescribed as a compromise between effort and result: 

The stand cylinders are stored in a refrigerator. At the 
start of the experiment they are taken out and exposed 
to room temperature so that the temperature of the 
glycerol takes on changing values. This warming up is a 
dynamic process without thermodynamic equilibrium. 
However, one can, as an approximation, presume that 
the systematic errors in the values are about the same 
for all measurements so that the temperature depend-
ence of viscosity can be reasonably well observed. 

The experimental procedure is as follows: The cylinders 
are taken out of the refrigerator and during a certain 
time interval (about 1 hour), and thus over a certain 
temperature range (about 6 to 10 K) repeated meas-
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urements are made of the falling times of the different 
balls t(r0), t(ra), t(rb), t(rc) one after the other and the 
corresponding temperatures. All other parameters must 
remain unchanged (falling distance of the balls, position 
of the thermometer, etc). Observe and take into account 
the accelerating phase of the balls when determining 
the falling distance. It is recommended to protocol the 
initial- and final temperatures for each falling time and to 
take the average for the subsequent evaluation. One 
then gets a table of values for the falling time as a func-
tion of temperature and ball radius. 

Any attempt to achieve a uniform temperature (e.g. by 
stirring the glycerol) is pointless and brings about condi-
tions making further experimental work impossible (e.g. 
air bubbles in the glycerol). 

Stoke’s Law applies rigorously only for the movement of 
a ball in an infinitely extended medium. In a narrow 
cylindrical tube, the resistance is increased due to 
boundary interference. For this reason, the balls should 
fall, as close as possible, in the middle of the cylinder. 
Furthermore, the measurement must be stopped an 
ample distance from the bottom of the cylinder. 

Before beginning the experiment, the balls must be 
cleaned from any remaining traces of old glycerol 
(why?). At the end of the experiment, the balls are re-
moved from the bottom of cylinder using a magnet. 

The experiment is evaluated by plotting the falling time 
as a function of temperature on single log paper. As a 
check, it is recommended to plot the results during the 
course of the experiment. Later, a second axis can be 
drawn along the ordinate with the actual viscosity val-
ues derived from the falling time of the known balls. 

The radii of the unknown balls are found by determining 
the ratio of the falling times to that of r0, provided one 
assumes that all other conditions remain unchanged. 
For viscosity, this may not be taken for granted since 
temperature changes can not be influenced. However, 
comparative data can be obtained from the plot by in-
terpolation with the aid of best fit lines. 

Supplementary Questions 

The transition from laminar- to turbulent flow is de-
scribed by the Reynolds number RE: 

(4)  





vrRE
 

where  is the density of liquid. In which range are the 
Reynolds numbers in this experiment? Does this prove 
that we are dealing with laminar flow? 
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SPECIFIC HEAT CAPACITY GPI 
 

 

Key Words 
 Internal energy and heat;  
 1st. Law of Thermodynamics. Heat capacity;  
 Du-Long-Petit Law.  
 Phase transitions, Heat of fusion.  
 Joule heat 

Aim of the Experiment 

Investigating the heat capacity of solids and the heat of 
melting of water (ice). Introduction to elementary meas-
urement- and evaluation techniques taking into account 
systematic errors. 

Literature 

[1]: Chapter 5.1, 5.2.3, 5.6.1, 5.6.2, 6.3.3 

[2]: Chapter 34.8 and 34.15, 37.2 

[3]: Chapter 3.2.3 

Exercises 

1. Determining the specific heat of water. 

2. Determining the specific- and molar heat capacity 
of Aluminium, Iron, Copper and Plexiglas and com-
paring the results with the Dulong-Petit Law. 

3. Determining the heat of fusion of ice. 

Physical Principles 

Internal Energy and Heat 

In a general physical system, the unordered energy 
(statistical energy, heat) is coupled with the ordered 
binding energy to form the internal energy U as the total 
energy of the system. Because of the statistical ex-
change, the internal energy cannot be decomposed or 
separated into components (such as potential energy 
Epot or kinetic energy Ekin of the charge- or center of 
mass of the system). The character of the statistical 
energy lies in the fact that it is a part of the ensemble 
nature of the particles and quanta of the system, where 
the microscopic states fluctuate continuously and gen-
erate the Uncertainty of the system. This uncertainty is 
a physically important state variable and expressed as 
the entropy S of the system. 

The internal energy is associated with the state varia-
bles of the system. It can be changed through work dW 
and heat dQ. 

The change of internal energy through work is tied to a 
change in volume: 

(1)   VpW dd   

Because heat is coupled with the ordered energy forms 
as mentioned above and because of its statistical na-
ture it cannot not be defined as a part of the energy 
balance of a system but only as a form of exchange dQ. 
This exchange is connected with the entropy of the 
system: 

(2)   STQ dd   

The temperature represents the thermodynamic poten-
tial. It describes the thermal energy qualitatively as a 

statistical parameter of the distribution or occupation of 
the states of the system respectively. 

Heat is a non-integral function of a system and a state 
variable "Q" does not exist. Equation (2) represents the 
definition of heat as a form of energy, in which in inte-
gral form, is totally converted to a quantity of heat Q 
after a change of state has occurred. 

The 1. Law of Thermodynamics includes the internal 
energy as a part of the total energy and heat as a form 
of energy exchange in the conservation of energy theo-
rem: 

(3)  constUEEE potkingesamt    und 

(4)  WQU ddd   

 

U

dQ = T dS

dW = p dV

dU = dQ + dW 

 
 

Heat Capacity 

Heat causes either a change in temperature or a 
change in the internal structure of the system (phase 
transition; see below). In the first case the heat capacity 
C is defined as the ratio of exchanged heat to tempera-
ture difference: 

(5)    
T
QC

d
d

  

In general, the heat capacity is dependent on the tem-
perature, i.e. C = f(T), and in addition, on the change of 
state connected with the process. Solids and liquids 
have very small expansion coefficients so that pressure 
and volume can be considered as constant and the 
exchange of work resulting from an accompanying 
change in volume can be neglected. C is then inde-
pendent of the special change of state. Furthermore, at 
sufficiently high temperatures, the heat capacity, to a 
good approximation, can be taken as independent of T: 
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(6)   const
T
Q

T
QC 





d
d  

Temperature Equilibrium 

If two bodies of different temperatures T1 and T2 are 
brought into thermal contact with one other, an ex-
change of heat takes place until a common (mixing-) 
temperature Tm is reached. Because of energy conser-
vation, the heat given up by the hotter body must equal 
the heat taken up by the colder body:  

(7)     m2221m11 TTmcTTmc  . 

Specific Heat Capacity and the Dulong-Petit Law 

The heat capacity of a system is proportional to quanti-
ty. If the value of the heat capacity is referred to the 
mass (unit kg) it is termed the specific heat capacity c 
and if the value is referred to the amount of material  
(unit Mole) it is termed the molar heat capacity CM: 

(8)    MCmcC  

The molar heat capacity at sufficiently high tempera-
tures (room temperature) is for most solids about 25 
J/(mol K). This behavior is called the Dulong-Petit Law. 

Phase Transitions 

Phase transitions are changes in the internal structure 
of the system, in which, at constant temperature, the 
entropy changes and discontinuities occur in the tem-
perature-entropy diagram. Simple examples are the 
conversions between the aggregate states gas, liquid 
and solid. 

The heat given off or absorbed at a phase transition 
point does not change the temperature of the system 
(the heat capacity is apparently infinite), but compen-
sates the energy by changing the ordered- and binding 
states of the system. It is termed latent heat and must 
be taken into account in the energy balance just as with 
the heat of fusion and heat of vaporization in phase 
transitions. 

Joule Heat 

When an electric current passes through a conductor, 
energy is released as heat to the conductor (and the 
surroundings). The amount of heat converted is: 

(9)    tIUQ   

where U is the voltage, I the current and t the time 
interval. 

Presentation of the Physical Principles 

(As preparation for a part of the report): Short presenta-
tion on internal energy, heat and heat capacity. A Sup-
plementary explanation on heat conduction for different 
materials. A short presentation of the thermodynamic 
relationships involved in the melting process. An Expla-
nation of the Dulong-Petit Law. A listing of the equations 
relevant for the measurements. 

Equipment 

See title page: Simple calorimeter made out of an alu-
minium container with styrofoam isolation; Test materi-
als (aluminium, iron, copper, plexiglass). 

Semiconductor-resistance-digital thermometer (1/10 K). 

Heater (wire wound). Power supply unit (transformer 
with variable output voltage); Two digital multimeters for 
current- and voltage measurements; Cables. Stop 
watch (1/10s). 

Various measuring beakers. Weighing balance. Ice (ice 
box in the lab room, ice mill in the stair case corridor). 

Experiment and Evaluation 

 (Preliminary experiment to exercise 1 - Water equiva-
lent) 

Since the calorimeter is involved in all exchange pro-
cesses, its heat capacity must be taken into account 
and determined in a preliminary experiment. For this 
purpose, cold water (mW  300 g, T1  0 °C) is filled in 
the empty calorimeter which is at room temperature TR. 
The heat capacity of water CK can then be determined 
from the temperature increase to the value of Tm using 
equation (7) giving:  

(10)        1mWWmRK TTmcTTC   . 

Because the specific heat of water cW is as yet un-
known, one calculates the ratio CK/cW = mÄ. The value 
represents the mass of a fictitious amount of water 
possessing the same heat capacity as the calorimeter; it 

is called the water equivalent of the calorimeter. This 
value is used in the equations for the following experi-
ments by taking it into account in the respective mass 
balance determinations: 

11)   ÄW mmm   . 

Exercise 1 (Specific Heat of Water) 

The water in the calorimeter of the preliminary experi-
ment is used. A certain amount of heat Q is applied to 
the water by means of a small electrical heater. The 
conversion of electrical energy into thermal energy 
(Joule Heat, see experiment DIRECT CURRENT/ 
ALTERNATING CURRENT) in the time interval t is given by: 

(12)   tIUQ  , 

where I is the current and U the voltage at the heater.  

For reasons of accuracy, the temperature increase 
should be at least 10 K. Start- and end temperature 
should be symmetrical about the room temperature to 
keep systematic errors, resulting from heat exchange 
with the surroundings due to insufficient thermal isola-
tion of the calorimeter, to a minimum. 

Measurements 

When measuring the specific heat capacity of water 
(amount of water about 300 g) by electrical heating, the 
resulting temperature interval should be about 10 K and 
lie symmetric about the room temperature. Information 
on the electrical set-up is found in the lab bench script. 
To evaluate the results it is advantageous to protocol 
the temperature as a function of time (about every mi-
nute) during the heating phase. 

 

Exercise 2 (Specific Heat of Metals) 

The measurement of the specific heat capacities of 
metals is by means of mixing experiments. The calo-
rimeter is filled with very cold water (about 200 g; add 
ice to cool down further; then remove the ice or let it 
melt completely), the metal probes, at room tempera-
ture, are then placed in the calorimeter. 
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Exercise 3 (Heat of Fusion) 

The heat of fusion is determined from the cooling 
caused by melting ice in a water probe. When setting up 
the experimental equations, three aspects must be 
considered in the heat exchange process: for ice, the 
take up of the heat of fusion and the subsequent warm-
ing from T0 = 273.15 K (= 0 °C) to the mixing tempera-
ture Tm and for the water probe, the cooling down to the 
mixing temperature. 

The water probe is again the same water used in the 
calorimeter from the heating experiments. The mass of 
ice should be about 50 g (two large ice cubes). The ice 
from the cool box must be kept for a while in a water 
bath in order to reach a temperature of 0 °C. 

Supplementary Questions (optional) 

1. According to the Equipartition Theorem the mean 
thermal energy of a particle is ½ kT per degree of 
freedom (Boltzmann’s constant k). How many de-
grees of freedom per atom correspond to the value 
of the Dulong-Petit Law? 

2. In addition to the systematic errors caused by heat 
conduction and heat radiation, a not completely 
closed calorimeter also exhibits systematic errors 
caused by convection, evaporation and condensa-
tion. Which arguments can be used for a favorable 
selection of the temperature interval for the experi-
ments? 

3. Thermal equilibrium within a test body is character-
ized by a thermal diffusion time D proportional to 
c/ (density ; specific heat capacity c; coefficient 
of thermal conductivity ). The coefficient of ther-
mal conductivity  is about 400 W/(Km) for copper 
and 0.2 W/(Km) for Plexiglas at room temperature. 
How large is the expected ratio of the diffusion 
times? Is this consistent with the observations and 
how can one explain observed deviations? 

Literature values 

Specific heat capacity of water at 20 °C:  

   
Kkg

kJ
W 
 1818.4c  

 

Specific heat of fusion of water:  

   
kg
kJ

E 7.333  

Specific heat of vaporization of water at 

 p = 1.0132 bar and T = 373.15 K  

   
kg
kJ

V1 5.2255  

Specific heat of vaporization of water at  

p = 1.0132 bar and T = 273.15 K  

kg
kJ5.2500v   

 (Source: KOHLRAUSCH; Praktische Physik 3; p.43 
B.G.Teubner Stuttgart). 
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ADIABATIC INDEX GPI 
 

Markings

Oblique Slit
Piston

Gas

p0, V0

 
 

Key Words 

Internal energy; 1. Law of thermodynamics; Heat capac-
ity. General equation of state of an ideal gas; Poisson-
Equation (Adiabatic equation). Kinetic gas theory, De-
grees of freedom. Harmonic oscillations. 

Aim of the Experiment 

A simple experimental method, whose theoretical prin-
ciples give a good introduction to thermodynamics and 
kinetic gas theory. From the results of the experiment, 
one can draw conclusions concerning the molecular 
structure of the investigated gases. 

Literature 

[1]: Chapter 5.1, 5.2, 1.4.3 

[2]: Chapter 34.14 with 34.16, 35.1 with 35.4 

Exercises 

 
1. Determining the ratio of the specific heat capacities 

cp/cV =  for air according to the method of Clem-
ent-Desormes. 

2. Determining the value of  for a monatomic gas 
(Argon), a diatomic gas (N2) and a triatomic gas 
(CO2) by measuring the natural frequency of a gas 
oscillator. 

Comparing the measured results with each other 
and with the values from the kinetic gas theory of 
an ideal gas. 

Physical Principles 

 

Adiabatic and reversible changes of state, i.e. those 
occurring without an exchange of energy with the sur-
roundings and without the formation of entropy, are 
described, for ideal gases, by the Poisson equations. 
One of these is: 

(1)  constVp   

Further equations for other pairs of variables, such as 
(2), can be derived from (1) by introducing the general 
equation of state. The value  = cp/cV representing the 
ratio of the specific heat of the gas at constant pressure 
cp and at constant volume cV is called the adiabatic 
index or simply kappa. According to kinetic gas theory, 
 is dependent on the number of degrees of freedom of 
the gas molecule (an example for a monatomic gas is  
= 5/3 1.67). 

The experimental determination of  by measuring cp 
and cV is made difficult by the fact that the heat capacity 
of the gas container is generally much higher than that 
of the gas itself. An elegant solution to this problem is to 
utilize adiabatic changes of state, as, e.g. in sound 
propagation (see experiment SOUND WAVES). In the 
method used here, according to Flammersfeld-Rüchert 
and Clement-Desormes, the adiabatic condition is satis-
fied by making the changes of state occur in very short 

intervals, so that energy exchange with the walls of the 
container can be practically neglected. 

