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THE FORM FACTOR PROGRAM: A REVIEW AND NEW RESULTS,

THE NESTED SU(N) OFF-SHELL BETHE ANSATZ AND THE 1/N

EXPANSION

H. M. Babujian,∗ A. Foerster,† and M. Karowski‡

The purpose of the “bootstrap program” for integrable quantum field theories in 1+1 dimensions is to

construct a model explicitly in terms of its Wightman functions. We illustrate this program here mainly

in terms of the SU(N) Gross–Neveu model. We construct the nested off-shell Bethe ansatz for an SU(N)

factoring S-matrix and consider the problem of how to sum over intermediate states in the short-distance

limit of the two-point Wightman function for the sinh-Gordon model.
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1. Introduction

The bootstrap program to formulate particle physics in terms of the scattering data, i.e., in terms
of the S-matrix, goes back to Heisenberg [1] and Chew [2]. This approach works very well for integrable
quantum field theories in 1+1 dimensions [3]–[8]. The program does not start with any classical Lagrangian.
Instead, it classifies integrable quantum field theory models and in addition provides their explicit exact
solutions in terms of all Wightman functions. We achieve contact with the classical models only at the end,
when we compare our exact results with Feynman graph (or other) expansions that are usually based on
Lagrangians.

One of us (M. K.) and others formulated the on-shell program in [4], i.e., the exact determination of the
scattering matrix using the Yang–Baxter equations. The concept of generalized form factors was introduced
in [7], where consistency equations were formulated that are expected to be satisfied by these quantities.
Thereafter, this approach was developed further and studied in the context of several explicit models in [9].
Here, we apply the form factor program to an SU(N)-invariant S-matrix (see [10], [11]). We must apply the
nested “off-shell”1 Bethe ansatz to obtain the vector part of the form factors. This gives the missing link
in Smirnov’s [9] discussion of SU(N) form factors, where the vectors were given by an “indirect definition”
characterized by necessary properties but not provided explicitly. We compare the 1/N expansion for the
chiral SU(N) Gross–Neveu model [12] with our exact results for the form factors. This model is interesting
in particular because the particles are anyons and the 1/N expansion is problematic [13]–[15] and moreover
exhibits the asymptotic freedom. The Wightman functions are finally obtained by integrating and summing
over intermediate states. The explicit evaluation of all these integrals and sums remains an open challenge
for almost all models except the Ising model.
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2. The bootstrap program

The bootstrap program for integrable quantum field theories in 1+1 dimensions provides the solution
of a model in terms of all its Wightman functions. The result is obtained in three steps:

1. The S-matrix is calculated using general properties such as unitarity and crossing, the Yang–Baxter
equations (which are a consequence of integrability), and the additional assumption of “maximum
analyticity.” This means that the two-particle S-matrix is an analytic function in the physical plane (of
the Mandelstam variable (p1 +p2)2) and has only poles of physical origin there. The only dependence
on the model is the assumption that there is a particle spectrum with an underlining symmetry. All
S-matrices with the given properties are classified.

2. Generalized form factors, which are matrix elements of the local operators

out
〈
θ′m, . . . , θ′1

∣
∣O(x)|θ1, . . . , θn

〉in
,

are calculated using the S-matrix. More precisely, equations listed in a–e in Sec. 3 are solved.

3. The Wightman functions are obtained by inserting a complete set of intermediate states. In particular,
the two-point function for a Hermitian operator O(x) is given by

〈0|O(x)O(0)|0〉 =
∞∑

n=0

1
n!

∫
dθ1

4π
· · ·

∣∣〈0|O(0)|θ1, . . . , θn

〉in∣∣2 exp
(
−ix

∑
pi

)
.

Up to now, a direct proof that these sums converge exists only for the scaling Ising model [8], [16]–[19].

It was recently shown in [20] that models with factoring S-matrices exist in the framework of algebraic
quantum field theory.

Integrability. Integrability in (quantum) field theories means that there exist infinitely many local
conservation laws

∂µJµ
L(t, x) = 0, L = ±1,±3, . . . .

