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FACTORIZED U(n) SYMMETRIC S-MATRICES IN TWO DIMENSIONS
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S-matrices describing the scattering of solitons belonging to the fundamental represen-
tation of U(n) are classified

A vanety of two-dimensional field theortes have the property of being complete-
ly integrable at the classical level and describe interactions of solitons. In the cases
investigated so far, the most studied example being the sine-Gordon theory (alias
the Thirring model), the infimite number of conservation laws charactenzing the
sohiton-like behaviour have been shown to survive quantization [1]. These soliton
quantum field theores are then of special interest not only because of certain struc-
tural analogies to gauge theories in four dimensions, but because they are probably
soluble by an S-matrix bootstrap method. They would provide the first examples of
exact Wightman functions in theories with non-trivial (albert simple) S-matrices and,
hence, serve as good testing grounds for the vahdity of certain approximation
schemes (e.g. semu-classical) apart from yielding further insight into the general
problem of off-shell behaviour.

Knowledge of the exact S-matrix 1s the first step of the bootstrap program. The
most important features of a general sohiton S-matrix are exact elastic unitarity and
factonization {2]. It 1s indeed remarkable that imposition of these properties on the
scattening of a particle and 1ts antiparticle fixes uniquely the mimmal S-matnx with
non-trivial backward scattening [3], where by the minimal S-matnx 1s meant the one
with the mmimum number of singularities and zeros on the physical sheet. This
minimum solution depends on a single parameter and the solution can be interpret-
ed as the exact S-matrix of the Thirring model. This situation 1s reminiscent of the
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fact that the requirement of the existence of an infinite number of conservation
laws on a Lagrangian field theorv of a single scalar field with non-derivative coupling
fixes the sine-Gordon theory uniquely.

Another class of classical field theories which seem to possess [4] an analogous
structure 1s that of the non-linear O(#) chural models and the (O(2xn) symmetric)
Gross-Neveu model. With a program of the type outlined above 1n mind Zamolod-
chikov and Zamolodchikov [5] have recently studied the imposition of elastic uni-
tarity and factorization on the scattering of massive particles belonging to a vector
multiplet of O(n) For n =2 (0(2) ~ U(1)) the Thirring model solution with a single
parameter 1s recovered For n 2 3 the authors found a class of mimimum solutions
with non-trivial backward scattering with no free parameter but analytic 1n » and,
furthermore, presented various arguments 1n the expansion i 1/x to support the
connection of the minimal solution with the S-matrix of the non-linear chiral models
and a particular non-minimal solution with the S-matrix of the Gross-Neveu models

The success of these attempts encourages the search for new models by this sim-
ple method. In this paper we mvestigate the factorized S-matrices describing scatter-
ing of a U(n) multiplet of particles belonging to the fundamental representation
with thetr antiparticles There are a variety of interesting classes of solutions which
are summarized in table I A common feature 1s that the mimmum S-matrices are
all free from parameters As expected there 1s also a subclass of solutions with the
higher symmetry O(2n) corresponding to those of Zamolodchikov Many of the
other solutions also have a higher symmetry. For example the non-trivial solution
with vamshing backward scattering for the case n = 2 actually possesses an SO(4)
symmetry The problem remains, however, that we have not yet succeeded in pro-
posing associated field theories to the new classes. U(n) Thirnng models other than
the Gross-Neveu model provide possible candidates. The existence of the solutions
does at least suggest that there are many models of interest to be discovered and
that a more complete classification of solutions corresponding to various groups and
their representations would be highly desirable

We consider the general 2 - 2 scattering of a particle P, belonging to the funda-
mental representation of U(n) with 1ts antiparticle A,. The S-matrix element 1s given
by

U Pg(D1) As (02)| Pa(p1) Ay (P2)M" 6]
=ay Fp(6)8(01 - 1) 8@ 3 — p3)~ oy Bep() 8 (P 1 — p2)8(F 1 - P 1),
with the forward and backward amplitudes each given by two invariant amphtudes
ay Fps(0) = 11(0) 8agbys +12(0) 8oy b5 »

ayBsg(0) = r1(6) 8apdys + 72(0) 8oy bps 2)
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and where 8 15 the rapidity variable given by p; p,/M? = cosh 0. The particle-particle
S-matrix element 1s given by

U Pe(P1) Ps (D2)| Po(p1) Py (p))"
= ay Sps (O)8(B1 — P1) (3 ~ P3) — 8®] ~ P2)8(F] ~ P1)ay So(®) ,  (3)
with
aySps (0) =u1(0) 8agdys + u2(6) bas 845
Crossing requires
aysﬁé(”r —0)=4s Fg, (9),
at'yBaﬁ(”T" 0)= a5 B’yﬁ(e) s “)
which 1n terms of the amplitudes reads
uy(@)=1,m -6y, u(0)=1,0m—0), r@=raam—0), (5)
As explained by Zamolodchikov 1t 1s convenient to associate asymptotic states
with products of symbols P, (8,) for particles (ssmilarly 4 4(6,) for antiparticles)
corresponding to the ath member of the multiplet with rapidity 8,. In (out) states

are 1dentified with products in which all symbols are arranged 1n order of decreas-
mng (increasing) 8. The product relations

