OPTISCHE KONTROLLE UND SPEKTROSKOPIE DISSIPATIVER PROZESSE AN GRENZFLÄCHEN

Peter Saalfrank Mathias Nest Teilprojekt C7

Universität Potsdam

Ultraschnelle photoinduzierte Prozesse an Grenzflächen

• "Generische Situation"

• "Dissipation"

- **UP 1:** Kontrolle der Dynamik von UV-/VIS-angeregten Adsorbaten durch IR-Schwingungspräparation
 - UP 1A: Assoziative Desorption von H_2 von Ru(0001)

• Ziel: Kontrolle durch IR-Vibrationspräparation²

Reaktionskoord.

UP 1A: Assoziative Desorption von $H_2/Ru(0001)$

• (Optimale) Kontrolle der IR-Anregung

Optimale Kontrolle

י ז ארין ארט (פן) ארט (פן (פן) ארט (פן) ארט

 $\omega_{\parallel} = 80 \text{ meV}$; $\omega_{\perp} = 135 \text{ meV}$

¹ Prog. Surf. Sci. **62**, 239 (1999)

UP 1: IR-Anregung im dissipativen System

• Vibratorische Übergangsraten Γ_{mn}

• UP 1B: Selektive IR-Anregung in CO/Cu(100)

Aspekte: $T_{fi}^{(1)} = \langle e_f | \frac{\partial e_i}{\partial Q} \rangle_{\underline{r}} = T_{fi}^{(1)}(Q)$

Anharmonizität; höhere Vibrationsniveaus; $|e_f\rangle$

¹ Tully et al., PRB **46**, 1853 (1992)

UP 2: Kontrolle und Spektroskopie der Elektronen- und Kerndynamik von Cs/Cu(111)

• Experimente

• Befunde:

- direkte SS → A Anregung, $\tau_{el} \approx 50 \text{ fs}^1$ - 2-Puls-Korrelation: Cs-Bewegung Echtzeit¹ - Cs/Pt(111): Vibratorisches Wellenpaket² (Gd: [3])

¹ Petek et al., Science **288**, 1402 (2000)

² Matsumoto et al., CPL **366**, 606 (2002)

³ Melnikov et al., PRL **91**, 227403 (2003)

UP 2: Kontrolle und Spektroskopie der Elektronen- und Kerndynamik von Cs/Cu(111)

• Ziele:

- Kontrolle / Optimierung der elektronischen Anregung
- Kontrolle / Optimierung der Kerndynamik
- Detektion von Zwischenzuständen mittels 2PPE
- Erzeugung eines vibratorischen Wellenpakets?
- Vorarbeiten: Elektronendynamik (SS \rightarrow A)

Optimale Kontrolle¹:

olf Frischkom

 1 Ohtsuki et al., JCP ${\bf 110},\,9825$ (1999)

Zusammenfassung und Einbindung