A consequence of such conservation laws in 1+1 dimensions is that there is no particle production and the
n-particle S-matrix is a product of two-particle S-matrices:

S(n)(p1, . . . , pn) =
∏

i<j

Sij(pi, pj).

If backward scattering occurs, then the two-particle S-matrices do not commute, and their order must be
specified. In particular, there are two possibilities for the three-particle S-matrix,

S(3) = S12S13S23 = S23S13S12,

�
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�
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1
2 3 1 2 3

,

which yield the Yang–Baxter equation.
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The two-particle S-matrix has the form Sβ′α′

αβ (θ12), where α, β, etc., denote the type of the particles
and the rapidity difference θ12 = θ1 − θ2 is defined by pi = mi(cosh θi, sinh θi). We also use the short
notation S12(θ12). It satisfies the unitarity and crossing relations

S21(θ21)S12(θ12) = 1,

S12(θ1 − θ2) = C22̄S2̄1(θ2 + iπ − θ1)C2̄2 = C11̄S21̄

(
θ2 − (θ1 − iπ)

)
C1̄1,

where C11̄ and C11̄ are charge conjugation matrices.

Bound states. Let γ be a bound state of particles α and β with the mass

mγ =
√

m2
α + m2

β + 2mαmβ cos η , 0 < η < π.

Then the two-particle S-matrix has a pole such that

i Res
θ=iη

Sβ′α′

αβ (θ) = Γβ′α′

γ Γγ
αβ , (1)

i Res
θ=iη �

�
��•
�

�
��

α β

α′β′

=
��
•
��

•����

α β

γ

α′β′

,

where η is called the fusion angle and Γγ
αβ is the “bound-state intertwiner” [21], [22]. The bound-state S-

matrix, which is the scattering matrix of a bound state (12) with a particle 3, is obtained by the bootstrap

equation [21]

S(12)3(θ(12)3)Γ
(12)
12 = Γ(12)

12 S13(θ13)S23(θ23),

�
�
�

��
��

1 2 3

12

• =
��

�
�

�����

�
��1

2 3

12
•

,

where we use the usual short notation for matrices acting in the spaces corresponding to the particles 1, 2,
3, and (12).

An example of an integrable model in 1+1 dimensions is the SU(N) Gross–Neveu model [12] described
by the Lagrangian

L = ψ̄iγ∂ψ +
g2

2
(
(ψ̄ψ)2 − (ψ̄γ5ψ)2

)
,

where the Fermi fields form an SU(N) multiplet. Other integrable quantum field theories are the sine-
Gordon, the Toda, the scaling Z(N) Ising, the nonlinear σ, the O(N) Gross–Neveu models, etc.

The SU(N) S-matrix. All solutions of an U(N)-invariant S-matrix satisfying unitarity, crossing,
and the Yang–Baxter equation were obtained in [23]. Following [24], [25], we adopt the standpoint that
in the SU(N) Gross–Neveu model, the antiparticles are bound states of N−1 particles. This implies that
there is no particle–antiparticle backward scattering and that the SU(N) S-matrix should be given by
solution II in [23]. The scattering of the fundamental particles that form a multiplet corresponding to the
vector representation of SU(N) is (see [14], [15], [26] and for N = 2 [27])

Sδγ
αβ(θ) =

�
�

�

�
�
�

�
�

�
�

α β

γδ

p1 p2

p3p4

= δαγδβδb(θ) + δαδδβγc(θ), (2)
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where because of the Yang–Baxter equation, the relation c(θ) = −2πib(θ)/(Nθ) holds and the highest-
weight amplitude is given as

a(θ) = b(θ) + c(θ) = −Γ(1 − θ/(2πi))Γ(1 − 1/N + θ/(2πi))
Γ(1 + θ/(2πi))Γ(1 − 1/N − θ/(2πi))

. (3)

There is a bound-state pole at θ = iη = 2πi/N in the antisymmetric tensor sector, which agrees with the
results in [24] that the bound state of N−1 particles is to be identified with the antiparticle. Similarly to
the scaling Z(N) Ising and A(N−1) Toda models [28], [29], this is to be used to construct form factors in
the SU(N) model [10].