Method according to Clement-Desormes 

The investigation of the changes of state for the deter-
mination of  requires the measurement of temperature 
or temperature differences. The classical method of 
Clement-Desormes is based on the idea, the difficult 
measurement of small temperature changes in a gas be 
replaced by a pressure measurement, where the gas 
itself serves as the thermometer substance (gas ther-
mometer). 

A volume of gas V is enclosed in a container such that 
by a momentary change of state the energy exchange 
with the walls of the container may be neglected while 
over a longer time span, heat- and temperature equilib-
rium can take place. The difference between the gas 
pressure p inside the volume and the external air pres-
sure pA is measured by an open U-tube manometer. 
The measured difference in height h is proportional to 
the pressure difference. One investigates an adiabatic 
change of state (a) from (p1, T1=TA) with p1 > pA and TA 
= room temperature to (p2 = pA, T2) and a subsequent 
isochore (V = const) change of state (i) to (p3, T3 = TA). 

 

Pressure

Temperature

(1)

(2)

(3)

pA

TA

(a)

(i)

 
 

The experiment begins by producing a slight overpres-
sure in the container. After temperature equilibrium is 
reached (T1 = TA), a stop-cock is opened for a short 
time to allow the gas to relax adiabatically to the outside 
pressure (p2 = pA). The out flowing gas performs work 
against the outside air pressure and reduces is internal 
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energy and temperature. The drop in temperature can 
be calculated from the Poisson equation. Subsequently, 
the gas (V = const.) warms up to TA, where the rise in 
pressure to p3 is used to determine the change in tem-
perature with the aid of the general equation of state. 

Under the given conditions, pressure- and temperature 
changes are small compared to their absolute values 
and the derivation of the equation for kappa is made 
relatively simple by considering the differential approxi-
mation dp  p. The associated Poisson equation for 
the adiabatic change of state (a) is:  

(2)   constTp 1  

Setting up the total differential and rearranging gives: 

(3)        0
dd

1 )()( 
T
T

p
p aa  

For the isochore (V = const.) change of state (i), one 
gets from the general equation of state: 

(4)    const
T
p
           and 

(5)  
p
(i)dp

T
(i)dT

or0
2T

(i)dT
p

T
(i)dp

  

Inserting (5) in (3) with dT(i) = - dT(a) gives: 

(6)    0
dd

1 )()( 
p
p

p
p ia      or 

(7)  
31

1

)()(

)(

dd
d

hh
h

pp
p

ia

a







  

where h1 and h3 are the difference in height readings 
of the manometer at the initial state (1) and at the final 
state (3). 

The method of Clement-Desormes boils down to a 
surprisingly simple prescription (7). But because of the 
small pressure- or height differences respectively, and 
because of systematic errors (dQ = 0 not realized, leak-
iness of the apparatus), the accuracy of the method is, 

in general, not good and not sufficient to distinguish 
between the  -values for monatomic, diatomic or polya-
tomic gases. 

The Method of Flammersfeld-Rüchert 
 
More exact measurements are based of the oscillation 
method of Rüchert. In this method, a volume of gas in a 
container is closed by a moving piston which is made to 
oscillate in a glass tube. The natural frequency is de-
termined from the restoring force, dependent on the 
volume and pressure of the gas, and the mass of the 
piston and can be calculated with the aid of the adia-
batic equation. However, the free oscillations are 
dampened after a few periods so that the measure-
ments again are not of sufficient accuracy. 

A solution to this problem was a modification of the 
experiment by Flammersfeld, in which stationary oscil-
lations were achieved by parametric auto-control. A 
week flow of gas is fed into a small opening (oblique slit 
in the neck of the flask, see diagram on the title page) 
near the middle position of the piston between the ring 
markings. The flow of gas serves to compensate for the 
gas- and energy loss (raising the piston) due to leakage 
around the piston and the effect of damping. The flow of 
gas leads to a considerable reduction of friction (Ber-
noulli forces) by building a layer of gas between the 
piston and the cylinder wall. The prerequisite is that the 
fundamental frequency of the oscillator is only insignifi-
cantly changed by the auto-control mechanism. The 
strong damping without the flow of gas can be clearly 
observed when the gas flow is cut off and the oscilla-
tions fade away practically immediately. 

Detailed observation shows a rather complicated 
movement. If the piston is below the slit opening, the 
oscillations are distorted by the fact that the pressure 
resulting from the normal adiabatic compression contin-
uously rises because of the inflow of gas. The move-
ment of the piston above the slit opening (in the limiting 
case, taken as a large hole) is described by a free fall 
with strong friction. The surprisingly good results for  in 
comparison to the expected- or literature values (test 
via reference measurements) show, however, that the 
errors due to the reduced friction remain low and hardly 
affect the fundamental frequency. 

In the following derivation of the oscillating frequency, 
dx is the displacement of the piston and dF is the force 
on the piston with respect to the rest position, S and m 
are the cross-sectional area and mass of the piston and 
V and p, the volume and pressure of the enclosed gas. 
From (1) and forming the total differential we have: 

(8)  0dd


V
V

p
p  

The restoring force constant is given by: 

(9)  
V
Sp

x
pS

x
FD

2

d
d

d
d

  

The fundamental frequency is then:  

(10)  
Vm
Sp

m
D 2

2
0            and thus 

(11)  22

24
Sp
Vm




  

where  is the observed period. 

Presentation of the Physical Principles 

 
(as preparation for part of the report): Short definition of 
the specific- and molar heat capacity of an ideal gas 
taking into account the respective change of state. Deri-
vation of the dependence of  on the degrees of free-
dom of an atom and molecule respectively. 

Derivation of the adiabatic equation (Poisson equa-
tion). 

Apparatus and Equipment 

Apparatus of Clement-Desormes 

Large, isolated glass flask with a stop cock and liquid 
manometer to read the pressure differential with respect 
to the outside air pressure. A colored ethanol-water 
mixture is used as the manometer liquid. The pressure 
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in the flask is increased by using a small rubber-ball 
hand pump. 

Apparatus of Flammersfeld 
 
Glass flask with precision cylinder neck and plastic 
piston. Argon, nitrogen and carbon dioxide in gas bot-
tles. Photo sensor with counter. Electric stop watch 
(1/100 s). Barometer. 

CAUTION:   Please handle the apparatus with care!  

The glass flasks are sensitive to breakage, especially 
the area around the slit opening  of the gas oscillators. 

Note: The steel gas bottles, under high pressure, pre-
sent a potential danger and require careful handling. Use 
the bottles only after instructions from the tutor! Take 
note of the information in the bench script before begin-
ning the experiment! 

Measurement using the Clement-Desormes Appa-
ratus 
 
The rubber pump is used to produce an overpressure 
h1 of 80-100 mm H2O-column. After the increase in 
pressure one has to wait until the temperature of the 
gas has again reached room temperature T1 and the 
overpressure has stabilized. Finally, the stop cock is 
opened for a short time to allow for adiabatic relaxation. 
The opening time must be suitably selected (about 1 s). 
A too short or too long opening time leads to systematic 
falsification of the results. Subsequently, the (isochore) 
rise in pressure is observed and the maximum value is 
noted as the experimental result h3. Repeat the meas-
urement for control purposes and for error estimation. 

Only one experimental setup is available and must be 
correspondingly shared by the groups. 

Measurement using the Flammersfeld Apparatus 
 
A photo sensor with counter and a hand-held stop 
watch are used to measure the times of 100  periods 
(a series of at least 10 measurements for each gas). 

The measurement of the air pressure in the lab is by 
means of a barometer mounted on the wall.  Experi-

mental data (working volume, mass of piston, and di-
ameter of piston) is found in the bench script. 

Three experimental setups are available, one respec-
tively for argon, nitrogen and carbon dioxide. Each 
group cycles through the three experiments. 
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SOUND WAVES GPI 
Key Words 

Sound waves; Sound propagation in gases and solids, 
sound velocity. Standing waves. 

Aim of the Experiment 

Investigation of sound propagation in gases (air) and 
solids. Relationship between sound propagation and 
material constants. 

Measurement and recording of transient and periodic 
processes and computer supported experimentation. 

Literatur 

[1]: Chapter 4.2, 4.4, 4.5 

[3]: 23.4, 24.3 

Exercises 
1. Determining the velocity of sound in air by measur-

ing the elapsed time. 

2. Observing the resonances in a column of air with 
closed and open end by varying the excitation fre-
quency. Calculating the velocity of sound and the 
ratio of the  specific heat cp/cV =  of air (isentropic 
index or adiabatic coefficient). 

3. Determining the velocity of sound in metals from 
the elapsed time and the fundamental oscillating 
frequency of the rod clamped at two different 
points. Calculating the modulus of elasticity of the 
metal. 

Physical Principles 

Sound Waves and Propagation Velocity 

In an extended elastic medium, a local excitation („per-
turbations“, deflection from the rest state, pressure 
variations) leads, via elastic forces to interaction with 
neighboring volume elements. A wave is thus generated 
from the excitation and propagates through the medium 
(Sound Wave). The propagation velocity c (phase ve-

locity, sound velocity) is determined by the restoring 
force (restoring constant D) and the inertia of the accel-
erated mass (density ). 

(1)    



Dc  

In a solid, where each volume element has a defined 
state of rest, longitudinal pressure waves or transverse 
shear waves can be formed, whereby the restoring 
constants are given by the modulus of elasticity E or the 
shear modulus G. 

Pressure waves are only present in gases and fluids 
and the restoring constant is equal to the modulus of 
compressibility K. 

In gases, an energy exchange between individual vol-
ume elements hardly takes place because of the rela-
tively short period of sound oscillations and the poor 
thermal conductivity, so that the adiabatic equations 
(Poisson Equations) are valid. Taking the derivative of 
the Poisson equation p(V;), one finds for the modulus 
of compressibility K: 

(2)   constVp   

and 

(3)   p
V
pVK 

d
d  

where  is the ratio of the specific heats cp/cV (isentropic 
index or adiabatic coefficient). Thus for the velocity of 
sound we have: 

(4)    Tcpc 


  

The velocity of sound is pressure independent, since 
inertial- and restoring terms (density and compressibil-
ity) depend on pressure in the same way. The velocity 
is, however, temperature dependent due to the addi-
tional temperature dependency of the density. 

Standing Waves 

In a limited volume, a number (ordinal number n) of 
stationary oscillating states (standing waves) are gen-
erated by reflection and interference when the wave 

length  is in certain ratio to the length   of the resona-
tor. 

For a resonator closed at one end one finds: 

(5a)   
22

1 







  n  

and for a resonator closed at both ends: 

(5b)    
2


 n  

If the wave length   and frequency   are known, the 
velocity of sound is calculated using the fundamental 
relationship for waves: 

(6)    c  
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The resonances represent the possible excitation states 
of the system which absorb the excitation energy even 
with a pulsed excitation. A percussion-type excitation 
first travels back and forth in the resonator in the form of 
a shock wave. However, Fourier decomposition shows 
that the wave consists of a whole spectrum of excitation 
frequencies. The higher frequencies and resonant har-
monics are strongly damped due to the high oscillations 
so that after a sufficient time only the fundamental (sine) 
wave remains. 

In exercise 2 one can observe and investigate the dif-
ferent behavior of both limiting cases (pulse propaga-
tion, resonant states) by selecting the appropriate time 
window. Sharp pulses are observed shortly after the 
shock excitation (percussion) and their delay times can 
be measured. The fundamental wave is observed a 
certain time after the excitation (here: a few seconds). 

Presentation of the Physical Principles 

(As a part of the preparation for the report): A short 
presentation of sound propagation in gases. Calculation 
of the temperature dependence of the velocity of sound. 
A discussion of standing waves and resonances in 
extended media under various boundary conditions (air 
columns, metal rods supported in different positions 
along their lengths). 

Equipment 

Microphone, percussion device (clapping sticks) with 
trigger cable and metal rule. 

Resonance tube with loud speaker and microphone. 
Waveform generator with counter. Multimeter to meas-
ure the microphone output signal. 

Metal rod with two support clamps. 

Storage oscilloscope PCS 100 

Experiment and Evaluation 

Exercise 1 

The percussion device with built-in contact is connected 
via a cable to a microphone and the microphone signal 
is routed to the input of the storage oscilloscope. The 
percussion device generates at the same time as the 

percussion signal a short trigger pulse at the micro-
phone output. Since the electric propagation velocity is 
negligible compared to the velocity of sound, one 
measures the time from the start of the trigger pulse (= 
start of the x-scale) to the start of the sound percussion 
signal. The distance is measured between the percus-
sion device and the microphone. 

Vary the distance from the percussion device to micro-
phone. 

Check to see whether you can recognize sound reflec-
tions (in simple cases they can be used in the evalua-
tion of the results). 

Characteristics of the Trigger Signal: short rising edge 
<< 1ms and a slow falling edge without fine structure. 
As a result, the minimum measuring distance between 
clapping device and microphone is   <~ 30 cm. 

Characteristics of the Percussion Signal: fast rising 
oscillation (T~ ¼ ms) of higher amplitude. Only a few 
ms long but may become longer due to reflection from 
the wall or contact bounce. 

Implementation:  

 Connect: percussion device-microphone-PCS100 

 Switch on: Microphone, PCS100, PC 

 Symbol: double click OsciPcs100  Setup window: 
pre-settings (Oscilloscope: PCS100, Function Gen-
erator: none, LPT Port Address: 378 LPT1) 
acknowledge with OK 

 Oscilloscope settings first [Ocilosc.] 
[1ms][30mV][DC][TriggerOFF] RUN] Re-
sult: Low noise signal  

 Whistle into the microphone sine waves are 
observed 

Measuring the Velocity of Sound in Air 

→[Trigger ON]  →[Single (shot)] 

Slide the trigger level with the cursor one full vertical 
division upwards.  

(Trigger grid =1/2 div.) 

Note status button [single]: Status= │stopped │triggered 
│waiting for trigger│. If the result is not satisfactory, 
select other settings (volts/time/trigger level) →[Single] 

Next measurement 

Sound propagation time: 0 to the start of the percussion 
signal. NOTE for short distances, the percussion signal 
is superimposed on the falling trigger edge but still ob-
servable. Do not place the percussion device on the 
table when generating a sound pulse. Sound waves 
through the table travel faster than through air! 

If the phone jack of the percussion device is not proper-
ly inserted in the microphone socket or is defective then 
the percussion contact does not trigger but instead the 
sound pulse triggers. As a result, the response level of 
the microphone is not at 0 but higher by a few „cm“. The 
fault can be eliminated by making a new connection or 
exchanging the microphone. If need be, one can also 
make measurements without the electrical connection 
percussion device – microphone by connecting two 
microphones to the oscilloscope input, setting the trig-
ger level as low as possible and placing one micro-
phone very close and one very far from the percussion 
device. In this case ensure that distances to sound 
reflecting surfaces are kept as far as possible. The 
signals are then observed on the same channel (front 
and back) but can be distinguished with a little luck. 

Exercise 2 

Standing waves are excited in a resonance tube (with 
and without end cap) using a waveform generator and a 
loud speaker. The standing waves are detected by 
means of a microphone. The microphone output voltage 
is measured with a multimeter. 

Remove the phone jack of the percussion device from 
the microphone and place the microphone close to the 
side opening of the tube. Measure the microphone 
voltage with the multimeter. A parallel measurement 
with the oscilloscope (in RUN-Mode) is also possible. 

