

Laser-Ion Acceleration R. Sauerbrey

Freie Universität Berlin/SFB 450

Ulrich Schramm • Roland Sauerbrey • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft • October 2008

Laser-Particle-Acceleration

R. Sauerbrey

- What happens to one electron in the laser field ?
- Laser electron acceleration
- Laser ion acceleration
- Applications

Introduction

$100 \text{ TW Laser} I = 10^{20} \text{ W/cm}^2$ $E_0 = 10^{12} \text{ V/m}$ 3 J in 30 fs 0.1 mm² $I = 10^{20} \text{ W/cm}^2$

Ulrich Schramm • Roland Sauerbrey • u.schramm@fzd.de • Laser Particle Acceleration Group • www.fzd.de • FZD 2008

For laser intensities exceeding $I \sim 10^{18}$ W/cm², the electron quiver motion becomes relativistic within half a period

target: one electron

mass increase

 forward acceleration due to Lorentz force
 anharmonic osc.

single electron dynamics

 $\vec{F} = e\vec{E} + e\vec{v} \times \vec{B} \quad (B_0 = E_0/c)$

single electron dynamics

relativistic bubble regime

plasma wavelength < pulse length

[M. Geissler, NJP 8 (2006) 186]

relativistic pulse shortening.

7/

relativistic pulse shortening.

7/1

U. Schramm • R. Sauerbrey • Laser Particle Acceleration Group • www.fzd.de • FZD 2008

recent developments

Ion acceleration – TNSA regime

- electron acceleration
- hot (MeV) electrons penetrate the (μm) foil
- quasi static field forms normal to target surface, source size >> laser spot

Ion acceleration – TNSA regime

quasi-neutral pulse with exponential energy distribution (with max. energy depending on laser pulse duration, energy, and target thickness)

- enhance yield in the central, homogeneous region by applying a proton rich "dot"
- use thin dot (to avoid temporal field depletion and shielding)

Careful backside cleaning (ablation) increases the fidelity

proton energy / MeV

- overall number of ions about 10⁸ in 20msr
- 80% fidelity with online target cleaning (ablation)

[H. Schwoerer et al., Nature 439 (2006) 445]

POLARIS simulation

2D-PIC simulation by T. Esirkepov for next laser generation (POLARIS): 100 J in 100 fs, I_{L} = 10²¹ W/cm², 5 µm Ti-foil + 0.1 µm PMMA dot (Ø 2.5 µm)

Features of laser accelerated beams

high charge (up to nC) short pulses (down to 10fs)

high peak current (up to 100kA)

space charge

Ulrich Schramm • Roland Sauerbrey • u.schramm@fzd.de • Laser Particle Acceleration Group • www.fzd.de • FZD 2008

Applications of laser-accelerated particle beams

- Ultra-short X-ray pulses Free electron lasers, Thomson back scattering
 Nuclear and particle physics
 Everything you can do with conventional accelerators ?
 Medical applications
 - Medical applications Radiation therapy and imaging

Laser accelerators vs conventional accelerators

Available av. laser power

CO₂ 100 kW fs PW class 100 W Diode pumped PW …few kW

Acc. Efficiency ~10%

Average power (on target / stored)

ELBE 10 kW (40 MeV e) SNS 1.4 MW (GeV p)

LHC 350 MJ (7 TeV p) SIS100 50 MJ (20 AGeV U)

Laser driven ion (proton) beam therapy ?

© GSI Darmstadt

requirements for ion beam therapy

Dose: 40-80 Gray distributed over 10-20 fractions

-> 10⁹-10¹⁰ ions per fraction and few minutes

Spatial control: mm-scale @ 20cm depth

- -> 200 MeV @ percent level control
- -> mm pointing (contour shaping)
- -> 5% position dependent dose control

Complete (nondestructive shot-to-shot) monitoring

Clean beam (no other species, X-rays...)

Two cell lines were irradiated with doses of ~3 Gy of laser accelerated electrons (undefined spectrum...)