3. Form factors

For a local operator O(x), the generalized form factors [7] are defined as

FO
α1...αn

(θ1, . . . , θn) = 〈0|O(0)|p1, . . . , pn〉inα1...αn
(4)

for θ1 > · · · > θn. For other orders of the rapidities, they are defined by analytic continuation. The index
αi denotes the type of the particle with momentum pi. We also use the short notation FO

α (θ) or FO
1...n(θ).

For the SU(N) Gross–Neveu model, α denotes the types of particles belonging to all fundamental
representations of SU(N) with dimensions

(
N
r

)
, r = 1, 2, . . . , N − 1. In most of the formulas, we restrict

α = 1, 2, . . . , N to the vector representation multiplet. As with the S-matrix, maximum analyticity for
generalized form factors means that they are meromorphic and all poles in the physical strips 0 ≤ Im θij ≤ π

have a physical interpretation. Together with the usual LSZ assumptions [30] of local quantum field theory,
the following form factor equations can be derived:

a. Watson’s equations describe the symmetry property under the simultaneous permutation of both the
variables θi, θj and the spaces i, j = i + 1:

FO
...ij...(. . . , θi, θj , . . . ) = FO

...ji...(. . . , θj , θi, . . . )Sij(θij)

for all possible arrangements of the θ.

b. The crossing relation implies a periodicity property under the cyclic permutation of the rapidity
variables and spaces,

out,1̄〈p1|O(0)|p2, . . . , pn〉in,conn
2...n =

= C1̄1σO
1 FO

1...n(θ1 + iπ, θ2, . . . , θn) = FO
2...n1(θ2, . . . , θn, θ1 − iπ)C11̄,

where σO
α takes the statistics of the particle α with respect to O into account (e.g., σO

α = −1 if α and
O are both fermionic; these numbers can be more general for anyonic or order and disorder fields;
see [29]).

c. There are poles determined by one-particle states in each subchannel given by a subset of particles of
the state in (4). In particular, the function FO

α (θ) has a pole at θ12 = iπ such that

Res
θ12=iπ

FO
1...n(θ1, . . . , θn) = 2iC12F

O
3...n(θ3, . . . , θn)(1 − σO

2 S2n · · ·S23).
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d. If there are also bound states in the model, then the function FO
α (θ) has additional poles. For instance,

if particles 1 and 2 form a bound state (12), then there is a pole at θ12 = iη, 0 < η < π, such that

Res
θ12=η

FO
12...n(θ1, θ2, . . . , θn) = FO

(12)...n

(
θ(12), . . . , θn

)√
2Γ(12)

12 ,

where the bound state intertwiner Γ(12)
12 is defined by (1) (see [21], [22]).

e. Because we work with relativistic quantum field theories, we naturally also have

FO
1...n(θ1 + µ, . . . , θn + µ) = esµFO

1...n(θ1, . . . , θn)

if the local operator transforms under Lorentz transformations as FO → esµFO, where s is the “spin”
of O.

These equations were proposed in [9] as generalizations of the equations derived in the original arti-
cles [7], [8], [31]. They were proved [32] using the LSZ assumptions and maximal analyticity.

We now provide a constructive and systematic way to solve the equations in a–e for the covector-valued
function FO

1...n if the scattering matrix is given.

3.1. Two-particle form factors. For two-particle form factors, the form factor equations in a and
b are

F (θ) = F (−θ)S(θ),

F (iπ − θ) = F (iπ + θ)
(5)

for all eigenvalues of the two-particle S-matrix. In general theories, Watson’s equations [33] hold only below
the particle production thresholds. But in integrable theories, there is no particle production, and they
therefore hold for all complex values of θ. It was shown [7] that these equations together with maximal
analyticity have a unique solution.

As an example, we write the (highest-weight) SU(N) form factor function [10]

F (θ) = c exp
[∫ ∞

0

dt

t sinh2 t
et/N sinh t

(
1 − 1

N

)(
1 − cosh t

(
1 − θ

iπ

))]
,

which is the minimal solution of (5) with S(θ) = a(θ) as given by (3).