The function generator must be set to sine wave and 
the symmetry knob to off (fully left), otherwise harmon-
ics are generated which could lead to a false allocation 
of the resonances. 

The resonance frequencies are measured as a function 
of the ordinal number. For the evaluation of the results 
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according to (5a, b) one should develop a numerical 
method satisfying the high accuracy of the measure-
ments. 

When discussing the results, one must decide whether 
the tube should be considered as having an open or 
closed end due to the loud speaker mounting. 

The temperature must be taken into account when 
calculating the velocity of sound according to (3), 
where, to a good approximation, air may be regarded as 
an ideal gas. A thermometer is available in the lab to 
measure the temperature. 

Exercise 3 

The experiment and measurements are first made with 
the rod clamped in the middle. A microphone is placed 
very close to one end and a small wooden hammer is 
used to strike the other end of the rod to generate the 
oscillations. Observe the change in waveform as a 
function of time. The initial distribution (to and fro oscil-
lation of the shock wave) is obtained with PCS100 – 
settings [Trigger ON], [Single]-shot, [1ms], [30ms], or 
[10mV] and trigger level about 1 div above 0V. 

Later distributions are obtained in [RUN]-mode by a 
suitable selection of the trigger level: the lower the trig-
ger level the later the last triggering. 

The asymptotic oscillations are obtained in [RUN]-mode 
with [Trigger OFF] and [10mV] by observing the decay-
ing signal and freezing the sine-shaped signal by click-
ing  [RUN] (toggle between run and stop) 

The asymptotic oscillation with the lowest damping is 
the fundamental wave for the rod clamped in the middle 
and the first excited wave with the rod clamped at ¼ 
and ¾ of its length respectively.  

 

Faults: 

When the oscilloscope no longer reacts even at trigger 
level 0 or [Trigger OFF] and [Run]: Reset: close the 
PCS100 programme and start again.  

Special effects: To highlight reflected sound waves: 
Direct the microphone not to the percussion device but 
to the wall and select a suitable large area without ob-
stacles in the way. 

How do the wave forms change after the percussion?  

When is the fundamental wave clearly observed? 

Plot characteristic diagrams for the limiting cases. The 
signals of the PCS100 are plotted using an additional 
computer and printer. Both these units are located near 
the door to R. 2.08 and must be switched on. 

The diagrams are plotted by clicking the file menu in the 
PCS100 window and clicking Print. 

Observe and discuss the oscillations also for the rod 
clamped twice in a sensible way. 

The density of the rod must be measured (balance and 
sliding calliper in room 2.05). 

Supplementary Questions 

Why are waves of higher frequency more strongly 
damped than those of lower frequency? 
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RADIOACTIVE DECAY GPI 
Half-life of 108Ag and 110Ag 

Key Words 

Structure of the nucleus. Radioactive decay; Decay 
scheme, Energy (quantum energy), Energy spectrum. 
Decay time; Decay law, Lifetime and half-life. Nuclear 
reactions. Counting statistics; Radiation detection. 

Aim of the Experiment 

Phenomenological treatment of nuclear decay. Introduc-
tion to nuclear radiation detection and measurement 
techniques. 

Literature 

[4]: Chapter 47, 49 

RADIATION PROTECTION NOTICE in annex V of the 
GP I lab script. 

Exercises 

1. Common exercise for immediate evaluation: Meas-
uring the natural ion dose rate and the ion dose 
rate at the outside of the neutron generator with an 
ion dose rate monitor (Hand-Monitor). Conversion 
to the equivalent dose value per year in mSv/year 
and mrem/year. 

2. Measuring the zero-effect with a Geiger-Müller 
counter. 

3. Activation of the radio isotopes 108Ag and 110Ag. 
Measuring the time dependence of the decay rate 
for different activation times. Determining the decay 
constants and half-lives of both silver isotopes. 

4. Calculation of the saturation counting rates for both 
isotopes and the ratios of their cross-sections for 
neutron capture reactions. Comparison with litera-
ture values (see nuclear tables at the work bench). 

Physical Principles 

Dosimetry 

See RADIATION PROTECTION NOTICE in the annex 
V of the GP I lab script. 

Activation via Nuclear Reactions 

Natural silver is composed of 51.83 % Ag-107 and 
48.17 % Ag-109 (natural isotope mixture). The activa-
tion of both instable radio isotopes Ag-108 and Ag-110 
occurs through (n,)-reactions, where after the silver 
isotopes are converted to cadmium isotopes via ß-

decay: 

(1a)     


  *108*108107  , CdAgnAg  

(1b)     


  *110*110109  , CdAgnAg  

Isotopes in the excited state are labeled with a star (*). 

The slow neutrons required for activation are generated 
by an Americium-Beryllium neutron source (neutron 
generator). The -radiation of the Am-241 source gen-
erates high energy neutrons by a (,n)-reaction with 
beryllium. These are slowed down by elastic collisions 
in a paraffin moderator: 

(2)      Cn,Be 129   

Radioactive Equilibrium (Mother-Daughter System) 

During activation, radioactive nuclei are produced at an 
approximately constant rate since the number of stabile 
mother nuclei N is very large compared to the number 
of converted nuclei and thus is practically constant. The 
simultaneous decay, however, depends on the momen-
tary number of radioactive nuclei n(t) and at first in-
creases. For the number of radioactive nuclei, the fol-
lowing equation applies: 

 

 

 

 

 

  Zerfallaktion dndndn  Re  

(3)   dtndtN        

where  is the cross-section for the reaction,  is the 
neutron flux density and  is the decay constant. Inte-
grating (2) gives: 

(4)      tetn 



 1N   

For the build up in activity during activation A(t) = n(t) 
one gets: 

(5)     t
s

t eAetA   11N )(  

For large times, equilibrium is established between 
generation and decay. The obtainable activity As is 
called the saturation activity. 

Activity after Activation 

After activation is stopped, the decay proceeds accord-
ing to the simple decay law and the instantaneous activ-
ity (5) represents the initial activity. 

Radiation Detection 

The decays are detected by registering the high energy  
ß-particles (emitted according to equations 1a,b) with a 
thin walled Geiger-Müller tube  and counter. The func-
tioning of the G-M tube is explained in Annex IV 
KERNSTRAHLUNGSDETEKTOREN of the GP I lab 
script. 

Counting Errors in Radioactive Decay 

The error n for the number of events n in a stochastic 
process is given by (see annex VI STATISTIK of the GP 
I lab script): 

(6) nn   
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Apparatus and Equipment 

Geiger-Müller tube in lead shielding with counter. 
Silver cylinder. Am-Be neutron generator. Stopwatch. 

Experiment and Evaluation 

Pay attention to the RADIATION PROTECTION 
NOTICE (STRAHLENSCHUTZANLEITUNG) in annex 
V of the GP I lab script during the experiment! 

To Exercise 1 (Dose Rate) 

An integrated measuring unit with a Geiger-Müller coun-
ter (Hand Monitor) is available to measure the ion dose 
rate. The conversion to the equivalent dose rate is done 
by taking into account the basics of dosimetry (see 
RADIATION PROTECTION NOTICE (STRAHLEN-
SCHUTZANLEITUNG) in annex V of the GP I lab 
script). 

To Exercise 2 (Zero Effect - Background) 

Radiation detection at the silver cylinder is by means of 
a Geiger-Müller counter. An automatic counter is avail-
able to measure the count rate (events per second). 
The counter operates periodically in 10 s intervals: Zero 
reset (reset); measurement made during about 9 s; 
Display of the measured value for about 1 s. The exper-
iment consists in a running observation and recording of 
the measured values. 

Before beginning the experiment, background (zero 
effect) measurements, over a suitable time, must be 
made without a radioactive source. The background 
count must be taken into account later, as a correction 
to the actual measurements. 

To Exercise 3 (Decay Curves) 

The silver cylinder is activated in one of the central 
channels of the neutron generator for two different acti-
vation times (1 min and 12 min). When the cylinder is 
removed from the generator at the end of the respective 
activation time, the count cycle of the G-M tube is start-
ed and the cylinder placed over the tube (see lab bench 
script for information on operating the counter). 

 

The synchronization between the end of activation and 
start of the counter (the time axis)) must be exactly kept 
to otherwise the observed initial activity is strongly dis-
torted due to the short half-life of Ag-110. 

The measuring time must be over 12 min.  for all activa-
tion times even when one gets the (false) impression 
that the activity has decayed to the zero effect after a 
short time. The half-life of the long-lived isotope Ag-108 
is about 212 minutes and one requires observations 
over 5 half-lives to get a clear determination of the pro-
gress of the separation of both components. 

The experiment is evaluated by first correcting the 
measured values for background counts and then plot-
ting on half-log paper. The behavior of the curve should 
show two components corresponding to the different 
decay constants of both isotopes. For large times, one 
can assume that the short-lived component has de-
cayed completely. This region is evaluated by drawing a 
best fit straight line from which one can determine the 
decay constant and the saturation activity As = A(t=0) of 
Ag-108. 
Finally, the long-lived portion, corresponding to the 
values of best fit line for Ag-108, is subtracted from the 
measured values for short times and these are again 
plotted on half-log paper. (The curves for both activation 
times can be presented in common diagrams). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Literature Values 

(Seelmann-Eggebert, Pfennig, Münzen; NUKLID-
KARTE; Kernforschungszentrum Karlsruhe. See also 
the Nuclear Chart in the lab room). 

Half-Lives 

 (7a)  T1/2 (Ag-108) =  2.41 min 

(7b)  T1/2 (Ag-110) =  24.6 s 

Cross-section 

 (8a)   (Ag-107  Ag-108Ground state) = 34.2 b (Barn)  

        = 34.210-28 m2 

 (8b)   (Ag-109  Ag-110Ground state) = 89 b
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GAMMA SPECTROSCOPY GPI 
Key Words 

Nuclear structure. Radioactive decay; Decay scheme, 
energy (quantum energy), energy spectrum. Interaction 
of -radiation with material; photo effect, Compton ef-
fect, pair formation effect. Counting statistics. Radiation 
detection. 

Aim of the Experiment 

Introduction to the phenomena of nuclear decay and the 
different types of radiation. Introduction to the associat-
ed measuring techniques. 

Literature 

[4]: Chapter 47, 48 

See also STATISTICS, NUCLEAR RADIATION 
DETECTORS, RADIATION PROTECTION NOTICE 
AND DOSIMETRY in the annexes IV, V and VI of the 
GP I lab script. 

Exercises 

1. Common exercise for immediate evaluation: Meas-
uring the natural equivalent dose rate and the dose 
rate of the 60Co probe 0.5 m from an integrated 
equivalent dose rate meter. Conversion to the 
equivalent dose value per year in mSv/year and 
mrem/year. 

2. Recording the -spectra of 60Co, 137Cs, 22Na and 
241Am and calibration of the spectrometer (calibra-
tion curve). 

3. Determining the energy of the e+-e- annihilation 
radiation and comparison with Einstein’s equation 
(E=mc2). 

4. Determining the resolution of the spectrometer for 
the -lines of 137Cs. 

5. Determining the maximum energy transfer in 
Compton scattering (Compton edge) for the -lines 
of 137Cs and comparison with the theoretical value 
from the scattering formula. 

6. Checking the absorption law and determining the 
attenuation coefficient and half-value thickness for 
iron and lead for the 0.662 MeV- radiation of 137Cs. 

Physical Principles 

Dosimetry 

See RADIATION PROTECTION NOTICE AND 
DOSIMETRY in annex V of the GP I lab script. 

Decay scheme of the radiation sources provided 

60
27 Co (5.3y)

2.506 MeV

1.333 MeV

Ni (stable)60
28







 

137
55 Cs (30 y)

0.662  MeV

Ba (stable)137
56





 

Na (2.6 a)
22
11

Ne (2  106 y)22
10

1.275 MeV 

EC



 









Am (430 y)

Np (2. 10  y)

241
95

237
93

0.159 MeV
0.103 MeV
0.060 MeV
0.033 MeV

6

 

Interaction of -radiation with mater 

Under the assumption that the interaction probability is 
proportional to the thickness dx of the absorber and that 
a quantum of radiation is lost to the radiation field in an 
interaction process, one gets an exponential law for the 
intensity: 

(1)    xeII  0  

The absorption coefficient  (linear attenuation coeffi-
cient) depends essentially on the energy of the radiation 
and the density of the absorbing material. The quantity 
/ (density ) is approximately constant for a given 
radiation energy and is designated as the mass atten-
uation coefficient. 

Three processes are responsible for absorption: 
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Photo Effect 

In the photo effect, the   -quantum is stopped by an 
electron (of the inner shell) of an atom and its energy is 
completely transferred to the electron. The electron is 
ejected from the shell. 

The atom reorganizes itself whereby an electronic tran-
sition into the hole of the inner shell takes place accom-
panied by the emission of characteristic Röntgen radia-
tion. 

Compton Effect 

The Compton Effect (Arthur Holly Compton; 1892-1962; 
Am. physicist) is an inelastic scattering process of  -
photons on free- or weakly bound electrons. The energy 
T transferred to the electron is dependent on the scat-
tering angle : 

(2)   

  0

2
0

0

cos1
1

E
cm

ET




  

where Eo  is the energy of the  -photon. The maximum 
energy transfer occurs in back scattering ( = 1800). 

Pair Formation Effect 

In pair formation, radiation materializes corresponding 
to the Einstein equation (Albert Einstein; 1897-1955; 
dt./am. physicist): 

(3)    2cmE   

Pair formation occurs when a   -photon, of sufficient 
energy, interacts with the field of the nucleus to produce 
an electron-positron pair. 

Pair formation is the opposite process to the transfor-
mation of an electron-positron pair in radiation energy 
(annihilation radiation), where for reasons of energy 
conservation two -photons are produced. This annihila-
tion radiation can be observed on ß+-radiation, e.g., 
emitted by Na-22. 

Radiation Detection and Spectrometer; Resolution 

See NUCLEAR RADIATION DETECTORS in annex IV 
of the GP I lab script. 

Counting Errors in Radioactive Decay 

The error n of a number n of events in a stochastic 
process is given by (see STATISTIC in annex VI of 
the GP I lab script): 

(4)  nn   

Apparatus and Equipment 

NaI-Scintillation spectrometer with high- and auxiliary 
voltage supply. PC-supported multi-channel analyzer. 

Iron- and lead absorbers of various thicknesses. 

Experiment and Evaluation 

Pay attention to the RADIATION PROTECTION 
NOTICE (STRAHLENSCHUTZANLEITUNG) in annex 
V of the GP I lab script during the experiment! 

To Exercise 1 (Ion Dose Rate) 

An analog ion dose rate meter (Hand Monitor) is availa-
ble to measure the ion dose rate. Make the measure-
ments over a certain time span in order to estimate the 
measurement error. The evaluation should be made 
straight after the measurement and applies to the whole 
group. 

Spectrometer and Multi-Channel Analyzer 

To operate the spectrometer, the high voltage (of the 
secondary electron multiplier), the power supply of the 
A/D converter (Peak-Detector-Interface) and the com-
puter must be switched on. 

The high voltage (coarse adjustment) must be set to the 
mark on the unit (ca. 700 V). 

The multi-channel program in the computer start auto-
matically after switch on, the measurement- and pro-
gram function are self explanatory. Additional infor-
mation is found in the lab bench script. Before stating 
the measurements, make yourself familiar with the 
functioning of the multi-channel analyzer. 

