Quasi-classical Liouville dynamics

Burkhard Schmidt

with I. Horenko, Ch. Salzmann, Ch. Schütte Cooperation with M. Weiser/P. Deuflhard @ ZIB

> Biocomputing group Institute for Mathematics II Free University Berlin

www.math.fu-berlin.de/~biocomp

Contents

- Introduction / Motivation
- **Fully** classical Liouville Dynamics
 - Classical limit of quantum Liouville dynamics
 - Basis of Gaussian phase-space packets (GPPs)
 - Adaptive integration of GPP equations of motion
- **Quasi**-classical Liouville Dynamics
 - Quantum nature of initial state
 - Basis of Gaussian wave packets (GWPs)
 - Classical Liouville dynamics with quantum initial conditions
- Conclusions / Outlook

Introduction

Molecular dynamics between quantum and classical mechanics

The goal

- Progress in molecular dynamics
 - Experiment: Ultrashort light pulses (ps \rightarrow fs \rightarrow as)
 - Simulations: Increasing computer power
 - Mathematics: Novel algorithms
- Exploring the limit of large molecular systems
 - Challenges in physical chemistry / chemical physics: Large molecules, clusters, liquids and solids/matrices
 - Challenges in biophysical chemistry:
 Photosynthesis, peptides→proteins, conformations, ...

State of the art: quantum dynamics

- Small systems (2...4 atoms)
 - Exact quantum dynamics
 - Grid representations of wavefunctions, e. g., Fourier / DVR
- Medium systems (10...100 atoms)
 - Approximate quantum dynamics
 - Separable and nonseparable approaches, e.g., MCTDH
- Large systems (10³...10⁶ atoms)
 - Classical trajectory dynamics
 - Newton's / Hamiltonian's equations, e.g., leap frog

Classical Liouville dynamics

Classical limit of quantum dynamics

Quantum mechanics in phase space

- Concept of Wigner transform
 - E. P. Wigner (Szillard)
 Phys. Rev. 40, 749-759 (1932)
 - W. Heisenberg
 Physik. Zeitschr. **32**, 737-740 (1931)
 - P. A. M. Dirac

Proc. Camb. Phil. Soc. 26, 376-385 (1930)

- Alternative approaches
 - K. Husimi
 Proc. Phys. Math. Soc. Jap. 22, 264 (1940)

Wigner transform

• Quantum-mechanical operator \rightarrow phase space function

$$A_W(R,P) = \int dS \exp\left(-\frac{i}{\hbar}P \cdot S\right) \left\langle R + \frac{S}{2} \left| \hat{A} \right| R - \frac{S}{2} \right\rangle$$

• Calculate quantum-mechanical expectation values

$$\langle \hat{A} \rangle = \int dR \int dP A_W(R,P) \rho_W(R,P)$$

- Wigner distribution function ρ_W(R,P)
 - Defined as Wigner transform of density operator

Wigner distribution function

Phase space distribution

 $\left|\rho_{W}(R,P)\right| \leq \frac{1}{\pi\hbar}$

 \Rightarrow "Quasi-distribution"

Position distribution $\rho(R) = \int dP \rho_W(R, P) \ge 0$ Momentum distribution $\rho(P) = \int dR \rho_W(R, P) \ge 0$

p

Dynamics of Wigner distribution

• Quantum Liouville-von Neumann equation (QLE)

$$\partial_t \hat{\rho}(t) = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}(t)]$$

• Wigner transform of QLE

$$\partial_t \rho_W(t) = -\frac{2}{\hbar} H_W \sin\left(\frac{\hbar}{2}\{\cdot,\cdot\}\right) \rho_W(t) = -\{H_W, \rho(t)\} + O(\hbar^2)$$

- Problems
 - Doubled dimensionality of Schrödinger equation
 - High powers of Poisson bracket operator $\{\cdot, \cdot\}$
 - Convergence of Taylor series problematic

Classical limit

• Second order approximation (in Planck's constant)

$$\partial_t \rho_W(R, P, t) = -\{H_W(R, P), \rho_W(R, P, t)\}$$

- Special case: exact for harmonic oscillator
- Classical Liouville equation
 - Symplectic flow conserves phase space volume (continuity equation)
 - Motion according to Hamilton's class. equations of motion
 - "Classical and quantum dynamics coincide for harmonic oscillator"