3.2. The general form factor formula. As usual (see [7]), we separate the minimal part and write
the form factor for n particles as

FO
α1...αn

(θ1, . . . , θn) = KO
α1...αn

(θ)
∏

1≤i<j≤n

F (θij). (6)

Using the off-shell Bethe ansatz for the (covector-valued) K-function

KO
α1...αn

(θ) =
∫

Cθ

dz1 · · ·
∫

Cθ

dzm h(θ, z)pO(θ, z)Ψα1...αn(θ, z), (7)

we transform the complicated form factor equations in a–e into simple ones for the p-functions, which are
scalar and other simple functions of e±zi. The off-shell Bethe ansatz state Ψα1...αn(θ, z) is obtained as a
product of S-matrix elements; the integration contour Cθ depends on the model (see below for the SU(N)
model). The scalar functions

h(θ, z) =
n∏

i=1

m∏

j=1

φ(θi − zj)
∏

1≤i<j≤m

τ(zi − zj), τ(z) =
1

φ(z)φ(−z)
(8)

depend only on S(θ) (see (10) below), i.e., on the S-matrix, whereas the p-function pO(θ, z) depends on the
operator.
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The SU(N) form factors. The form factors for n fundamental particles (in the vector representation
of SU(N)) are given by (6)–(8), where the nested Bethe ansatz is needed. This means that Ψ has the form

Ψα1...αn(θ, z) = Lβ1...βm(z)Φβ1...βm
α1...αn

(θ, z), (9)

where the indices αi take the values αi = 1, 2, . . . , N and the summations range βi = 2, 3, . . . , N . The
off-shell Bethe ansatz state Φβ1...βm

α1...αn
(θ, z) is obtained using the technique of the algebraic Bethe ansatz as

follows.
We consider a state with n particles and define the monodromy matrix

T1...n,0(θ, θ0) = S10(θ10) · · ·Sn0(θn0) =
1 n

0

. . .

as a matrix acting in the tensor product of the quantum space, a space of n particles (with respect to their
quantum numbers) V 1...n = V 1 ⊗ · · · ⊗V n and the auxiliary space V 0. All vector spaces V i are isomorphic
to a space V whose basis vectors label all kinds of particles. We here take V ∼= CN as the space of the
vector representation of SU(N). The Yang–Baxter algebra relation for the S-matrix yields

T1...n,a(θ, θa)T1...n,b(θ, θb)Sab(θa − θb) = Sab(θa − θb)T1...n,b(θ, θb)T1...n,a(θ, θa),

which in turn implies the basic algebraic properties of the submatrices A, B, C, and D with respect to the
auxiliary space defined by

T1...n,0(θ, z) ≡
(

A1...n(θ, z) B1...n,β(θ, z)

Cβ
1...n(θ, z) Dβ′

1...n,β(θ, z)

)

, β, β′ = 2, 3, . . . , N.

The basic Bethe ansatz covectors Φ of (9) are obtained by applying the operators C to a pseudovacuum
state

Φ
β

1...n(θ, z) = Ω1...nCβm

1...n(θ, zm) · · ·Cβ1
1...n(θ, z1).

This can be depicted as

Φ
β
α(θ, z) = �

�

α1 αn

β1 βm 1 1

1

1

θ1 θn

z1

zm. . .

. . .

...
for βi = 2, 3, . . . , N, αi = 1, 2, . . . , N. (10)

This means that Φ
β
α(θ, z) is a product of S-matrix elements as given by (10), with S-matrix (2) at each

crossing point of lines and where the sum over all indices of internal lines is to be taken. The pseudovacuum
is the highest-weight covector (with the weight w = (n, 0, . . . , 0))

Ω1...n = e(1) ⊗ · · · ⊗ e(1),

where the unit vector e(α), α = 1, 2, . . . , N , corresponds to the particle of type α in the vector representation
of SU(N). The technique of the nested Bethe ansatz means that for the covector-valued function Lβ1...βm(z)
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given by (9), the second-level Bethe ansatz is to be constructed. This ansatz has the same form as (7)
except that the range of the indices is reduced by one. Iterating this nesting procedure finally yields a
scalar function. The integration contour Cθ depends on the θ (see [29], [10]).