The amplification of the system is adjusted at the peak-
detector-interface with slide-switch (1) and rotary knob 
(2..6) such that the 1.33 MeV line of Co-60 is visible at 
the right edge of the screen. 

To Exercise 2 and 3 (Calibration of the Spectrometer; 
e+-e-) 

Calibration of the spectrometer and determination of the 
e+-e annihilation radiation (using a Na-22 source) is 
done by recording the individual spectra of the sources 
and determining the position (channel number k) of the 
respective  -line. The statistically exact position of a 

line is given by its center of moment k  (mean value, 1. 
Moment): 

(5)    
 
 


kn

kkn
k  

when n(k) is the respective channel content (number of 
events). The measurements begin with the 662 keV-line 
of Cs-137. For this line, the center of moments shall be 
calculated over several channels in the neighborhood of 
the maximum and compared with the position of the 
maximum during the experiment. 

The calibration curve of the spectrometer is made by 
plotting the measured channel numbers of the lines 
against the energy. The energy of the e+-e annihilation 
radiation is read from the curve. 

In order to get a descriptive picture of a spectrum, the 
run of the complete spectrum of Cs-137, as displayed 
on the screen, shall be sketched in the protocol book. 

 

To Exercise 4 (Resolution) 

The complete 662 keV-line is recorded and plotted later 
point for point. The measured values are fitted to a bell-
shaped curve (with a curve template) and then the full 
width at half maximum is read from the curve. The rela-
tive resolution is determined directly from the channel 
number, independent of the calibration. 

To Exercise 5 (Compton Edge) 

The position of the Compton edge is estimated from the 
middle of the falling edge after the Compton plateau. 

To Exercise 6 (Absorption Law) 

Checking the absorption law is also done with the 662 
keV-line of Cs-137. Various iron- and lead absorbers 
are available and placed between source and detector. 
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In these measurements, the intensity must be taken into 
account which can be directly determined using the 
function Fläche (area) of the multi-channel analyzer. 

When conducting this experiment, take into account all 
possible systematic errors, their minimization and their 
possible influence on the results. If necessary, use the 
functions Impulsgrenze (pulse limit) or Zeitgrenze (time 
limit) of the multi-channel analyzer. 

The attenuation coefficient and half-value thickness are 
evaluated by plotting the measurements on half-log 
paper. 
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ANNEX I 
ERROR CALCULATIONS GPI 
 

Real variables, due to the nature of things possess a 
distribution with a stochastic character and the meas-
urement of such values is, due to this character and 
other unavoidable shortcomings of the measurement 
procedure only approximate. Even when the measured 
values are represented by numbers these have not the 
properties of exact values in the mathematical sense 
but represent random single values of distributed varia-
bles. 

In all experimental work this leads to the application of 
statistics in quantitative investigations whereby the 
statistical methods of measurement applied to physics 
are known as error calculations. In the frame of the 
basic lab course in physics, simple methods of error 
calculations are considered and implemented to give 
one an understanding of error calculations and to impart 
a critical, statistical treatment of measured results. 

Error calculations belong to the elementary methods of 
the physicist and a discussion of errors and preliminary 
investigations on achievable accuracy are always in the 
forefront when designing an experiment. This is be-
cause conducting an experiment only makes sense 
when the errors are sufficiently small in order to give a 
meaningful answer to the question posed. 

Basic Statistics 

Statistical Principles 

Statistical considerations and methods depend on two 
elementary principles: 

(1) Statistical statements indicate ensemble 
 properties, whereby one cannot draw a conclusion 
from an individual case to the collective. 

(2) Statistical statements are probability statements 
 with finite accuracy and (thus correlated) finite cer-
tainty. 

Empirical Situation 

The uncertainty of physical quantities themselves and 
the additional unavoidable random and systematic de-
viations due to the measurement method lead to a dis-
tribution of measured values. The centre of the meas-
ured value distribution must not necessarily coincide 
with the centre of the distribution of quantities. Thus 
measured results can only be approximately determined 
and exact values remain out of reach. For this reason, 
the results obtained from the practical data using the 
methods of mathematical statistics are termed esti-
mates whereby complete estimates take place in inter-
vals (interval estimates), which represent the position 
(value) and the spread of quantities (error). 

Random Errors: Error Distribution and Error Interval 

Measured values have a normal distribution due to 
random influences; this is an empirically observed fact. 
Normal distributions are distinguished by two parame-
ters; the expectation value  describes the position and 
the standard deviation  the spread of the distribution, 
whereby 68 % of all values of the distribution are found 
in the interval (  ) about the expectation value. Con-
versely, for an arbitrary value of the distribution, e.g. a 
measured value xi, then for a similar interval (xi  ) the 
statistical probability is also 68 %, that the expectation 
value is within this interval. These types of intervals are 
designated as interval estimates for the quantity X and 
are called confidence- or error intervals. 

The interval (xi  ) is the complete result of a meas-
urement; the interval radius itself is called error x. It is 
a measure of the expected deviation and thus repre-
sents an accuracy in the framework of a given probabil-
ity, the statistical certainty. Here, a type of ''uncertainty 
relation'' exists between the accuracy and the certainty: 
the more accurate a statement is made i.e., the smaller 
the estimate of the error interval, then the less the cer-
tainty of the statement, i.e. the probability that the given 
interval encompasses the expectation value. 

 

 

 

 

For clarification we repeat: in physics and measurement 
technology the underlying measure of error is the sim-
ple standard deviation, where the statistical certainty is 
68 % (2/3) with still a remaining probability of error of 
32 % (1/3). (In other specialities this is not acceptable 
for special reasons, and higher certainties are imple-
mented, as in the biosciences and medicine where 
typically a three-fold standard deviation is used encom-
passing a statistical certainty of 99.7 %). 

The error intervals resulting from measurements are to 
be considered basically as homogenous i.e. the result-
ing value taken as the mean of the interval is not more 
probable (and hence, not better) than any other value of 
the interval. 

Systematic Errors 

Aside from random errors systematic influences appear 
which lead to certain, one-sided deviations from the 
actual values, as e.g. a bent pointer, tilted scales or 
calibration errors. Systematic errors are essentially 
avoidable, but difficult to recognise (random errors are 
recognised by their spread). In the scope of the basic 
lab course, no difference is made between random- and 
systematic errors and they are handled equivalently. 

Example of a Distribution of Measured Values 

Graphical representation of the histogram (rectangular 
area) of a collection of data (random sample) and the 
associated (hypothetical) distribution function. 

The relationships displayed show an example with a low 
resolution in comparison to the standard deviation of the 
distribution function, which often occurs in problems of 
measurement, and a very small random sample (10 
measurement values). One clearly sees that such a low 
collection of data can hardly be considered as a random 
sample in the statistical sense and only represents a 
very coarse approximation of the distribution function. 
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Closing Comparisons 

Any conclusion from results follows from quantitative 
comparison: from dependencies in the variation of a 
parameter, between theory and experiment, through 
comparison with available data (literature values). Three 
types of comparisons have been specified in the sense 
of statistical test:  

Results are assessed as (unrestricted) identical when 
their (simple) error intervals encompass each other. 

Results are assessed as compatible when they encom-
pass each other in the scope of the three-fold error 
interval. 

Results are first considered as significantly different 
when the deviation exceeds the three-fold error margin. 

Resolution 

Many measurement methods show no spread and de-
liver stable values. This is because each measurement 
method and each number combination (scale, instru-
ment display) possess a limited resolution, below which 
the values cannot be separately resolved or represent-
ed. All real values have discrete character and behave 

in a stabile manner when the spread lies under the 
given limit of resolution. 

In this case, error estimation must take into account the 
scale resolution (ability to read the scale) or the number 
representation (digital displays) and, if necessary other 
circumstances of the measurement. Here, one speaks 
of practical error estimation. 

With analog instruments (scale/pointer) one can, within 
the scale division, usually read a further estimate of 
error and the error depends on the number of scale 
divisions and parallax influences and is of a subjective 
nature:  

div. scale:display Analog 5.01.0.Est   

Now 0.5 scale divisions represent an upper limit when 
the estimation of an intermediate value is not possible 
and hence, a whole display interval must be taken as 
the error interval. 

With digital instruments the error estimation is taken as 
() 1 in the last digit of the display:  

︵digit ︶   :display Digitall Est. d1  

Equipment Requirements: Nominal Error 

Errors present in each measuring instrument are listed 
by the manufacturer in the respective manual. These 
must be taken into consideration by the user and are 
designated here as nominal errors. 

Multimeters (U/I/R/C/L) are typical pieces of lab equip-
ment possessing nominal errors. Analog multimeters 
are characterized by their quality class which give the 
absolute error as a percentage of the measurement 
range: 

range tMeasuremen
100

kx: classQuality   

The quality class is (aside from other labels) is given as 
a small number (in the range of around 0.5 to 3) togeth-
er with the type of current (= or similar for dc;  for ac) 
on the scale display of the instrument. 

 

 

With digital instruments, the error comprises a relative 
component in % of the measured value (% v. M.) and 
an absolute component in digits (d; unit of the last digit): 

digit last of Unit value Measured 
100

: d   v.M.  

n
px

n%p




 

In the lab course, the nominal errors for the instruments 
are listed in the respective lab bench scripts if they 
make a dominant contribution and must be taken into 
consideration with the measured results.  

Terms 

The expected deviations are themselves designated as 
absolute errors and generally written with a capital del-
ta; the absolute error is used as a measure for the com-
parison of quantities: 

︶comparison of measure ︵: Error Absolute x  

In error propagation (see below) the absolute error is 
required for additive relationships (+/-). 

Furthermore, as a measure of accuracy the relative 
error is also used and gives the relationship of the error 
to the measured quantity. The relative error is written 
with a small delta: 

accuracy ︶ of measure ︵: Error Relative 



x
xx  

The relative error is a ratio and dimensionless. In the 
respective range of values, the relative error is usually 
given as a percentage (1% = 0.01). 

Central variation interval
                          of the mean value distribution

Error interval

Expectation value (Parameter
                                 of the distribution)

Random sample-mean value
           (random value of the
                     mean value distribution)

bold: Mean value distribution

thin: Measured value distribution
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For small values, powers of ten are used (x = 310-5 for 
x = 0.00003). 

In error propagation (see below), the relative error is 
required for multiplicative relationships (x/). 

Structure of Error Calculations 

In general an experiment consists of the actual meas-
urement comprising the recording of measured values 
and the determination of the results, the final evaluation 
with the arithmetical calculation of the results or func-
tional relationships. The associated error calculations 
comprise the determination of the measurement error, 
the calculation of the error in arithmetical evaluations, 
termed error propagation and the error determination in 
the evaluation of functions. 

Measurement Error 

Measurement error can be basically ordered into three 
categories. In practice, usually only one of the contribu-
tions dominates and can be considered on its own (see 
below: contributing und non-contributing errors). 

To any measurement one usually has a preceding set-
ting (measuring with a ruler, activating a stopwatch, 
adjusting or setting optical equipment, setting an addi-
tional  ''parameter'', e.g. a temperature), whereby, in the 
following no difference is made whether the error of the 
measured value only comes from the measurement 
procedure or additionally from the required settings. 

Control Measurements 

To recognize the behaviour of the distribution or spread 
of measured values it is fundamental to repeat meas-
urements or in continuous measurements, to observe a 
value over a sufficiently long time.  

If the value shows a (clear) spread, then from a statisti-
cal point of view a random sample must be upraised, 
i.e. a series of measurements made and statistically 
evaluated (see the following section). 

On the other hand, if the values are constant, the 
spread is not resolved and the error must be estimated 
from the resolution and other measurement conditions. 

Random Sample Estimation (measurement series and 
error of spread) 

One essentially cannot make any (statistical) predic-
tions from a (single) measured value of a fluctuating 
quantity; especially one cannot give the standard devia-
tion of the measured value distribution as a measure of 
error. From a random sample (series of measurements) 
taken as an approximation of the distribution one can 
not only calculate approximate values for the expecta-
tion value and the standard deviation of the distribution 
itself, but also the standard deviation of the mean value 
distribution from internal statistical relationships. As a 
result one then has the (single) mean value with its 
error. When xs are the random sample measured values 
and n their number, then the mean value x is given by: 

 ss x
n

xx 1  

The standard deviation x of the mean value distribu-
tion as an error depends on the spread (standard devia-
tion  ) of the measured quantity itself and the scope n 
of the random sample: 

n
x x


  

The standard deviation  of a distribution is the square 
root of the mean quadratic deviation 2 (variance), 
whose construction corresponds to that of the mean 
value: 

 22 1
  xx

n i  

Since the series of measurements as a random sample 
gives only an approximation of the distribution, the 
standard deviation also can only be approximately cal-
culated. The usual designation for the approximate 
value is to suffix the standard deviation with n-1 since 
one divides by n-1 instead of n: 

  


 
22

1
2

1
1 xx

n sn  

 

 

Hence, the error of the mean value is then 

 
)1(

2




 
nn

xx
x ss  

In simple standard measurement procedures typical for 
the basic lab course, distributions are seldom observed 
and statistical evaluations as above are rare. 

Error Propagation 

Linear Combinations of Distributions 

Error relationships are based on the rules of interrela-
tions between distributions, whereby, a compensating 
effects comes about when in individual cases positive 
and negative deviations come together and reduce the 
summed deviation. In the elementary case of a linear 
combination of two statistically independent distributions 
Xi and Yi yielding a summed distribution (aX + bY)i the 
mean values and variances (mean quadratic deviation) 
add corresponding to their linear construction: 

ybxaybxa ii   

and 
22222
yxbyax ba

ii
   

Gaußian Error Propagation Law 

The value z is given as a function of measured varia-
bles a, b, c, ... : 

 ,...,, cbafz   

For error calculation, the error in measurements a, b, 
c, ... are considered as small deviations of the meas-
ured results a0, b0, c0, ... and to a good approximation 
the error function is expanded as a linear Taylor series:
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....0 











 c
c
fb

b
fa

a
fzz  

When constructing the standard deviation as error z 
the constant contribution z0 is dropped and one gets the 
Gaußian Error Propagation Law: 

....
222








 










 










 



 c
c
fb

b
fa

a
fz  

The partial derivatives represent weighting factors for 
the contribution of the individual measured quantities.  
The addition of the squares and taking the square root 
takes into account the character of the distribution with 
the probability of compensation of deviations (the total 
error is smaller as the linear sum of the components). 

The Gaußian Error Propagation Law makes one im-
portant qualification. It assumes that the measured 
variables are statistically independent and non-
correlated. 

Elementary Rules 

The partial derivatives can make the error calculations 
rather cumbersome and for arithmetic relations it is 
easier to handle error propagation ''from the inside to 
outside'' in pairs corresponding to the procedure of 
arithmetic calculations of the result itself: 

     22 baba   

Hence, with addition or subtraction the absolute errors 
“add” (quadratic error and root). For multiplication and 
division we have:  

     22 baba   

That is with multiplication and division the relative errors 
“add”. 

In powers (roots) the relative error is multiplied by the 
exponent: 

  arar   

 

For values of higher functions the error must be calcu-
lated by taking derivatives. The use of the elementary 
rules also assumes statistical independence of the 
individual quantities so that they are only suitable for 
error evaluation where each measured quantity enters 
only once. 

