UP3: Elektronendynamik

ZIELE UND FRAGESTELLUNGEN

- Zeitaufgelöste Messung der primären Anregungsschritte der Photoreaktionen.
- Verständnis der Effizienz von Photoreaktionen bzw. konkurrierender Reaktionskanäle durch Untersuchung der Kopplung zwischen den beteiligten Subsystemen (Metallelektronen, -phononen, Adsorbate).
- Unterstützung der entsprechenden Modellrechnungen.
- Entwicklung von Ansätzen zur Reaktionssteuerung.

METHODEN

Zeitaufgelöste Zwei-Photonen-Photoemission (2PPE)

- Elektron-Elektron-Streuung nach Substratanregung.
- Entwicklung der elektronischen Temperatur.
- Lebensdauern elektronisch angeregter Adsorbatzustände.
- Energieübertrag in Kernkoordinaten.

Resonante Summenfrequenzerzeugung (SFG)

- Neuer Ansatz zur Bestimmung der homogenen Plasmonen-Linienbreite γ.
- Eine feste + eine durchstimmbare Wellenlänge.
- Erwartet: Resonante Überhöhung des SFG-Signals bei Zusammenfallen beider Wellenlängen; Resonanzbreite $\leftrightarrow \gamma$.

Transiente Absorption (△T/T)

- Starke Abhängigkeit der Lichtabsorption (Plasmonen-dominiert) von der Clustertemperatur.
- Starkes ΔT/T-Signal im Bereich der Plasmonenresonanzen.

Zeitaufgelöste Frequenzverdopplung (SHG)

- Oberflächensensitive Methode (SHG im Volumen symmetrieverboten).
- Sensitiv auf chemischen Bindungszustand der Oberfläche.
- Substrat-Adsorbat-Schwingungen schwächen Bindung → zeitabhängige Veränderung des SHG-Signals.

SYSTEME

Plasmon-

Linienbreiten

Gewachsene Silbercluster auf dielektrischem Substrat Untersuchungsmethoden: - Resonante SFG → Plasmonen-Linienbreite (zunächst an Luft). Lebensdauern von - 2PPE → Elektronendynamik im Cluster. - $\Delta T/T \rightarrow$ Elektronische und Gittertemperatur nach

- 2PPE von angeregten Adsorbatzuständen nach:
- entsprechenden Messungen auf Einkristalloberflächen
- Einbau eines Flugzeitspektrometers in die Cluster-UHV Kammer.

Elektronen-

dynamik

K. Watanabe, K. Takagi und Y. Matsumoto, Chem. Phys. Lett. 366 (2002) 606.

Cs/Pt(111)

• Untersuchungsmethoden:

Laseranregung.

- 2PPE → Elektronendynamik im Substrat, angeregte Adsorbatzustände.
- Zeitaufgelöste SHG → Dephasierungszeit kohärenter Substrat-Adsorbat-Phononen.
- Korrelation von kohärenten Phononen mit Elektronendynamik im Substrat.

Lebensdauern elektronisch angeregter Adsorbatzustände Einfluss von Koadsorbaten (Alkalimetalle) auf Ankopplung ans Substrat

Z.C. Ying und W. Ho, Phys. Rev. Lett. 65 (1990) 741.

Metallcarbonyle auf einkristallinen Oberflächen

- Untersuchungsmethoden:
- 2PPE → Elektronendynamik im Substrat, angeregte Adsorbatzustände.
- Relativ lange Lebensdauern von Carbonyl-Zuständen erwartet. → Energetische Verschiebung durch Energieübertrag in Kernkoordinaten?
- Einfluss von Koadsorbaten auf Ankopplung ans Substrat.