Example: Coherent (Glauber) state

Initial state:

- Displaced Gaussian phase-space packet
- Width of quant.-mech. ground state
- Time evolution
 - Center moves along classical trajectory
 - Constant width

Example: "Squeezed" state

- Center moves along classical trajectory
 - Widths oscillate periodically

Guidelines for numerical work

- Representation of distribution functions
 - Particle methods (travelling basis set)
 - Finite width Gaussians instead of "delta" trajectories
 - Easy to implement in existing MD codes
- Adaptivity and control
 - Specified precision of representation
 - Adaptive control of basis size and time step
- Monte Carlo based approaches
 - Weak dependance of numerical effort on dimensionality
 - Applicability to multidimensional systems

Gaussian phasespace packets (GPPs)

• Optimal decomposition of dynamical Wigner function

$$\rho_n(R,P,t) = B_n(t) \exp\left[-\binom{R-R_n(t)}{P-P_n(t)}^T \mathbf{G}_n(t) \binom{R-R_n(t)}{P-P_n(t)}\right]$$

where G_n are positively definite matrices determining GPP shape Minimize global error functional for given global error

$$\xi(N;\rho_n) = \int dR \int dP \left| \rho_W(R,P) - \sum_{n=1}^N \rho_n(R,P) \right|^2$$

• Monte-Carlo based algorithm optimizes GPP parameters

Optimization strategy

Monte Carlo based algorithm

- 1. Randomly choose set of coord.'s where $|\rho_W(R,P)| >> 0$
- 2. N=1: Pick initial phase space point (R_1, P_1) from this set
- 3. Minimization of error ξ : optimize R_i , P_i , B_i , G_i , i=1,...,N
 - Solve sparse set of linear equations to optimize B_i
 - Solve set of nonlinear equations to optimize G_i
- 4. If ξ (N)> ϵ then N = N+1. Pick (R_{N+1}, P_{N+1}) from set.
- 5. Redo minimization (steps 3-4) until $\xi(N) < \epsilon$

Law of large numbers:
$$N\propto\sqrt{d}$$

Example: Morse oscillator (v=4)

• 1000 GPP's for given global error: $\xi < \epsilon = 0.001$

Burkhard Schmidt Biocomputing Group Free University Berlin

17

Classical GPP dynamics

- Basic assumptions
 - 1. Locally harmonic approximation of potential (LHA)
 - 2. Independent particle approximation (IPA)
- GPP centers follow class. trajectories in phase-space

$$\partial_t R_n = M^{-1} P_n$$
 and $\partial_t P_n = -V^{(1)}$

• GPP shape depends on Hessian of potential

$$\partial_t \mathbf{G}_n = \mathbf{C}\mathbf{G}_n + \mathbf{G}\mathbf{C}^T \quad \text{with} \quad \mathbf{C} = \begin{pmatrix} 0 & V^{(2)} \\ -M^{-1} & 0 \end{pmatrix}$$

see IH+BS+CS, JCP 117 (10), 4643-4650 (2002)

Explicit numerical integrator

- Strang splitting for Lie generators $L = L_1 + L_2$ $\exp(iL\tau) = \exp(iL_1\tau/2)\exp(iL_2\tau)\exp(iL_1\tau/2) + O(\tau^3)$
- Modified Leap frog

$$R_{1/2} = R_0 + \frac{\tau}{2} M^{-1} P_0$$

$$P_1 = P_0 - \tau V^{(1)}(R_{1/2})$$

$$\mathbf{G}_1 = \exp(\tau \mathbf{C}(R_{1/2})) \mathbf{G}_0 \exp(\tau \mathbf{C}^T(R_{1/2}))$$

$$R_1 = R_{1/2} + \frac{\tau}{2}M^{-1}P_1$$

• Quasi-conservation of energy and norm of GPP

Implicit numerical integrator

• Error estimator (to be minimized)

$$\varepsilon_{\tau} = \| \widetilde{\rho}_{W}(t+\tau) - \rho_{W}(t+\tau) \|$$

\Rightarrow Least squares for GPP amplitudes

Adaptivity

• Adaptivity in phase-space

$$\varepsilon_{\Gamma} = \left\| \left(I - \frac{\tau}{2} L \right) \widetilde{\rho}_{W}(t + \tau) - \left(I + \frac{\tau}{2} L \right) \rho_{W}(t) \right\| \le \operatorname{Tol}_{\Gamma}$$