Detection of DNA damage (off line)

Ulrich Schramm • Roland Sauerbrey • u.schramm@fzd.de • Laser Particle Acceleration Group • www.fzd.de • FZD 2008

184A1 (humane Brustdrüsenepithelzellen, normal)

Present and future situation at FZD

thanks to

U. Schramm, A. Debus, T. Kluge, S. Kraft, K. Zeil, S. Bock

K. Ledingham

H. Schwoerer, B. Liesfeld, K.-U. Amthor, W. Ziegler, O. Jäckel, S. Pfotenhauer, S. Podleska, R. Bödefeld, J. Hein, J. Polz, F. Ronneberger, H.-P. Schlenvoigt, B. Beleites

E. Beyreuther, L. Karsch, J. Pawelke, W. Enghardt, M. Baumann

Ulrich Schramm • Roland Sauerbrey • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft • October 2008

target: underdense (=transparent) plasma

Index of refraction *n* locally increases -> relativistic self focusing

channel formation

wakefield formation

3D PIC Simulation courtesy L. Silva, W. Mori

2D-PIC simulation by T. Esirkepov for next laser generation (POLARIS): 100 J in 100 fs, $I_L = 10^{21}$ W/cm², 5 µm Ti-foil + 0.1 µm PMMA dot (Ø 2.5 µm)

Irradiation geometry

Rückseite, vor Bestrahlung

Strahlfleck: 35mm

Ausgewerteter Bereich: 4 Kammern à 50 Zellen

Vorderseite, nach Bestrahlung

Ion acceleration – TNSA regime

- electron acceleration
- hot (MeV) electrons penetrate the foil
- quasi static field forms normal to target surface, source size >> laser spot

quasi-neutral pulse with exponential energy distribution (with max. energy depending on laser pulse duration, energy, and target thickness)

August 2007

Ulrich Schramm • Roland Sauerbrey • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft • October 2008

September 2007

Ulrich Schramm • Roland Sauerbrey • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft • October 2008
December 2007

Ulrich Schramm • Roland Sauerbrey • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft • October 2008

the FZD group (FWT)

R. Sauerbrey, U. Schramm T. Kluge, S. Kraft, K. Zeil, S. Bock, (M. Bussmann, M. Siebold, A. Debus)

strongly idealized..

T. Katsouleas, Nature 431, 515 (2004)

... and yet surprisingly "real" in the highly nonlinear broken wave – blow-out – bubble regime ...

In a transparent plasma a relativistic laser pulse with $L < \lambda_p = c/\omega_p$ drives a longitudinal plasma wave

short laser pulse
$$v_g^{\text{laser}} = v_{ph}^{\text{plasma}} \sim c$$

non-linear plasma wave for relativistic intensities

acceleration of particles in (traveling) waves-> matched external injection or self-injection

Typical (10TW) laser parameters are 1J in 40-80fs

- too long for high density (underdense) plasma
- too weak to use much less density (as threshold scales as $\omega_p^{-4/3}$ or $n_e^{-2/3}$ and including the larger spot size as $n_e^{-13/6}$)
- one might use capillary guiding for an increased acceleration distance, where lower densities are favourable and
- rely on self-compression and -focusing (with all its instability problems)

exp. status in Jena (2006)

Different ion species

lons are seperated by a mass and energy selective spectrometer and hit a position sensitive detector.

All species of ions located at the backside of the foil can be accelerated

Reproducibility (IOQ Jena)

80% fidelity

- Existence of threshold fluence » 1,2 J / cm2 @ tpulse » 5 ns, I = 532 nm
- Observations of initial incubation effects
- Recombination time for adsorbants > 5s at given chamber pressure of p » 10-5 mbar

2D-PIC simulation by T. Esirkepov for following conditions :

 I_L = 3 \times 10^{19} W/cm^2, 5 μm Ti-foil + 0.5 μm PMMA dot (20 \times 20) μm^2

For each laser system there is an optimal pulse duration for TNSA ion acceleration, which is not necessarily the shortest