Maximum Error 

If statistical independence cannot be assumed and 
measured quantities taken as correlated, then the 
above combination rules for distributions are invalid. In 
this case the most unfavourable case is taken that all 
measured quantities deviate in one direction and up to 
the limit of the error interval. The propagation law for the 
maximum error is then:  

...








 c
dc

fb
db

fa
da

fz  

Estimation of the Limiting Value 

If error functions are very complicated a limiting value 
(error limit) can be calculated by using the limits of the 
measured value. One must take into account in which 
manner the individual quantities go into the expression 
(summand/subtrahend; numerator/denominator). The 
error is then the difference between the limiting- and 
resulting value: 

 

zzz
...),b,a(fz

,...b,afz









Error
limit Upper

Result
 

Direct Measured Quantity 

Before beginning error propagation calculations the 
error equation must be ascribed to the direct measured 
quantity in order to recognize erroneous error contribu-
tions caused by redundant quantities in intermediate 
values or correlations. Trivial example: 

As an exercise, one is to calculate the ratio of two forc-
es G = mg. In the preceding individual calculations of 
G1 and G2, the relative error of the gravitational acceler-
ation g goes into the ratio G1/G2 twice, whereas in reali-
ty the gravitational acceleration cancels out. 

Graphical Evaluation of Functions 

Experimental investigations and evaluation of functions 
covers the qualitative assessment of function types and 
the quantitative determination of the parameters (axis 
intercept and slope as an example for a linear function). 
For the qualitative assessment a graphical representa-
tion is always required which at the same time is a 
powerful tool for the quantitative determination. The 
evaluation of parameters can, when the type of function 
is given, also be done numerically (linear regression for 
straight line; best fit calculations for arbitrary functions); 
however, the numerical effort is relatively high. Moreo-
ver, the graphical evaluation of functions gives one 
practical experience in the critical assessment of run of 
the function. 

A graphical evaluation is possible for linear functions or 
„linearized“ functions; the methods are described in 
annex II  

With these functions, error estimation is simple and 
uses the principles described above for limiting values. 
Aside from the line of best fit with the parameters a 
(axis intercept) and m (slope) one also constructs a 
limiting line which delivers the limiting values aG and mG 
of the parameters, and thus the error. The results are 
then: 

 
  mGmmmmm

aGaaaaa





   with   

and  with  
 

Details concerning the construction of lines of best fit 
and limiting lines, on the linearization of functions and 
calculations are found in annex II. 

Methodological Supplements 

Representing the Results (result interval) 

A clear and concise form of representing the results as 
a result interval is to specify the interval middle (result) 
and the interval radius (error): 

(Example)  mA5.04.27I   

 

 



GPI                                                                                                                                                                                                                                                   FEHLERRECHNUNG-52- 

 

This type of representation is preferred in the lab 
course. An alternative representation is to write the 
error in brackets directly after the result; the example 
above is then: 

 I = 27.4(5) mA. 

For values from reliable sources where errors are not 
specified, the usual convention is to assume an error of 
1 (one unit) in the last digit. 

Contributing and Non-contributing Errors 

Errors are also estimated values with accuracies usually 
of one or more orders of magnitude lower than the re-
sult. The aim of an error calculation can therefore be 
confined to capturing the essential part of an expected 
deviation while ignoring small contributions; especially 
with respect to error propagation and additional, sys-
tematic rounding-up in the calculation procedure (see 
below). 

Small error contributions can be ignored in error propa-
gation thus reducing time and effort. 

Errors are to be considered as small when they are half 
an order of magnitude (factor 3) or more lower than the 
contributing errors. 

Rounding of Errors 

For the same reasons as above, i.e. the low accuracy of 
the error value itself, it is not meaningful to give the 
error with more than one counting digit, whereby the 
accuracy of the error in the most unfavourable case is 
reduced by a factor 2 equivalent to 100 % (in the range 
of values between 1 and 2). 

In doing so, the given statistical reliability must not be 
compromised: 

Error intervals may only be rounded up! 

If evaluations are not calculated through to the end but 
intermediate values noted and included latter then er-
rors should be specified to two digits to prevent round-
ing errors making an increasing contribution. 

Number Representation of the Results 

The number representation of the results cannot feign 
to have better accuracy or possess a higher resolution 
than that given by the error. The steps in calculation 

(multiplication/division) often result in an excess of digits 
which must be then (“properly”) rounded. 

The numerical value of the result and error must end in 
the same order of magnitude (decimal power). 

A consistent result after calculating a resistance [U = 
(9.13  0.06) V; I = (243  3) mA] would be: 

(Example) R = (37.6  0.9)  

It would be false to write the result to more than one 
digit after the decimal point since these, with respect to 
the error, these places can take on any arbitrary numer-
ical value and are thus meaningless; 

(Example) False: R = (37.5720  0.8)  

On the other hand, zeros are also counting numbers 
and must not be suppressed when needed for numeri-
cal resolution. If a voltage with an error of 0.06 V is 
accurately set to 9.00 V it would be false not to write 
down the zeros: 

(Example) False:  U = (9  0.06) V 

 

 

Conclusion 
Errors can always be estimated! 
Often, however, situations arise, where this cannot be 
done in a purely schematic way but requires a differen-
tiated and critical examination of the circumstances 
surrounding the measurement. Basically, the assump-
tion is false that errors cannot be estimated because 
they are too small or too large! 
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ANNEX II 
GRAPHICAL REPRESENTATIONS GPI 

and 

GRAPHICAL EVALUATION OF FUNCTIONS 

 

A picture says more than a thousand words. 

Humans possess an amazing visual capacity. This is 
the basis for the power of graphical representation 
which makes possible the visualization of information. 

Graphical representations serve to display measured 
results, allow judgements and comparisons, make pos-
sible the efficient evaluation of parameters and provide 
a practical form of presenting numerical relationship. 

Moreover, graphs are useful tools for the momentary 
control of a measurement. In many cases it is advanta-
geous to plot measured values at the same time as 
recording them. For example, a jump in an otherwise 
smooth curve could indicate an error in measurement 
and allows an immediate check of the circumstances 
which would be more difficult at a latter time or even 
impossible (error in reading an instrument, switchover to 
another measuring range, sudden change in measuring 
conditions). Furthermore, the immediate assessment of 
a measurement helps better to select parameters, 
makes possible to recognize the scattering of values 
and allows the quick evaluation of intermediate results. 

The use of calculators and computers cannot be con-
sidered a substitute for graphs but graphs are often the 
prerequisite for the meaningful use of computers. Se-
lecting models for best fits, eliminating runaway results, 
for example, can be seen at a glance. 

2 4 6 8 10 12 x/[x]

2

4

6

8

y/[y]

?
?

y = a + b x2

 

Example 1: Qualitative check of a power functions by a 
linearized representation. 

In the direct graph (above) a clear decision cannot be 
made as to the progress of the curve. 

The linearized curve (right) clearly shows the probable 
run of the curve. If the curve had been drawn during the 
measurement the supposed runaway result could have 
been recognized and checked in good time. 
 

Graphical Representations 

The explanatory power of a graph strongly depends on 
its content and form. 

To this belongs: the selection of the represented quanti-
ties, the coordinate system (right-angle coordinates, 
polar coordinates), axis division (linear, logarithmic), 
axis scale and range and of course a clean and clear  

20 40 60 80 100 120
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y/[y]

y = a + b x2

Runaway !

x2/[x
2
] 

construction. A graph must be constructed in such a 
way that the data is correctly and accurately rendered.  

Graph Paper 

Graphs constructed for the lab reports must be drawn 
on (original) graph paper with suitable axis divisions: 

 mm paper for linear curves, 

 simple- and double log paper for exponential- and 
power functions 

 Polar coordinate paper and probability paper for 
polar functions and normal distributions etc. 
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Axis Scale and Division 

The axis scale and the intervals (division) must be se-
lected such that the measured data can be completely 
and clearly plotted. 

In the framework of finite drawing accuracy, information 
and accuracy must not be lost through the selection of 
scale and division. 

If the represented quantities show a distinct depend-
ence on each other, then the area available should be 
used to the fullest. If a relatively stable quantity is plot-
ted then a suitable compromise should be found. A 
small scale would make it difficult to spot possible 
tendencies and a too larger scale would make things 
unclear due to the scattering of data. 

The graph must make it possible to completely assess 
the data. 

With an expected zero-point line, the zero point must be 
drawn in order to observe and assess the run of the 
(extrapolated) fit curve at the zero point. 

The division of the axes should be simple. 

For example, one, two or five units per cm graph paper 
for linear plots. Complicated divisions make reading and 
recording laborious and are often the cause of errors. 

Axis Labelling 

The main divisions of the axes must be labelled with the 
measure numbers, the whole axes are specified by the 
symbol for the represented quantity divided by the unit. 

Each measured value is a product of the measured 
number and unit so that the numbers on the axes rep-
resent the quotient out of quantity and unit. For clarity it 
is recommended to clearly separate symbol and unit 
labels (numerator and denominator). For example: 

1
2

sm
10not and

s
m


 v10

v
2

 

T10
T
1

3
K10not andK

3

1
 

 

It is incorrect to set units in square brackets. 

Quantities a placed in square brackets to designate 
their units, e.g. [p] = mmHg. 

Marking measured values 

Measured values are marked by points, crosses or 
small circles. 

Errors can be directly represented in the form of error 
bars. In general it is sufficient to draw only a few repre-
sentative error bars. 

Curves (Fit Curves, Theory Curves) 

Solid curves in graphical representations can have 
different meanings (in general two). The exact meaning 
of a solid curve must therefore be explained in the rep-
resentation. 

Fit curves can be drawn as solid lines and these may be 
considered as functional curves whose qualitative form 
is given by some underlying theory or model whose 
parameters fit well (minimum of the quadratic deviation) 
to the measured values 

Pure theoretical curves can also be drawn as solid 
lines, whereby the function is determined by model 
considerations. 

It is not meaningful to connect measured values from 
point to point as if drawing a polygon! For thing, this 
contradicts the statistical randomness of the individual 
measured values and at least in the macroscopic world, 
physical processes in general are continuously differen-
tiable i.e. "smooth". 

 

Legend (labelling) 

The graph must have a sufficient and unambiguous 
explanation of the relationships investigated (legend)! 

To this belongs not only the higher-order labelling of the 
data (e.g. "Rotational Motion; Angle-Time Law") but 
also references for the report or a more detailed de-
scription of the measuring conditions (e.g. "Test series 
II; without additional weights"). 

GRAPHICAL EVALUATION OF FUNCTIONS 

The numerical evaluation or fitting of a function to a 
random sample of scattered measured values requires 
much computing effort. The most common task is to fit a 
linear function (linear regression). 

This can be carried out simply, clearly and with good 
results with the help of a graph by drawing a line of best 
fit taking into consideration the location and distribution 
of the points (see example 2 below). 

The power of this „visual mean value calculation” is 
made clear when compared with numbers churned out 
with the numerical method. 

In the numerical method, it should also be mentioned 
that the construction of a curve is essential to assess 
the match of the fit to the data points since the method 
fits a line to the data even when the values show no 
linear characteristics. 
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Exercise 2: Elastic Modulus E

Slope = 0.105 mm/N
Limit slope = 0.114 mm/N

Axis intercept L0 = (872.1 ± 0.1) mm

Length L of a steel wire
as a function of the the tensile force F

Slope = (0.105 ± 0.009) mm/N

F
q
L

E
LL 0

0
1



 

Example 2: Graphical Evaluation of a Linear Function 
(for clarity no mm graph paper is shown) 

Constant error L = 0.1 mm and F = 0.001 N (weight  
mg; balance error 0.1 g). The error F can be neglect-
ed in the framework of L and drawing accuracy. Quali-
tatively, a linear relationship is well given. The scatter-
ing of the measured values are in agreement with the 
error bars. Slope: 

 
N

mm  
N

mm 105.0
)016(

)08.87276.873(Slope 



  

N
mm

N
mm 114.0

)016(
)02.87284.873(Limitslope 




  

 

Higher functions can also be graphically filled by suita-
ble linearization (see below). 

Non-linearizable functions can only be evaluated nu-
merically with a large amount of computer effort. The 
basis for all fit procedures is the variance. 

 

 

Parameter Estimation of Linear Functions 

The random scattering of measured points should follow 
a normal distribution: 

The line of best fit is selected such that the measured 
point lie symmetric about it, whereby single far-off 
points need not be considered since they have a large 
error probability (runaway point). 

If aside from random scattering a systematic tendency 
is recognizable (e.g. a slight curvature) then additional 
criteria must be considered in relation to the physical 
problem of the measurement method (see supplemen-
tary notes). 

A fit curve is best made with a Plexiglas rule having a 
black line in the middle and possessing no markings or 
divisions. 

Estimates for the parameters of the function (axes inter-
cepts, slope) are then determined by the fit line: 

The axis intercept can be read directly at the cut point of 
the fit line with the y-axis. 
 

The slope is determined by fixing a right-angle triangle 
with the fit line and calculating the tangent. 

A large triangle should be selected in order to hold read 
errors as small as possible. The slope triangle should 
be drawn in the graph to check the evaluation. 

When determining the parameters note that, in general, 
the variables are dimensioned quantities and corre-
spondingly, the intercept and slope have units. 

Graphical Error Estimation 

A limit line is used for the graphical determination of 
error. 

The limit line is a line which is just compatible with the 
measured values taking into consideration scattering 
and error bars.  Fixing the position of the limit line re-
quires a critical inspection of the measured values with 
respect to these. 

The limit line directly marks on the ordinate (y-axis) the 
error interval y. The error in slope is the difference 
between the fitted slope and the limit line slope. 

In the scope of error considerations, a measurement is 
taken to be consistent when the error bars and the 
mean scattering are about the same. Error bars which 
are too small indicate false or marginal error estimation 
or an unconsidered source of error. Error bars which 
are too large indicate incorrect error estimation or addi-
tional systematic errors. For example: 

If one measures a voltage (e.g. as a function of the load 
current), then the scattering of the values will be con-
siderably smaller than the error given by the quality 
class of the measuring instrument. The quality class 
describes essentially the systematic calibration error of 
the instrument. It therefore follows for the error of the 
parameter that the axis intercept is afflicted with the full 
uncertainty as given by the quality class. The slope, 
however, can be given with a better accuracy resulting 
from the scattering since a systematic shift of the points 
upwards or downwards does not influence the slope. 

In general, for the above reasons, the fixing of the limit 
line can be oriented more to the scattering of the meas-
ured points whereby, as an additional criterion the num-
ber of measured values must be taken into considera-
tion (corresponding to the increase in accuracy of the 
mean value with the number of points). But: 

A correct allowance for the number of measured points 
is visually difficult and graphical evaluations deliver, as 
a rule, errors which are too large. 
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If higher demands are placed on the comparability and 
accuracy of error predictions then numerical evaluations 
must be made. 

Evaluation of Non-linear Functions 

Non-linear functions must often be checked and evalu-
ated, however, a visual assessment and graphical anal-
ysis is only possible for linear relationships. 

In many cases a linearization of the function or curve 
can be achieved by selecting suitable variables (substi-
tution) by a transformation. 

Variable Substitution 

The parabola s = ½ a t2 is linearized, when s is not 
plotted as a function of t, but rather as a function of t2 
(see example below). The "Projection" K = K0 cos  t is 
linearized (in the range of  t from 0 to /2) when K is 
plotted against cos  t and not t. 