Swieca’s picture is that the bound state of N−1 fundamental particles is to be identified with the
antiparticle and together with the form factor recurrence relations in c and d leads to the equation for the
function φ(z) (see [29], [10])

N−2∏

k=0

φ(z + kiη)
N−1∏

k=0

F (z + kiη) = 1, η =
2π

N
,

with the solution

φ(θ) = Γ
(

θ

2πi

)
Γ
(

1 − 1
N

− θ

2πi

)
.

It was shown in [10] that the form factors given by (6) and (7) satisfy the form factor equations in a–e if
some simple equations for the p-function are satisfied. We note that the form factors of this model were
also calculated in [9], [34] using other techniques. In [9], the vectors were given by an indirect definition
characterized by necessary properties but not provided explicitly. This missing link is given by the nested off-
shell Bethe ansatz. Another procedure for constructing nested SU(N) off-shell Bethe vectors was discussed
in [35].

3.3. Examples. We present some simple examples illustrating our general results.

The energy–momentum tensor. For the local operator O(x) = T ρσ(x), where ρ, σ = ± denote the
light-cone components, the p-function, as for the sine-Gordon model in [22], is

pT ρσ

(θ, z) =
n∑

i=1

eρθi

m∑

i=1

eσzi .

For the (n=N)-particle form factor, there are nl = N − l integrations at the lth level of the off-shell Bethe
ansatz. We calculate the form factor of the particle α and the bound state (β) = (β1, . . . , βN−1) of N−1
particles. At each level, all integrations up to one can be performed iteratively using the bound-state
relation in d. All the remaining integrations at the higher levels can then be done. The result for the form
factor of the particle α and the bound state (β) is given by

FT ρσ

α(β)(θ1, θ2) = KT ρσ

α(β)(θ1, θ2)G(θ12), (11)

KT ρσ

α(β)(θ1, θ2) = NT ρσ

2 (eρθ1 + eρθ2)
∫

Cθ

dz

R
φ(θ1 − z)eσzL(θ2 − z)εδγSδ1

αε(θ1 − z)S
ε(γ)

(β)1(θ2 − z),

where the summation is over γ and δ > 1 and G(θ) is the minimal form factor function of two particles of
the ranks r = 1 and r = N − 1. The functions G(θ) and L(θ) are given by

G(iπ − θ)F (θ)φ(θ) = 1, L(θ) =
Γ(1/2 + θ/(2πi))Γ(−1/2 + 1/N − θ/(2πi))

b(iπ − θ)
.

The remaining integral in (11) can be evaluated (similarly to [22]) with the result

〈0|T ρσ(0)|θ1, θ2〉inα(β) = 4M2εαβe(ρ+σ)(θ1+θ2+iπ)/2 sinh
(
(θ12 − iπ)/2)
θ12 − iπ

G(θ12).

Similarly to [22], we can prove the eigenvalue equation
( ∫

dxT±0(x) −
n∑

i=1

p±i

)
|θ1, . . . , θn〉inα = 0

for arbitrary states.
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The fields ψα(x). Because the Bethe ansatz yields highest-weight states, we obtain the matrix
elements of the spinor field ψ(x) = ψ1(x). The p-function for the local operator ψ(±)(x) is (also see [32])

pψ(±)
(θ, z) = exp

(
±1

2

( m∑

i=1

zi −
(

1 − 1
N

) n∑

i=1

θi

))
.

For example, the one-particle form factor is

〈0|ψ(±)(0)|θ〉α = δα1e
∓(1−1/N)θ/2.

The last two formulas are consistent with the proposal in [24], [15] that the statistics of the fundamental
particles in the chiral SU(N) Gross–Neveu model should be σ = e2πis, where s = (1 − 1/N)/2 is the spin.
For the (n=N+1)-particle form factor, there are again nl=N−l integrations at the lth level of the off-shell
Bethe ansatz. Similarly to the above, we obtain the two-particle and one-bound-state form factor

Fψ(±)

αβ(γ)(θ1, θ2, θ3) = Kψ(±)

αβ(γ)(θ1, θ2, θ3)F (θ12)G(θ13)G(θ23), (12)

Kψ(±)

αβ(γ) = Nψ exp
(
∓1

2

(
1 − 1

N

) ∑
θi

) ∫

Cθ

dz

R
φ(θ1 − z)φ(θ2 − z)L(θ3 − z)e±z/2 ×

× εδγSδ1
α1ε(θ1 − z)Sε1

α2ζ(θ2 − z)S
ζ(γ)

(β)1(θ3 − z).