POLARIS laser system:

- Petawatt laser available in Jena by 2008 (diode pumped Yb³⁺:Glass)
- 4 out of 5 amplification stages realized including compressor (8 J,150 fs)

I_{POLARIS} = 10²¹ W/cm² @ 0.1 Hz

$$(E = 150 \text{ J}, \lambda = 1042 \text{ nm}, \tau = 150 \text{ fs})$$

PCI_AR4S: Sindelationsed chirped pulse amplication to the joule level. *Applied Physics B - Lasers and* I_{POPERRS}79, 10(2004/cm²) 2,5 μm Ti-foil + 0.1 μm PMMA Dot (Ø 2.5 μm)

 $\tau_{ASE} = 1 \text{ ns } @ I_{ASE} / I_{POLARIS} = 10^{-7}$

wakefield acceleration

nonlinear wavebreaking (self injection) $v > v_{ph}$

test particle v_e > v_{ph} (external injection)

acceleration potential (anharmonic, moving with v_{ph})

Features of laser accelerated beams

high charge (up to nC) short pulses (down to 10fs)

Ion beam therapy – the idea

excitation of a longitudinal wave (wake)

Ion beam therapy – treatment planning

Photons: 9 fields

dose in % of the maximum dose

Courtesy O. Jäkel, DKFZ Heidelberg

Ion beam therapy – required energies

Verification by PET

dose plan

W.Enghardt et al. , FZD Dresden

measured

simulated

The GSI / HIT approach

The GSI / HIT approach

Layout

SIEMENS medical

71

Conventional vs HIT

Conventional electron / photon therapy device

10x cheaper ...

.....

U. Schramm • R. Sauerbrey • Laser Particle Acceleration Group • www.fzd.de • FZD 2008

JETI: P ~ 1.2 J f = 2 5 Hz

17.10.2007	
Zelllinie:	FaDu _{DD} (Plattenepithelkarzinom, Kopf/Hals)
N _{Pulse} :	150 3000
Dosis:	0.263 Gy 4.17 Gy
t _{Bestrahlung} : 60 s	. 21 min
Probenanzahl:	31 (Doppelbestimmung)

18.10.2007

Zelllinie:184A1 (humane Brustdrüsenepithelzellen, normal) N_{Pulse} :450 ... 2400Dosis:0.978 Gy ... 5.210 Gy $t_{Bestrahlung}$: ~3 min ... ~ 16 minProbenanzahl:16 (Einfach- und Doppelbestimmung)

Biologischer Endpunkt: DNA Doppelstrangbrüche (γH2AX + 53BP1, 2h + 24h nach Bestrahlung)

Dose distriution

4.48 3.92 3.36 2.79

2.23

1.67 1.11 0.54 0.00

Dose [Gy]

Film A10: 2000 Pulse, mittl. Dosis 4.128 Gy, 17.10.07

Film F1: 600 Pulse, mittl. Dosis 1.465 Gy, 18.10.07

Vergleich der Anzahl applizierter Laserpulse mit der erreichten Absolutdosis in der Zellprobe

⇒ Stabile Pulsdosisleistung innerhalb eines Bestrahlungstages
 ⇒ Probe 14/15: Bestrahlung nach Mittagspause, Abkühlung der Vakuumpumpen

Vergleich der gemessenen Dosen mit EBT Filmen und Roos-Kammer

⇒ Gute Korrelation für "halbvolle" Probenkammern → definiertes Probenvolumen

 \Rightarrow Starke Streuung für "volle" Probenkammern \rightarrow Schwankung des Volumens, Luftblasen, ...

⇒ Füllung der Probenkammern wegen Gefahr der Austrocknung bei t_{Bestrahlung} > 10 min

Vergleich der gemessenen Dosen mit EBT Filmen und Roos-Kammer

⇒ Gute Korrelation für "halbvolle" Probenkammern → definiertes Probenvolumen

 \Rightarrow Starke Streuung für "volle" Probenkammern \rightarrow Schwankung des Volumens, Luftblasen, ...