 
Example 3: Evaluation of a quadratic function via a 
linearized plot 

Constant measurement error s = 0.001 m (negligible) 
and t = 0.04 s. The error of t2 is t2 = 2 t t. Since a 
zero-point line is expected and, within the errors, is 
obviously seen, the fit line and limit line go through the 
zero point. 

2-s m
s
mSlope 2
2 1090.3

)030(
)017.1( 




  

2-s m
s
mslope Limit 2
2 1080.3

)030(
)014.1( 




  

 

Simple Logarithmic Representation 

Exponential functions of the form 

  xkeCy   

must be analysed quite often. Exponential functions can 
be linearized by taking the log of both sides: 

 elogxkClogylogorxkClnyln   

A linear function then results when ln y (or log y) are 
substituted as variables. 

Simi-log paper is used to draw these functions so that 
the y-values can be directly plotted without calculating 
the logarithm. 

The log paper is based on logarithmic decades, where-
by one unit of the log scale always corresponds to a 
decade of the dependent variable. 

The absolute scaling of the log axis is (as with a linear 
division) undetermined and must be fixed in relation to 
the order of magnitude of the measured values. 

Evaluation and error determination are basically as 
described above. However, attention must be paid to 
two important points (sources of error). 

 
Example 4: Evaluation of an exponential function by a 
semi-log plot. 

Log of current plotted against time during capacitor 
discharge. The measurement error for current and time 
are 1 mA and 0.5 ms respectively. To calculate the 
slope the axis intercepts for I and t are required. 

ms
Slope

24.12
68
1ln68ln1ln 

  

ms
Slope Limit

60.12
68
1ln68ln1ln 

  

 

 

 

10 20 30

s / m 

Linear Motion 

Slope = 3.9 .10-2  m.s -2 

Limit slope = 3.5 .10-2  m. s -2 

Measurement 2 
 M = 250 g; m = 2 g 

0.5 

1.0

T2

s2

Runaway
Limit Line 2 4 6 8 10 12 t/ ms

3

6

I / mA   L(Logarithmic Scale) 

1

2

4

5

1

8
9

7

3

6

2

4

5

1

8
9

7

Limit LineFit Line 

10 

30 

3

Capacitor Discharge
I = I0  e -  t  with   = 1/RC  

R-C Circuit Exercise 1  

Slope = 0.3447 ms -1

Limit Slope = 0.3349 ms -1

 = (0.34 ± 0,01) ms -1
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When determining the difference quotient one must take 
into account that the logarithmic scale substitutes the 
taking of logs of the variable and the log axis carries the 
numerical value of the variable. 
 

Thus, to calculate the difference quotient one can only 
use (two) y-values and the logs of these have to be 
taken. Since this calculation is independent of the 
graphical representation, one selects natural logarithms 
to directly obtain the exponential coefficient (k). 

The construction of the limit line also requires special 
consideration: 

By "stretching" the scale "downwards" the scattering of 
the measured values and the size of the error bars 
increases strongly (with constant errors) as the values 
become smaller. The logarithmic scale weights the 
measured points with their relative errors, i.e. with the 
accuracy (in the logarithmic scale equal distances are 
represented by equal factors). Correspondingly, the 
position of the fit line and the limit line must be oriented 
more to the larger measured values with their better 
accuracy (larger weighting). 

Double Logarithmic Representation 

Power functions with arbitrary exponents can be linear-
ized using double log paper. 

Number and Position of Measured Points 

As a fundamental problem in the experimental verifica-
tion of functional dependence, consideration must be 
given to the number and location of measured points, 
whereby resolution and time are limiting factors. 

With simple curves (linear- or linearized functions) and 
low scattering ten measured values can be sufficient 
(from a statistical standpoint a very low number). 

When selecting the position of the points consideration 
should be given to whether the function is to be qualita-
tively checked or just quantitatively evaluated. For a 
qualitative check an equidistant position of the meas-
ured values is helpful. If (in the other case), for a linear 
progression, only the slope of a line is to be determined 
it is better to have the measured values over a large 
interval with half the values in the upper and lower in-
terval respectively. 

Supplementary Information 

In many cases a formalistic and uncritical application of 
the basics discussed above is only conditionally possi-
ble. In the following a few cases will be considered and 
examples given for matching graphical representations 
to special requirements. 

In an experiment a linear relationship is expected. The 
measurements, however, show a curved progression. If 
the curvature is distinctively systematic then one must 
assume that a quantity considered as constant shows a 
dependence on the measured quantity. Very unsystem-
atic curvatures are more difficult to explain and also 
indicate errors in measurement or evaluation. 

In the measurement of a vapour pressure curve (in a 
suitable logarithmic representation) one expects a 
straight line for the plot of the vapour pressure as a 
function of temperature, where the heat of vaporisation 
enters as a constant in the slope. Since, however, the 
heat of vaporisation is dependent on the temperature 
one gets a curved plot. For such a case one can draw a 
tangent at a selected point whose slope gives the heat 
of vaporisation for that particular temperature. 

In other cases a best fit line, taking all points into con-
sideration, can be appropriate and thus represents an 
average. Corresponding average values are then de-
termined from the slope. 

In both cases special evaluation must also be taken into 
consideration for error analysis (in averaging, for exam-
ple, by drawing a limit line covering the whole curva-
ture). 

Unexpected curve forms make a critical discussion of 
the measurement necessary. They always have a rea-
son which must be found out. An uncritical statement 
("something went wrong") misses the whole point of 
deriving conclusions from measurements and observa-
tions. 

It can also happen that the amount of points is clearly 
divided into several regions either each having different 
slopes or mutually shifted with respect to one another. 
Again one has to decide whether the observed pro-
cesses are themselves responsible (e.g. superposition 
of various contributions which could then be separated 
by a suitable analysis), or whether unconsidered effects 
(e.g. switching of measurement range) or errors in the 

evaluation are the cause. In any case the observed 
behaviour ort he assumed error must be explained by a 
critical discussion. 

Graphical representations are often used to compare 
different processes in a common diagram. If the collec-
tions of points to be compared lie far apart then the 
representation or comparison is unsatisfactory. A large 
scale must be used to provide a common plot of the 
measured values which, however, results in very low 
sensitivity for the individual measurements. 

Example: For water and a certain type of glass one is to 
plot the refractive index as a function of wavelength 
(dispersion). Both materials are only slightly dependent 
on the wavelength but have a large difference between 
each other. One obtains a suitable plot by selecting an 
elongated scale and shifting both measurement one 
above the other (superimposed) and giving each meas-
urement its own axis. 

Superposition, omitting a part of an axis or changing 
scales belong to the conventional methods of compara-
tive graphical representations. 
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ANNEX III 
Dimensions and Units (SI) 

GPI 

Physical Quantities 
A fundamental concept of physics is the physical quanti-
ty. It is a property ascribed to observable and measura-
ble phenomena by which one can describe physical 
processes. Simple physical quantities are length, time, 
velocity, force, work, electric voltage, magnetic field 
strength, temperature, and so on. 

One differentiates between base quantities, which are 
axiomatically fixed, and derived quantities, which are 
defined in terms of the base quantities. 

All quantities are on equal footing and convention has 
fixed the base quantities. The international system of 
units (SI; Système International d'Unites), is founded on 
the following seven base quantities: 

Length L 
Mass m 
Time t 

Electric current I    
Temperature T 

Amount of substance  
Luminous intensity I  

 
The names and symbols of the quantities are also inter-
nationally agreed upon. A compilation is given below. 

Dimensions and Units 
Physical quantities have qualitative properties as well 
as quantitative characteristics. 

The quality of a physical quantity is determined by its 
dimension. The dimensions of the base quantities cor-
respond to themselves (length, mass, time, electric 
current, temperature, etc.).The dimensions of the de-
rived quantities are founded on the product of powers of 
the base dimensions. The dimension of acceleration a 
is thus length divided by time2, of force F  
(= mass  acceleration) mass times length divided by 
time2, of work W (= force  distance) mass times length2 
divided by time2. 

To designate the dimension of a quantity (e.g. A) one 
writes: 

2Time
LengthMassAdim   

The quantitative specification of a physical quantity is 
through its number value and unit. The unit fixes a 
comparative quantity and the number states how often 
this unit is contained in the described quantity: 

Quantity = number value  unit 

The units have names and are also specified by letters. 
The unit of time is the second (1 s or short s). One uses 
square brackets to specify an (arbitrary) unit of a quanti-
ty. If one wants a pressure to be expressed in mm mer-
cury, one writes 

  Hgmmp  

Système Internationale d'Unites 
A system of units, founded on independent base units, 
and where derived quantities are defined in terms of 
these base units is termed a coherent system of units. 

In 1948 the 9. General Conference of Weights and 
Measures (CGPM)with it’s Resolution 6 asked the In-
ternational Conference of Weights and Measures 
(CIPM) to conduct an international study of the meas-
urement needs of the scientific community. The result-
ing system was called Système Internationale d'Unites 
or SI for short and has found application in all areas of 
physics, especially experimental physics and in the 
legislation of national states with respect to weights and 
measures and is used in the lab course (nearly) exclu-
sively. 

The SI consists of the base units, and the derived units. 
The following presents an overview of the SI with the 
prefixes for submultiples and multiples and selection of 
derived quantities. 

The base units of SI were expanded by one unit to 
include the physiological measure for light (the candela) 
in the field of photometry. This quantity would not have 
been required for a pure physical system of units. 

Definitions of the Base Units 
 1 Meter is the length of the path travelled by light in 

vacuum during a time interval of 1/299 792 458 of 
a second. (Hence, the meter is an implicit base 
unit, constructed from the actual base units time 
and velocity of light). 

 1 Kilogram is the unit of mass; it is equal to the 
mass of the international prototype of the kilogram 
(a cylinder of about 39 mm in diameter and the 
same height made of an alloy consisting of 90 
parts platinum and 10 parts iridium stored in Paris). 

 1 Second is the duration of 9 192 631 770 periods 
of the radiation corresponding to the transition be-
tween the two hyperfine levels of the ground state 
of the Cesium 133 atom. 

 1 Ampere is that constant current which, if main-
tained in two straight parallel conductors of infinite 
length, of negligible circular cross-section, and 
placed 1 meter apart in vacuum, would produce 
between these conductors a force equal to 2 x 10-7 
Newton per meter of length. 
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 1 Kelvin is the fraction 1/273.16 of the thermodynamic temperature of the triple 
point of water. (The zero point of the Celsius scale is defined exactly to 273.15 K). 

In everyday life the Celcius scale remains as the temperature scale. When using 
both scales note: 

Temperatures can be given in both K or oC, whereby the unit Kelvin is preferred. 

Conversion is given by the equation: T/oC = T/K + 273.15. 

Temperature differences are basically given in K (e.g. 30.7 oC – 21.3 oC = 9.4 K). 

 1 Mol is the amount of substance of a system which contains as many elementary 
entities as there are atoms in 0.012 kilogram of carbon 12. (This number is called 
Avogadro's number). 

 1 Candela is the luminous intensity, in a given direction, of a source that emits 
monochromatic radiation of frequency 540 x 1012 Hz and that has a radiant intensi-
ty in that direction of 1/683 watt per steradian. 

 Dimensionless Derived Units 

Angle  
Radius

Arc
   Radian rad

m
m

11  

Solid angle  2Radius
Area

   Steradian  sr
m
m

2

2

11  

Prefixes for Submultiples and Multiples 

10-18 

10-15 

10-12 

10-9 

10-6 

10-3 

  a-  (Atto-) 
  f-  (Femto-) 
  p-  (Pico-) 
  n-  (Nano-) 
  -  (Mikro-) 
  m-  (Milli-) 

10-2 

10-1 

 

101 

102 

 c-  (Centi-) 
 d-  (Deci-) 
 
 D-  (Deka-) 
 h-  (Hekto-) 

103 

106 

109 

1012 

1015 

1018 

 k-  (Kilo-) 
 M-  (Mega-) 
 G-  (Giga-) 
 T-  (Tera-) 
 P-  (Peta-) 
 E-  (Exa-) 

  Used little in science and 
should be avoided   

Mecnanics, Thermodynamics, Hydrodynamics 

Velocity v 
t
rv

d
d


  1sm1
s
m1   

Angular velocity  
td

d
  1s1

s
1   

Acceleration a 2

2

d
d

d
d

t
r

t
va   2

2 sm1
s
m1   

Angular acceleration  2

2

d
d

d
d

tt





  2
2 s1

s
1   

Frequency  
T
1

  (Hertz) Hz 1  s 1
s
1 1    

Angular frequency  
T



2  1s 1

s
1   

Momentum p vmp


  1sm kg1
s
m kg1   

Angular momentum L prL


  12
2

sm kg1
s
m kg1   

Force F amF


  (Newton)  N1
s

m kg1 2   

Torque M FrM


  mN1  

Moment of Inertia I 
V

dmrI 2  kgm1 2  

Work 
Energy 

W 
E  sFW


d  (Joule)  J 1m N1   

Power P 
t

WP
d

d
  (Watt)  W1

s
J1   

Density  
V
m

d
d

  3-
3 m kg1

m
kg1   

Pressure p 
A
Fp   (Pascal)  Pa1

m
N1 2   

  older units 
 

1 bar (Bar) = 105 Pa 
 

1 Torr = 1.333 hPa 

Heat capacity C 
t
QC

d
d

  1 J K-1 

Spannungskoeffizient   tpp  10  1 K-1 

Dynamic Viscosity  
z
vAF

d
d

  s Pa  1
smm

m N1 2   

  ältere Einheiten 1 P (Poise) = 0,1 Pa s 

Kinematic Viskosity  


  1-2
2

s m1
s

m1   

  older unit 1 St (Stokes) = 10-4 m2 s-1 
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Electrodynamics 

Electric charge Q  dtIQ  (Coulomb)  C  1    s A  1   

Electric field E EQF


  1mV  1
C
N  1   

Electric voltage U  sdEU


 (Volt) V  1
s A
m N  1   

Magnetic field 
(magnetic excitation) H   AdjsdH


 1-m A  1

m
A  1   

Magnetic field 
(magnet. Flux density) B   AB

t
Uind


d

d
d   TeslaT1

m
sV1 2   

  older unit 1 G (Gauß) = 10-4 T 

Magnetic flux   AB


d  1 V s = 1 W (Weber) 

Resistance R 
I
UR    Ohm1

A
V1   

Impedance Z 
0

0

I
UZ   1AV1

A
V1   

Capacitance C 
t
UCIC d

d
   FaradF1

V
sA1   

Inductance L 
t
ILUL d

d
   HenryH1

A
sV1   

Radioactivity 

Decay constant  teAA  0  1s 1
s
1   

Activity A 
Time

Decay
A  (Bequerel) Bq 1

s
1
  

  older unit 1 Ci (Curie) = 3.71010 Bq 

 

 

 

 

 

 

Recommended Symbols for Physical Quantities 

Space and Time 

x, y, z Cartesian coordinates T Time 
r Position vector  T Period 

L, s Distance  , f Frequency 
A, S Area   Angular frequency 

V Volume   Decay constant 
, , ... Plane angle   (time constant) 
..., ,    V Geschwindigkeit 
,  Solid angle   Angular velocity 

k Kreiswellenzahl  a Acceleration 
,  Decay constant   Angular acceleration 

 (Damping coefficient)  g Gravitational acceleration 
   c Vacuum velocity 

Mechanic 

M Mass   Expansion 
 Density  E Young’s modulus 
P Momentum  G Shear modulus 
L Angular momentum   Poisson number 

I, J Itertia   Dynamische viscosity 
F Force   Kinematic viscosity 
G Weight  E Energy 
M Torque  Ep, V Potentielle energy 
p Pressure  Ek, T Kinetic energy 
 Axial stress  W, A Work 
 Shear stress  P POwer 

Thermodynamics 

Q Wärmearbeit   Spannungskoeffizient 
T Kelvin temperature   Heat conductivity 
t Celsius temperature  A Temperature conductivity 
S Entropy  C Heat capacity 
U Internal energy  c Specific heat capacity 
F Free energy  ,  Isentropic index cp/cV 
H Enthalpy    



GP I                                                                                                                                                                                                                  COMEX und TRANSIENTENRECORDER-61- 

 

Electricity and Magnetism 

Q Charge  B Magnetic field strength 
 Space charge density   (Mag. flux density) 
 Surface charge density   Mag. flux 

V,  Electric potential  0 Mag. Field constant 
U, V El. voltage   Permeabiliy 

E El. Field strength  M Magnetization 
D Dielectric displacement  m,  Mag. Susceptibility 
 Dielectric constant  J Mag. Polarization 
0 El. Field constant  R Resistance 
P El. polarisation   Specific resistance 
p El. dipole moment  ,  Conductivity 
I (Charge-) Current strength  Z Impedance 
j Current density  C Capacitance 
H Magnetic field strength  L Self-induction coefficient 
 (magn. excitation)  S Poynting-vector 
   A Mag. vector potential 

Atomic- and Nuclear Physics 

e Elementary charge  A Mass number 
N Principal quantum number  Z Atomic number 

L, li Angular momentum quan. num.   (Charge number) 
S, si Spin quantum number  N Neutron number 
M, mi Magnetic quantum number   Decay constant 
J, ji Total angular momentum   Mean life 
I, J num. of the electron shell  T1/2 Half life 
F Nuclear spin quan. num.  A Activity 
 Total angular momentum quan.    
 num. of a particle    
     

 

 

  

 

The Greek Alphabet 

A number of capital- and some small letters (, , ) correspond with Latin letters or are so similar 
that they are not used as symbols. 