Dynamic creation / annihilation of GPPs according to local error

• Adaptivity of time step

$$\tau_{\rm opt} \propto \sqrt{\frac{{\rm Tol}_{\tau}}{\varepsilon_{\tau}}}$$

see IH+MW, ZIB reprint 29 (2002)

Quasi-classical Liouville dynamics

Classical Liouville dynamics with Quantum initial conditions

The problem

- Quantum initial conditions
 - Delocalized ground state (weak forces) or
 - Excited initial state (nodal structure)
- Wigner transform of initial wavefunction
 - Few analytically known cases (harmonic, Morse oscillator)
 - Grid methods limited to very low dimensionality
- Open questions ...
 - Numerical Wigner transform in high dimensionality
 - Choice of appropriate basis set ?!?

Gaussian wavepackets (GWPs)

• Optimal decomposition of initial wavefunction

$$\psi_j(R) = A_j \exp\left[-(R - R_j)^T a_j(R - R_j) + \frac{i}{\hbar} P_j^T (R - R_j)\right]$$

• Minimize error functional for given global error using minimal number of GWP basis functions

$$\Theta(N;\psi_j) = \int dR \left| \psi(R) - \sum_{j=1}^N \psi_j(R) \right|^2$$

• Monte Carlo based algorithm optimizes GWP parameters

Example: Morse oscillator (H₂ vib)

• For given global error: $\Theta < \epsilon = 0.001$

Wigner transform of superposition

• Analytical result for superpositions of GWPs

$$\rho_{W}(R,P) = \sum_{j} W_{j}(R,P) + \sum_{j < k} W_{jk}(R,P) + O(\varepsilon)$$

$$W_{1}: \text{ cat is alive}$$

$$\int_{0}^{0} \int_{0}^{0} \int_{0}$$

Example: Morse oscillator: v=4

• 5 Gaussian packets \Rightarrow 15 terms in double sum

Example: Photodissociation

- Ground state (initial)
 - Shallow potential and/or
 - Vibrational pre-excitation
- Excited state dynamics
 - Instantaneous excitation
 - Direct fragment separation
- Reflection principle

- Kinetic energy of fragments reflects initial density
- Classical Liouville dynamics
 with quantum initial conditions

Example: Photodissociation

- Deficiency of classical trajectories (bars)
- Improvement by Gaussian phase-space packets (circles)

\Rightarrow Importance of dense sampling of phase space

Summary

- Representation of Wigner distribution function
 - Basis of Gaussian phase-space packets (GPPs)
 - Monte-Carlo algorithm: Optimal GPP representation
- Classical Liouville dynamics
 - Explicit Leap-Frog algorithm for GPP dynamics
 - Implicit trapezoidal rule: Time and space adaptivity
- Quantum initial condition
 - Use of Gaussian wave packets (GWPs)
 - Monte-Carlo algorithm: Optimal GWP representation
- Classical dynamics with quantum initial conditions

Outlook

- Quantum-classical Liouville dynamics JCP **117** 11075 (2002)
 - Nonadiabatic transitions in multistate Liouville dynamics
 - Surface-hopping Gaussian phase-space packets
- Photoinduced dynamics JCP **115**, 5733 (2001)
 - Intense, short pulses: beyond perturbation theory
 - Nonadiabatic transitions between "dressed states" (Floquet)
- Control of molecular dynamics ?!?
 - Error control through adaptive algorithms
 - Forward-backward propagation in optimal control theory

Further reading

- M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner: Distribution functions in physics: Fundamentals Phys. Rep. **106**(3), 121-167 (1984)
- W. Schleich: Quantum optics in phase space Wiley-VCH, Berlin (2001)
- J. Ma, D. Hsu, and J. E. Straub: Approximate solution of the classical Liouville equation using Gaussian phase packets
 J. Chem. Phys. **99**(5), 4024{4035 (1993)
- *I. Horenko, B. Schmidt, Ch. Schütte:* Multidimensional classical Liouville dynamics with quantum initial conditions
 J. Chem. Phys., **117** (10), 4643-4650 (2002)
- I. Horenko and M. Weiser : Adaptive integration of multidimesional molecular dynamics ZIB preprint 02-29 (2002)