We were not able to evaluate this integral. In [36], we will discuss the 1/N expansion and the physical
interpretation of the results for the chiral Gross–Neveu model.

3.4. The 1/N expansion: The SU(N) Gross–Neveu model. The Lagrangian is [12]

L = ψ̄iγ∂ψ +
g2

2
(
(ψ̄ψ)2 − (ψ̄γ5ψ)2

)
= ψ̄(iγ∂ − σ − iγ5π)ψ − 1

2g2
(σ2 + π2).

There are infrared divergences due to the “would-be-Goldstone boson” π [13]–[15]. Using the approach
in [15], we, for example, obtain (see [36] for more details)

γ〈θ3|i(iγ∂ − m)ψδ(0)|θ1, θ2〉inαβ =

= − iπ

N
2mδγ

αδδ
β

(
u(p2)

cosh(θ13/2)
− γ5u(p2)

sinh(θ13/2)

)
sinh θ13

θ13
u(p2) + · · · + O

(
1

N2

)
,

where the dots denote a term where 1 and 2 is exchanged and disconnected terms. The same result follows
from our exact form factor (12).

4. Wightman functions

As the simplest case, we consider the two-point function of a local scalar operator O(x):

w(x) = 〈0|O(x)O(0)|0〉.

Inserting a complete set of in-states, we can write

w(x) =
∞∑

n=0

1
n!

∫
dθ1 · · ·

∫
dθn exp

(
−ix

∑
pi

)
gn(θ). (13)
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Fig. 1. Dimension of the exponential of the field for the sinh-Gordon model: one-particle (dotted

line) and (1+2)-particle (solid line) intermediate state contributions.

We here introduce the functions

gn(θ) = (4π)−nFO(θ1, . . . , θn)FO(θn + iπ, . . . , θ1 + iπ),

where crossing is used. In particular, we consider exponentials of a scalar Bose field

O(x) = :eiγϕ(x):,

where : . . . : denotes normal ordering with respect to the physical vacuum, which amounts to 〈0|:eiγϕ(x):|0〉 =
1, and g0 = 1 therefore holds.

The logarithm of the two-point function. For specific operators, for example, exponentials of
Bose fields, it might be more convenient (see below) to consider sum (13) in a different form. For g0 = 1,
we can write (also see [37])

w(x) = exp
[ ∞∑

n=1

1
n!

∫
dθ1 · · ·

∫
dθn exp

(
−ix

∑
pi

)
hn(θ)

]
.

It is well known that the functions gn and hn are related by the cummulant formula

gI =
∑

I1∪···∪Ik=I

hI1 · · ·hIk
,

where we use the short notation gI = gn(θ1, . . . , θn), I = {1, 2, . . . , n}.
Because of the Lorentz invariance, it suffices to consider the value x = (−iτ, 0). Let O(x) be a scalar

operator. Then the functions hn(θ) depend only on the rapidity differences. We integrate once and obtain
the relation for small τ [37], [38]. Therefore, the two-point Wightman function has a power-law behavior
for short distances,

w(x) ≈ C(mτ)−4∆ as τ → 0,

where the dimension is given by

∆ =
1
2

∞∑

n=1

1
n!

∫
dθ1 · · ·

∫
dθn−1 hn(θ1, . . . , θn−1,0)

520



if the integrals exist. This is true for the exponentials of Bose fields O = :eγϕ(x): because of the asymptotic
behavior of hn as Re θ → ∞.

As an example, we consider the sinh-Gordon model. The dimension of the exponential of the field
O(x) = :eβϕ(x): can be calculated in the one- and (1+2)-particle intermediate state approximation

∆1+2 =
1
2

(
h1 +

1
2!

∫
dθ h2(θ, 0) + . . .

)
.

The integral can be calculated exactly [38]. The result is shown in Fig. 1.
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