  Alpha    Iota    Rho 
  Beta    Kappa    Sigma 
  Gamma    Lambda    Tau 
  Delta    Mu    Upsilon 
  Epsilon    Nu   ,  Phi 
  Zeta    Xi    Chi 
  Eta    Omicron    Psi 
  Teta    Pi    Omega 

Physical Constants  

Vacuum light velocity c =Def 2.997922458108 m s-1 

Gravitational constant  = 6.673(3)10-11 N m2 kg-2 

Avogadro's number L = 6.0220921(62)1023 mol-1 

Mol volume VM = 22.41383(70)10-3 m3 mol-1 

Gas constant R = 8.31441(26) J mol-1 K-1 

Boltzmann constant k = 1.380652(43)10-23 J K-1 

Electric field constant   2
0

0
1
c

  0 = 8.854200352...10-12   As/Vm 

Magnetic field constant   0 = 410-7 mA
sV

 0 = 1.256637061...10-6 A s V-1 m-1 

Elementary charge e0 = 1.6021829(22)10-19 C 

Specific electron charge  e0/me = 1.7588115(24)1011 C kg-1 

Planck's constant h = 6.626124(13)10-34 J s 

Rest mass of the proton mP = 1.6726355(17)10-27 kg 

Rest mass of the electron me = 9.1094634(99)10-31 kg 

Classical electron radius re = 2.8179378(70)10-15 m 

Gravitational acceleration for the lab building (1. floor) 

 = 520 27' 35(5)";  h = 59(3) m   g = 9.812777(5) m s-2 
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ANNEX IV 
NUCLEAR RADIATION DETECTORS GPI 
Nuclear Radiation Dectors and Measurement Electronics 

 

Geiger-Müller Counter (Cascade tube) 

When ionizing radiation passes through matter inelastic 
collisions cause electrons to be knocked out of their 
shells and the atoms become ionized. If this occurs by 
applying a voltage within an electric field then the free 
charge carriers (electrons and ions) move resulting in a 
current which can be detected. 

Counters are gas filled tubes with a coaxial thin metal 
wire arrangement functioning as an electrode. The gas 
is usually an inert gas (Ne, Ar, He). With the Geiger-
Müller counter (GM counter; Hans Geiger; 1882-1945; 
German physicist; Ernst-Wilhelm Müller; *1911; German 
physicist; 1951 Prof., FU Berlin) the applied voltage is 
so high (typically 500 V), that the primary charge carri-
ers resulting from the radiation (primary ionization) are 
strongly accelerated in the electric field and ionize fur-
ther atoms in the gas (secondary ionization). The result 
is an avalanche of charged particles. The magnitude of 
of which is independent of the primary ionization, and 
thus also independent of the energy of the incident 
radiation. The ionization process is interrupted by the 
addition of a quenching gas so that no continuous gas 
discharge takes place. 

The short pulse of current in the counter circuit resulting 
from a collision causes a short voltage drop (pulse) 
across an external resistor which is coupled out through 
a capacitor. The pulses of the GM tube are so high that 
they can be feed directly to a counter without further 
amplification. 

With constant radiation intensity, the counting rate is 
dependent on the applied voltage (tube characteristic). 
The operating voltage is the lower critical voltage for 
avalanche formation. It includes a range in which the 
counting rate depends little on the voltage (Geiger plat-
eau) and within this a working point with which the tube 
is operated. A slight increase in the count rate within 
this plateau is caused by an increase in the effective 
sensitivity and with rising voltage an increase in the 
number of discharges finally resulting in quenching, i.e. 
a continuous electric pulse in the counter. 

After an event (ionization) is registered the field strength 
in the tube drops for a short time due to screening of the 
negative potential of the tube wall. Screening is caused 
by the slowly drifting space charge cloud of the positive 
ions and in addition by the voltage drop across the 
external resistor. During this dead time no further quan-
tum of radiation can be registered. 

The advantage of the GM counter lies in its simple con-
struction and the large output pulses resulting from gas 
amplification. The disadvantages include missing ener-
gy resolution and the limitation of low counting rates 
because of the comparatively large dead time. 

Sodium Iodide Scintillation Detectors 

Sodium Iodide scintillation detectors (NaI detectors) 
serve to detect  radiation and function on the principle 
of the (internal) photo effect. In a NaI crystal the incom-
ing  photon is stopped by the photo effect and the total 
energy is transferred to the electron (primary electron)). 
The electron is released and causes, together with the 
subsequent X-ray photon a cascade of further electronic 
excitation processes. The spontaneous decay of these 
processes creates a pulse of light equivalent to the 
primary energy. 

The light created in the NaI crystal passes through an 
optical window to the photomultiplier tube (PMT). The 
first part of the PMT contains the photocathode which 
produces electrons when light strikes its surface. The 

electrons are electro-statically accelerated to further 
plates called dynodes creating a multiplication effect. 
The resulting charge is finally amplified. The figure 
below shows the principle of the NaI scintillation detec-
tor. 

 
The complete process is linear so that at the output of 
the system a pulse appears whose height and energy is 
proportional to the incident -photon, thus creating a line 
(Photoline; Photopeak). 

Aside from the photo effect, Compton processes also 
occur in the crystal, whereby inelastic scattering of a -
photon takes place. For the case that the scattered 
photon leaves the crystal only a part of the energy is 
transferred to the system and detected. Depending on 
the scattering angle, the Compton electrons have differ-
ent energies and hence produce pulses of different 
heights forming a Compton plateau in the spectrum and 
breaks off at a scattering angle of 180 (Compton 
edge). 

Conversely, Compton scattering processes also occur 
in the detector material outside the crystal and because 
of geometric conditions the back scattered -photons 
enter the crystal and are detected as backscatter peak. 
This line is clearly seen in the spectrum of the experi-
ments performed in the course. 

The pulses created by the NaI detector are compara-
tively broad due to the statistical process in the photo-
multiplier tube. The resolution of radiation measuring 
instruments is taken as the full width at half maximum of 
a peak: 

(1)  
PositionPeak 

FWHMResolution   

The resolution of NaI detectors are around a few per-
cent (5-10 %). 
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Ionization Counters 

Simple detectors without energy resolution can be used 
when it is sufficient to register the integrated spectrum, 
whereby further processing of the pulses is by means of 
digital counters (see experiment RADIOACTIVE 
DECAY) or through analogue integration with a suitable 
time constant. Here, the pulses are converted to a volt-
age proportional to the mean pulse rate and displayed 
by a voltmeter or plotted (example: ion dose meter, in 
experiment RADIOACTIVE DECAY). 

Spektrometer 

Energy resolving systems with proportional counting 
tubes, scintillation detectors or solid state detectors are 
referred to as Spectrometers: They deliver for each 
absorbed quantum of radiation (-, -particles, X-ray or 
Gamma photon) an electric pulse whose height is pro-
portional to the energy absorbed. The width and shape 
of the pulse (typically 1 s or a few volts) is determined 
by the time-constant devices in the amplifying stages of 
the system. Certain interaction processes (e.g. internal 
photo effect) absorb the total quantum energy, so that 
the pulse height corresponds directly to the energy of 
the radiation (photo line). The lines (peaks) of a spec-
trum are recognized by the accumulation of pulse of 
equal amplitude. Other processes (e.g. the Compton 
effect) absorb only a part of the quantum energy and 
deliver smaller pulses with a certain distribution creating 
a additional continuous background in the spectrum. It 
is recommended in experiment GAMMA 
SPECTROSCOPY to observe the pulses of the scintilla-
tion detector on the oscilloscope using slow and fast 
time deflection. 

Further processing of the pulses (where the height 
contains the energy information) can be performed with 
various technical methods. 

Single Channel Analyser (SCA) 

If the aim of an experiment is to measure the time de-
pendence of a certain transition, for example, i.e. a 
certain line then this can best be done with a SCA. A 
SCA possesses two adjustable voltage thresholds and 
then gives out a logic pulse (square-wave of fixed 
height and width) when the pulse height at the input of 
the window lies between both thresholds. The output 

pulses can then be counted or evaluated by other 
means. A disadvantage of the SCA is that only one line 
can be observed and that the window also “sees” the 
continuous background. Recording a full spectrum is 
thus tedious and time consuming. 

Multi Channel Anylyser MCA 

Recording a full spectrum is simpler and more elegantly 
performed using a MCA. A MCA consists of an analog-
digital converter (ADC) and a large number of down-
stream counters (typically 256 to 4096 and more). The 
ADC converts the height of an incident pulse into a 
number. At first the pulse charges a capacitor via a 
diode thus fixing the peak height. Thereafter, the capac-
itor is discharged at constant current, and the time tak-
en for complete discharged is determined by counting 
clock pulses (typically 100 MHz), so that the number of 
these pulse corresponds to the peak height and hence, 
the absorbed radiation energy. This number is inter-
preted as an address of a counter (channel) and ist 
contents is increased by one. Thus the counters deliver 
a distribution function of the radiation intensity verses 
energy, which, for example, can be represented on a 
screen or output numerically.  The MCA also incorpo-
rates a µ-computer for process and time control and a 
digital-analog converter (DAC) to convert channel ad-
dresses and contents into analog voltage signals for 
display on a screen (or plotter).  

Multi channel analysers substantially ease the meas-
urement and evaluation of spectra. The intensities of 
lines can be determined by the numerical integration of 
peaks whereby, background contributions can be de-
termined from the spectrum outside the lines. In gen-
eral, the evaluation of a spectrum must also take into 
account the sensitivity of the detector which can be 
strongly deoendent on the energy of the incident radia-
tion. 

The application of MCA’s is not only restricted to nucle-
ar spectroscopy: they are used in modern measurement 
technology for many applications. Some examples: With 
a TPHC (Time-to-Pulse-Height-Converter) one can 
generate pulses whose height is proportional to the time 
difference between a start- and Stopp pulse. Further 
evaluation in a MCA delivers then, for example, the life 
time of an intermediate state in a gamma cascade (Start 
and Stop: MCA on the respective peaks) or an excited 

atomic state (Start: excitation laser pulse, Stop: radia-
tion emitted by the atom). In the Sampling Technique a 
fast switch is used to cut out pulses from a continuously 
changing voltage; the MCA delivers then the associated 
amplitude spectrum. Also important are applications 
where the MCA is not operated in the the pulse-height-
analysis mode (PHA) considered so far but rather in the 
multi-channel-scaling mode (MCS). Here, incoming 
(unit-) pulses are counted for a certain time in the indi-
vidual channels thus, recording the dependence of the 
pulse rate on time or on a time modulated quantity. This 
has found wide application in the Signal Averaging 
Method, where many measurement cycles are added to 
reduce statistical errors. In this respect mention should 
be made of the Sampling Oscilloscope in which the 
sampling technique is combined with an MCA operating 
in MCS mode. The real-time representation of high 
frequency signals using oscilloscopes becomes expen-
sive from about 50 MHz onwards and finds its technical 
limitation at around 1000 MHz. Since it is possible, 
however, to manufacture much faster trigger- and sam-
pling circuits, the momentary value of a periodic recur-
ring signal can, for different delay times, be stored se-
quentially after a trigger pulse. The curve can then be 
displayed on a "slow" oscilloscope. 
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ANNEX V 
RADIATION PROTECTION and 

DOSIMETRY 
GPI 

Information on the dangers of ionizing- and non-ionizing 
radiation and possible protection measures and the 

fundamentals of dosimetry. 

Radiation Protection Information 
Danger to health and life can result from exposure to 
ionizing- and non-ionizing radiation. Protection against 
such radiation is regulated in the Strahlenschutzver-
ordnung (StrSchV) which serves the protection of per-
sons, equipment and the environment. Formal compli-
ance to radiation protection measures is especially 
important because humans do not possess any sense 
organs for the perception of radiation. 

Effects of Radiation 

The most important types of radiation are -, ß-, -, X-
ray and neutron radiation. They differ greatly in their 
characteristic properties with respect to effects and 
protection. 
- and ß-particles undergo electrostatic interactions with 
the electron shell and atomic nucleus when passing 
through matter. The resulting strong interaction and 
stopping ionizes the material. Neutrons are uncharged. 
They can move relatively freely in material until cap-
tured. Neutrons are therefore hard to stop and do not 
ionize. X-rays und -rays are electromagnetic waves of 
very short wavelength, i.e. high frequency and high 
energy. They have a large range in matter and also 
ionize. 
The damaging effects of radiation to health lie in the 
destruction of microscopic structures of organic sub-
stances (atoms, molecules, cells) and the resulting 
consequences for the organism. One differentiates 
between somatic damage (bodily damage) and genetic 
damage. Somatic damage can have direct conse-
quences such as the destruction of cells and tissue and 
even skin burns or also indirect consequences such as 
changes in cells which can lead to diseases such as 
cancer. 
With respect to the effects of radiation, a difference is 
also made between external radiation exposures 
through  

exposition (radiation) or contamination and internal 
radiation exposure through incorporation (inhalation, 
intake via the gastrointestinal tract or other applications 
in the field of medical diagnosis or therapy). 