Po(81) Pg(82) = opSvs (61 — 02) Ps(82) Py(01) ,
Py(01)Ap(02) = opFys(81 — 02)A5(02) Py(61)
+ aﬁB'yS (01 - 92) PS (GZ)A'y(el) » (6)

incorporate the relations between 1n and out states Unitarity can then be expressed
algebraically as the consistency of the product, yielding

aBS76 (0) ﬁysen(_e) = aanaﬁe ’
apFys @ 67Fen(—0) + apgBys ()] ﬁyBen(_G) =8an 666 >

aﬁF'yﬁ (0) ﬁ'yBen(_H) + aBB'y& (0) 8y Fen(_e) =0, (7)
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which 1n terms of invariant s-channel amplitudes reads
My (Y M, (—0)=1, a=1,2,3, 6]
with
Mys=uy2uy, Mye=titry, My=tifri+n(t31n), ®

The requirement of factorization of the S-matrix [3] in the formulation [5] now
becomes equivalent to the requirement of associativity of the product which results
in vartous equations. A detailed study shows the independent equations are given by

S-F-F=S*F*F,

SF-B=B*B*F+F*S*B,

F-S‘-F+B-B B=F*S*F+B*B*B, (10)
where

A-B-C means  43As¢(012) 5y Bin(013) e Cuw(023) ,
A*Bx*C means ﬁeAxp.(el?.) arxBsu(013) g5 Cen(023) -

An interesting feature 1s that n = 2 does not turn out to be a special case as 1t
was m the O(n) analysis The resulting functional equations for the invariant ampl-
tudes are themselves not very lluminating. Suffice 1t to say, however, that they are
sufficiently restrnictive to permut a complete classification of the solutions, since the
equations either cause certain amplitudes to vanish or lead to sumple (often linear)
functional equations involving ratios (of amplitudes) in which these amplitudes
appear as denominators

There exists a wide variety of solutions, six distinct classes 1n all, which are pre-
sented 1n table 1. In each class the minimal solutions contain only # as a parameter.
The classes are characterized by having additional symmetry properties, typically
expressed as the vanishing of amplitudes in varous channels. The Zamolodchikov
solutions correspond to class III To see this we consider the O(2n) S-matrix of
Zamolodchikov describing scattering of a (self-conjugate) vector multiplet (V).

1k S51(0) = 01(0) 8,18, + 02(0) 881 + 03(0) 8,48, . an
We 1dentify

Poa=A(Vaaci +1V5) , a=1.n,
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and thus obtain the conditions for O(2x1) symmetry.

up=t; =0y, Uy =r =03 (12)
Note that for the case n = 4 one can reduce the symmetry under consideration from
0(4) to SO(4) by adding a further term to 5 §,;(6) of the form €,3;04(6). Re-per-
formung the analysis of Zamolodchikov for this case turns out to be rather lengthy
and we just state the result. Minimum solutions for g4 # 0 (note that crossing

requires 04(0) = —04(1m — 0)) are given by

04(0) = 203(6) ,  02(8) = 03(O)(1 — 20/im) , (13)

-2
2 2] \4 2nm
10 1 16) '
F(I B 21r) F(4 S
The solution with o3 = 64 can be 1dentified with the U(n) solution II 1n the case
n =2, since with the extra amplitude o4 the condition for SO(4) symmetry becomes

with

0,(0)=R(6) R(m—0), R(6) = (14)

Uy =03— 04, U =03+ 04, ry=03—04 (1%

All classes of U(n) symmetric S-matrices (cf. table 1) can be expressed in terms of a
function f(#, A) meromorphic 1n 8 for Re A > 0 which 1s umiquely defined by the
following conditions

Of0)=1,  fer—0)fer+0)= 57, (16)
and f(0)=1,f(8) #0and o for0 <Im § <7, |Inf(O)| S % for Re § — oo
The auxihiary function f(8, A) 1s given explicitly by
D QU1 —g)Q+ 1+ A+ )
Ny=11
feme = T T+ o2+ 1+ A )
_LG*+3nTG+3A—3v) an
FG-30) TG+ 30+ 79)
For —1 <Re ¢ <1 we have the integral representation
A dx e ™™ —
LA = — h ) 18
fame, ) =exp ! < shx sh xo (18)
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and f has the asymptotic properties
famo, ) =1+ Limk th Jinp+ O(\2)  forA—0,
= &i™\/2+0(1/p)

forimp >0, (19)

For t; # 0 the umtanty, crossing and factorization relations lead to

02
tGan -8yt (m+ 0)=m ) (20)
with A =0, 2/n, 1/(n — 1), 1/(n + 1) for solution I, II, III, IV, respectively. For
class I, II we have furthermore
H@) H=0=1, (21)

and for III, IV
1@ =t,6mr-0), L@ =-t1n-10), respectively.

The minimal soluttons of these equations which have no zeros and a minimal num-
ber of poles 1n the physical strip 0 <Im 6 <7 are given 1n table 1 The amplhitudes
of class I, II, III are meromorphic 1n @ with poles and zeros outside of the physical
strip on the imaginary axis The amphtude #,, odd under crossing, corresponding to
IV has 1n addition a pole at 8 = %m.

For ¢, = 0 (solution class V, VI) we obtain

—sin?uf

) +0)=
ri@m—8) ri(m+6) sinu@m— @) sinu@m+8)’

(22)

and r;(8)r(—0) = 1, with ch nu = n, ¢™ = p for classes V, VI, respectively. The
minimal solutions of the equations listed 1n table 1 are meromorphic with poles and
zeros on the lines Im @/m = k = integer # 0.

The general factorizing U(#n) symmetric S-matrices are obtamed from the mini-
mal solutions by multiplication by a factor which contains CDD-like poles 6, on the
imaginary axis 1n the physical strip

L
sh 1(6+86,)
=1 sh (0 —0,)
Note that, except for class I, II, the poles have to appear pairwise 6, =17 — 6,
because of crossing symmetry. The SO(4) symmetric S-matrix with 3 = 0415

obtained by solution II with an extra pole at Jz7.
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