VORARBEITEN: ELEKTRONENDYNAMIK AN ADSORBAT / METALL-GRENZFLÄCHEN

ELEKTRONENDYNAMIK IN METALLEN ANALYSIERT MIT ZEITAUFGELÖSTER PHOTOEMISSION

- Voraussetzung zum Verständnis der Oberflächen-Femtochemie ist die Kenntnis der Elektronendynamik im Substrat
- Thermalisierung und Energierelaxation angeregter Elektronen durch e-e- und e-ph-Streuung

ZIEL: Direkte Bestimmung der zeitlichen Entwicklung der

der Energiedichte an der Oberfläche

Elektronenverteilung an der Oberfläche

→ Konkurrenz zur Photoreaktion des Adsorbats

ELEKTRONEN-THERMALISIERUNG IN Ru(001)

• Messung der Verteilungsfunktion der Elektronen nach optischer Anregung mit direkter Photoemission ($hv_2>\Phi$) für verschiedene Anregungsdichten.

- Elektronenverteilung für t < 300 fs bestimmt durch nicht-thermalisierte heiße Elektronen
- Ausbildung einer Fermi-Dirac-Verteilung durch e-e- Streuung innerhalb 0.5 ps

• U(t) ist für t > 400 fs deutlich geringer im Vergleich zur Vorhersage des Zwei-Temperatur-Modells. Unter Berücksichtigung von ballistischem und diffusivem Elektronentransport aus dem Nachweisvolumen heraus lässt sich dies quantitativ beschreiben.

Lisowski, Loukakos, Bovensiepen, Stähler,

Gahl, Wolf, Appl. Phys. A 78, 165 (2004)

ZEITAUFGELÖSTE ZWEI-PHOTONEN-PHOTOEMISSION

durchstimmbares fs-Laser-System

- Direkte zeitaufgelösten Analyse der Bindungsenergie und Population
- Messung der Dispersion: Lokalisierung elektronischer Zustände

ELEKTRONENTRANSFER- UND SOLVATISIERUNGS-DYNAMIK IN DÜNNEN EISSCHICHTEN

Mechanismus der Solvatisierung an Eis/Metallgrenzflächen $V_{\rm S}(q_2)$ D_2O metal VB collective solvation q real space coordinate

① Elektronentransfer ins Leitungsband von Eis ② Elektronenlokalisierung ③ Elektronsolvatisierung durch molekulare Umorientierung **4** Elektronentransfer zurück ins **Substrat**

Gahl, Bovensiepen, Frischkorn, Wolf, Phys. Rev. Lett. 89, 107402 (2002) Bovensiepen, Gahl, Wolf, J Phys. Chem B 107, 8706 (2003)

KORRELATION ZWISCHEN STRUKTUR UND DYNAMIK: D₂O AUF Ru(001) UND Cu(111)

Gahl, Bovensiepen, Frischkorn, Morgenstern, Rieder, Wolf, Surf. Sci. 532-535, 108 (2003)

Winkelaufgelöste

2PPE-Spektren

E_{kin} [eV]

 $\Delta k_{||} = \Delta k_{||} (E)$

0.3 0.6 0.9 1.2

 Δk_{II} =const.

DISPERSION UND ELEKTRONEN-LOKALISIERUNG

- Solvatisierungs- und Populationsdynamik verläuft deutlich schneller für D₂O/Ru(001) als auf Cu(111)
- Unterschiedliche Adsorbatstrukturen auf beiden Templaten beeinflussen molekulare Beweglichkeit
- Grenzflächenstruktur der 1.Bilage
- verschieden für Cu bzw. Ru Dynamik des Elektronentransfers ins Substrat ist bestimmt durch die unterschiedliche Zustandsdichte

Solvatisierung erfolgt deutlich

STM-Analyse zeigt Ausbildung

→ Geringere Koordination von

→ Schnellere Solvatisierung

D₂O an deren Oberfläche

schneller für ⊕ < 2 BL

von D₂O-Clustern

Cluster und Hybridzustände

Solvatisierung im Volumen

O 10 fs ∇ 50 fs Δ 100 fs