Fundamentals of Radiation Protection 

Because of the dangers involved, great care must be 
taken when working with radiation generating equip-
ment and radioactive substances. The important fun-
damentals of radiation protection (28 StrSchV) are: 
 Avoid any unnecessary exposition or contamination 

of people, goods and environment. 
 Keep as low as possible any exposition or contam-

ination of people, goods or environment taking into 
account the state of science and technology under 
consideration of all facts of the individual case even 
when exposition or contamination is lower than the 
limits set by the radiation protection authorities. 

The main protection measures against external radia-
tion are good shielding, large distance from the radia-
tion source and a short stay in the vicinity of the radia-
tion. 
-radiation, due to its size and charge is strongly 
stopped and has a very short range (typically 40 mm in 
air and 0.03 mm in aluminium). The total energy of the 
radiation is, however, given up in a very short distance 
and, under certain circumstances, can lead to severe 
damage. -radiation is relatively harmless with respect 
to external exposure since it is stopped in the dead 
layer of skin. On the other hand, it is extremely danger-
ous when incorporated since the inner organs have no 
protective layers. 
-radiation has a similar behaviour, however, with much 
larger range (typically 2 m in air und 1 mm in alumini-
um). External exposure also requires protection 
measures, especially for the eyes, since the lenses can 
become opaque under the effects of strong -radiation. 
The radiation can be easily shielded using a few mm of 
Plexiglas or aluminium. 
X-rays and -rays can penetrate large distances in ma-
terial and a difficult to shield. Full absorption is not pos-
sible, only an exponential attenuation corresponding to 
the thickness of the absorber. Heavy substances such 
as lead or uranium are suitable for shielding purposes. 
The half value thickness of lead (attenuation of 50%) is 
about 15 mm for the1.2 MeV radiation of Co-60. 

Neutrons are especially dangerous. Since they are 
neutral particles they experience no electric interaction 
forces and can easily pass through matter. Because of 
their similar mass they substitute easily for hydrogen 
nuclei in collisions thus destroying the hydrogen atom. 
Because the hydrogen atom is a central building block 
in organic substances this results in serious changes in 
the labile, chemical equilibrium of physiological sys-
tems. Heavy atomic nuclei have a large cross-section 
for neutron capture reactions resulting in nuclear reac-
tions which also lead to serious damage to molecular- 
and chemical structure. Neutrons are difficult to shield; 
the best are substances containing collision partners 
with similar mass, such as protons as hydrogen nuclei 
in hydrogen rich substances like water or paraffin. 

Dosimetry 

Activity 

When considering danger due to radiation one must 
differentiate between cause and effect. The cause is a 
radiation field that in radioactive decay processes is 
defined as the number of decays per unit time and 
termed Activity: 
(1)  Activity A = Number of decays/ Time 

Thus the unit of activity is: 
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(2)  ︵Bequerel ︶   Bq 1
s

Decay1 ]A[  

Energy Dose 

If one places a probe, e.g. an organic body in a radioac-
tive field a part of the radiation will be absorbed result-
ing in physical or physiological effects. Another part 
passes through the body without interaction and hence, 
without radiation damage. A measure of the radiation 
exposure of a probe or body is the radiation energy 
absorbed per unit mass. This quantity is termed the 
energy dose DE: 
(3) DE = Absorbed Energy/ Mass 

The fraction of absorbed radiation energy, i.e., the dose 
values depend on the type of radiation and the energy 
and always refer to a certain substance. The unit of 
energy dose is: 

(4)  (Gray)   Gy 1
kg

1Joule][ ED  

(An older unit 1 rad = 0.01 Gy). The dose per unit time 
is called dose rate. 

Ion Dose 

The energy dose is difficult to measure since the rele-
vant amounts of energy a very low  (a lethal radiation 
dose would increase the body temperature of a person 
by about 2 mK corresponding to the amount of heat in a 
sip of coffee). For this reason the ion dose DQ was 
introduced as a practical measurement. The ion dose is 
a measure of the charge generated in air due to ioniza-
tion by radiation: 
(5) DQ = Generated charge/Air mass 

The unit of the ion dose is: 

(6)   
kg
C1][ QD  

An older unit for DQ is 1 R (Röntgen) = 2.58·10-4 C/kg. 
The ion dose can be directly measured with ionization 
chambers. The unit of the ion dose rate is  
 1 C/(kg·s) = 1 A/kg. 
The relationship between energy dose and ion dose 
depends in general, on the energy of the radiation and 

material. For muscle tissue soft tissue a good approxi-
mation independent of energy is: 

(7)   QE DD
C/kg
Gy40  

Equivalent Dose 

The biological effects of radiation and radiation damage 
are also influenced by the type of radiation  apart from 
the energy. This is expressed by an additional dimen-
sionless factor called the radiation weighting factor wR: 

Type of radiation wR 
-, -rays 1 

Slow neutrons 5 
-rays, fast neutrons 10 

The product of energy dose and radiation weighting 
factor gives the equivalent dose DH. Since wR is dimen-
sionless, the units of both quantities are the same and 1 
J/kg for the case of equivalent dose is given the unit 
name Sievert: 
(8)   DH =   wR  DE  and  

(9)   ︵Sievert ︶Sv    
kg
J 11]D[ H   

An older unit of equivalent dose is 1 rem = 0.01 Sv. 

Typical Radiation Exposures 

There exists a natural radiation exposure from terrestrial 
sources (radiation from radioactive materials in the 
earths crust) and from cosmic sources. For Germany 
the exposure is about 1.1 mSv per year. (The fraction 
from fallout from nuclear weapons testing is at present 
less than 1 % of the natural radiation). In certain regions 
of the Black Forrest, the natural exposure is about 2.7 
mSv, and there are regions on earth where the terres-
trial exposure is around 20 mSv per year. Detailed in-
vestigation on the effects of radiation have been con-
ducted on the populations of these areas, however, no 
significant consequences could be documented. 
According to the radiation protection regulations, the 
permissible increase in exposure of the general public 
due to radiation generating equipment (X-ray units, 
reactors, accelerators etc.) must not be more than 0.3 
mSv per year. 

Typical radiation doses in X-ray diagnosis are  about 1 
mSv for a simple exposure (thorax) up to about 100 
mSv for multiple X-ray contrast exposures. Typical 
organ doses in radiation therapy (cancer therapy) can 
be in the thousands Sv. The legal limit for occupational-
ly exposed persons is 50 mSv per year for whole body 
exposure. The lethal dose (100 % lethality) is around 8 
Sv whole body exposure. 
On the lab benches where experiments with radioactive 
materials are conducted, dose measuring instruments 
are available to record the natural exposure and the 
additional exposure due to the radioactive sources. 
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ANNEX VI 
STATISTIC GPI 

 

Statistical Variation 

Physical processes run stochastically because of the 
quantized nature of physical systems. Processes be-
come deterministic in the rigorous sense for the limiting 
case of infinitely many or in the practical sense for a 
large number of elementary contributions, so that the 
expected variations approach zero. This is the situation 
in macroscopic physics, where statements are made, 
for example, with respect to "infinitely" many particles of 
a volume of gas or "infinitely" many oscillating charges 
of a radiating antenna. 

For the specification of systems determined by finite 
many or a comparatively low number of atomic sys-
tems, there is no rigorous deterministic prediction, and 
the results show (statistic) variations with a distribution 
of values. 

Analogously, if the number of observations is infinite 
and not the number of participating microscopic sys-
tems then one again can make a rigorous predication, 
however, only for the Parameter of the distribution, as 
e.g. the mean value or the standard deviation. 

Furthermore, the variations only become evident exper-
imentally when they stand out from the sensitivity of the 
measuring equipment. Actual series of measurements 
then deliver an approximation of the expected distribu-
tion function. 

Classical examples, also in the scope of the basic lab 
course, are the decay of excited atomic or nuclear 
states, radioactive decay or the stochastic interaction of 
a particle or radiation with matter. 

In these cases a typical consideration is the limited 
observation, i.e. a limited observation time or a limited 
interaction distance for which then the stochastic pro-
cess can be described by probabilities with respect to 
time and distance (transition probability, collision proba-
bility). 

From a mathematical statistics point of view this repre-
sents a Bernoulli Experiment with a two-valued output: 
decay/collision or not, yes or no, 0 or 1, black or white, 

heads or tales. In this script distribution functions will be 
developed in relation to Bernoulli-Experiments. 

Here we must consider two questions. First is the ques-
tion on the distribution of the results within such an 
observation and secondly the progression of a finite 
ensemble due to such processes. 

Beobachtungen

Entwicklung

Verteilung  

Exponential Development 

Consider first of all time development using radioactive 
decay as an example (Experiment RADIOACTIVE 
DECAY). When  is the decay probability (transition 
probability) of a nucleus with respect to time then the 
mean number of decays of an ensemble of n radioac-
tive nuclei in an observation time t is: 

(1)   ntnpn   

With regards to a finite quantity of nuclei n  represents 
a decrease. To a good approximation, this quantity is 
taken as large, and n as a continuous variable. From (1) 
we then get a differential equation for the time devel-
opment of the ensemble: 

(2)   tndn d  

With the solution 

(3) tenn  0  

This is the time law of radioactive decay, whereby one 
also gets an exactly corresponding result for the case of 
the absorption law of radiation through matter when one 
as a model, considers stochastically distributed radia-
tion quanta and collision partners and “singular” colli-
sion processes in which a quantum of radiation is re-
moved from the radiation beam. 

Binomial Distribution  

In the previous case where the number of events in an 
observation is described in "integral" form by a mean 

value let us now as the question as to the “differential” 
distribution of the number of events. As a generaliza-
tion, the decay probability for an observation time  t is 
written as p so that the complementary event is ex-
pressed as (1-p). “Conducting” the single experiment N 
times (with N nuclei) one gets from the multiplication 
law for statistically independent events as the probabil-
ity that in n certain cases (the decays) appears, and in 
the remaining (N-n) cases it does not: 

(4)             nNn pp 1  

However, in general we are not interested in which 
certain cases the events appear only in their total num-
ber. The value (4) is then to be multiplied with the num-
ber of possibilities to select n in which an event occurs 
from N experiments. This number is given by the bino-
mial coefficient: 

(5)    !!
!

nNn
N

n
N











 

The sought after distribution is then the binomial distri-
bution: 

(6)         nNn pp
nNn

NnB 


 1
!!

!)(  

The discrete decay variable n describes the actual pos-
sible results, and the distribution (6) their probability 
values (e.g. for the number of nuclear decays in an 
observation interval). 

The binomial distribution corresponds to the normaliza-
tion axiom for probabilities. The summation over all 
possible events, i.e. over all n, gives the binomial power 
function: 
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(7) 
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Distribution Parameters 

The values of a distribution model or the data of an 
observed or given distribution give information on the 
distribution. Hence statistical functions have been de-
fined with which the more important properties can be 
quantitatively represented. 

(8) Discrete distribution 
F(xi) 

Distribution function 
(x) 

 
Mean value 
 )F( ii xxx  

Expectation value 

xxx d)(   

 
Mean quadratic devia-

tion 

   )(F22
ii xxxs  

Variance 

  xxx d)()( 22  

The quadratic deviation takes into consideration the 
different signs of the deviation (the mean deviation 
would vanish in a symmetric distribution). The standard 
deviation is the square root of the mean quadratic devi-
ation or variance. 

Calculating the mean value and variance of the binomial 
distribution is time consuming using algebraic methods, 
but much more simple using the (plausible) summation 
rules: 

(9) 

  )(ys)(xs)y(xsyx)y(x iiiiiiii
222und   

The two-valued Bernoulli distribution for the limiting 
case of the binomial distribution with n = 1 has the val-
ues n = 0 with probability (1-p) and n = 1 with probability 
p. The mean value and variance then follow from (8): 

pppn  1)1(0      and 

pppppps )1()1()1()0( 222   

And with (9) one gets the binomial distribution for N 
events: 

(10)      n)p1(Np)p1(sNpn 2  and  

Poisson Distribution 

The Bernoulli distribution is for practical purposes un-
wieldy because of the binomial coefficients which can 
very quickly take on large values. For "seldom" events 
with small mean values and small probabilities, which 
occur frequently, and for values around the mean value 
a more comfortable approximation distribution can be 
developed. The assumptions are: 

(11)   1pNn,n  and  

 (N-n)! is eliminated from the binomial coefficients and 
the remaining factors  in the numerator from (N-n+1) to 
N are set to N as an approximation: 

(12)   
nN

nN
N


 !
!    and   nnn npN   

The power (1-p)N-n is written as an exponential term, 
and the required logarithm in the vicinity of 1 is ap-
proached linearly: 

(13)           nNppnNpnN eeeep
nN  

 1ln1ln1  

since 

(14)     pp 1ln . 

The Bernoulli distribution thus passes over into the 
Poisson distribution which is only determined by one 
paramer n : 

(15)        n
n

e
n
nnP 

!
 

The Poisson distribution is also normalized : 

(16)      





0
1)(

n
nP    because   n

n

n
e

n
n




0 !
 

Here the validity of (15) is accepted notwithstanding the 
restriction for n   which is justifiable because of the 
strong decline of the function P(n) for large values.  

 

The mean value is given by: 

(17)    





0
)(

n
nnPn  

The figure below shows a Poisson distribution for 
8.3n  . 

0,2

0,1

P(n)

0 1 2 3 4 5 6 7 8 9 10 11 n
_ 
n  

The Poisson distribution is asymmetric. With increasing 
n  it goes over into a distribution which is symmetric 
around n . 

Gauß Distribution 

The Bernoulli- and Poisson distribution are discrete 
distributions and in many cases it is of practical ad-
vantage to work with a continuous distribution function. 

To develop a function from the Poisson distribution, the 
assumption (11) is supplemented by requiring that the 
mean value is small with respect to N, but large with 
respect to 1: 

(18) 1n  
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and the considerations are to be restricted around n  so 
that: 

(19)    nnn   

The transition to a continuous distribution function takes 
place by setting up a difference quotient for the discrete 
Poisson distribution, which with the approximation as-
sumptions can be interpreted as a differential equation: 

(20)             nP
n

nnnPnP
n

nPnP 



 1

1
1  

Because of (18), the right-hand term in (20) represents 
with n a slowly varying quantity so that n may be con-
sidered as a continuous variable (and thus written as x 
below), and (20) interpreted as a differential equation of 
a distribution function  G(n): 

(21)   )(
d

)(d xG
x

xx
x
xG 

  

It has the solution: 

(22)   x
xx

eCxG 2
)( 2

)(



  

This is the Gauß- or Normal distribution. The integration 
constant is so determined that the function is normal-
ized. With the integral: 

(23)    




 dte t 2
   it follows that   

x
C




2
1    

and 

(24)   

2

2
1

2
1)(








 



 x

xx

e
x

nG  

In the transition from a discrete to a continuous random 
variable, the individual (x-) values become infinitesimal, 
and their probabilities approach zero. Actual events are 
now formed by intervals of the random variables (with a 
"volume" determined by the width), whose probability is 
described by the area of the distribution across the 
interval. The function (24) represents the probability 
density of random variables. 

General Normal Distribution 

The form (24) is a special normal distribution with only 
one parameter, where x  the expectation value (trivially 
because of the symmetry of the distribution) is  simulta-
neously the variance. The general form of the normal 
distribution with independent values of the expectation 
value  and variance 2 is: 

(25)   

2

2
1

2
1)(

















x

exN  

The figure below shows two normal distribution with the 
same expectation value ( = 5.0), but different vari-
ances or standard deviations ( = 0.5 and S = 1.5). 
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