⇒ Füllung der Probenkammern wegen Gefahr der Austrocknung bei t_{Bestrahlung} > 10 min

Nachweis der Doppelstrangbrüche:

Nachweis der Doppelstrangbrüche:

Detection of DNA damage

- 2h Daten: ~ Übereinstimmung bzw. leicht verringert für MeV Elektronen
- 24h Daten: höhere Anzahl verbleibende DSB für MeV Elektronen
 - → LET? Energiespektrum?
 - → Verändertes Reparaturverhalten?

Auswertung: FaDu_{DD}

- Vergleich der Werte: 2h MeV e⁻ < 200kV X C 24h MeV e⁻ > 200kV X... Erklärung?
- Erwartung: Schädigung MeV Elektronen < 200 kV Photonen (LET)</p>
- Aber: Statistik 200 kV Daten unzureichend; 2 Experimente mit je 3 Dosispunkten → Wiederholung notwendig!

Bestrahlungen in Jena erfolgreicher als gedacht:

- Laser im "Dauereinsatz" eingesetzt (Ausfall am 18.10.07)
- Stabile Pulsdosisleistung innerhalb eines Bestrahlungstages
- 47 bestrahlte Zellproben

Unklarheiten/nächste Schritte:

- Energiespektrum der Elektronen nicht ausreichend genau bekannt
 ⇒ Einfluss?, Messung?, Dosimetrie?
- Interpretation der gemessenen Daten schwierig, fehlende/zu wenige Referenzdaten
 ⇒ "Zeitnahe" Bestimmung von Referenzwerten für FaDu notwendig (an 200kV Röhre, parallel zu JeTi-Bestrahlungen)
- Referenzbestrahlungen:
- Therapiebeschleuniger mit versch. Absorptionsmedien
- Monoenergetische Elektronenstrahlung (ELBE)
- 200 kV Röntgenröhre → bisher nur für 184A1
- Etablierung einer zweiten Tumorzelllinie + Referenzbestrahlungen

Thomson scattering – basic idea

photon energy, distribution, efficiency, coherence ... Forschungszentrum Dresden Rossendorf

Ulrich Schramm • Roland Sauerbrey • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft • October 2008

Thomson scattering – head on

 $\begin{array}{c} \lambda_{\text{laser}} & \text{small observation angle } \theta \\ \hline e^{-} & & & & & \\ energy \gamma & & & & & & \\ \end{array}$

$$\lambda_{L} = \frac{\lambda_{laser}}{4\gamma^{2}} \left(1 + \frac{a^{2}}{2} + \gamma^{2}\theta^{2} \right)$$

Ulrich Schramm • Roland Sauerbrey • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft • October 2008

Resonance conditions (undulator and `optical undulator '):

• Thomson scattering:

$$\lambda_{L} = \underbrace{\lambda_{laser}}_{4\gamma^{2}} \left(1 + \frac{a^{2}}{2} + \gamma^{2}\theta^{2} \right)$$

Undulator radiation:

(treated as a counterpropagating undulator)

U. Schramm • R. Sauerbrey • Laser Particle Acceleration Group • www.fzd.de • FZD 2008

Wavelength @ rms emission angle:

$$\lambda_{L} = \frac{\lambda_{laser}}{4\gamma^{2}} \left(1 + \frac{1}{N_{l}} \right)$$

7

Relative width @ zero angle:

$$\frac{\Delta \lambda_L}{\lambda_L} \sim \frac{1}{N_l}$$

For a reasonable number of oscillation periods of $N_{laser} \sim 100$ (i.e. 300fs for Ti:Sapphire laser)

e-beam divergence defines radiation properties

yield limited by small cross-section $(~r_e^2)$

Thomson scattering rate

$$dN_{emission}/d\Omega \sim \alpha \cdot \gamma^2 \cdot a_0^2 \cdot N_e \cdot N^2_{laser}$$

