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The exact S-matrices proposed by Alexander and Alexey Zamolodchikov for the nonlinear o-model and Gross-Neveu 
model are verified to order 1IN 2 perturbation theory. This provides a good check of the nature of the bound state spectrum. 

The Gross-Neveu (GN) and nonlinear o-models 
(NLS) in two dimensions are described by the 
lagrangians 

N N 2 

.L 9GN= ~ ~ f i ~ j + ' ~ g ( ] ~  1 ~ft~j ) , 
j = l  = 

N N 

' ~  with ~ n. 2 = 1 "/2NLS = ~ j = l  (0un/)2 gj=l  1 " 

Exact S-matrices for these models were recently pro- 
posed by Zamolodchikov and Zamolodchikov [ 1,2] 
who analysed the factorization constraints [3 ] for the 
case of  scattering of  an O(N) N-plet of  massive par- 
ticles. Their arguments for identifying the S-matrices 
obtained by the factorization condit ion to those of  the 
models given by .~GN and .oNES relied essentially on a 

check on lowest order of  the 1/N-expansion. Shortly 
later it  was recognized that the quantum NLS- [4,5] 
and GN-models [6] possess infinite sets of  conserva- 
tion laws which imply [7] the factorization equations. 

In the present note we calculate up to 1IN 2 the S- 
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matrices of  the GN- and NLS-models. Because of  the 
ambiguity in the solution of  the factorization equations 
(which is related to the spectrum), our calculation is a 
nontrivial check for the correctness of  the spectrum of 
the GN- and NLS-models which is exhibited by the 
chosen S-matrices. Especially the rich particle spectrum 
of  the GN-model, as determined in the semiclassical 
approximation [8],  is confirmed. 

Consider the elastic scattering of  an O(N) isovector 
N-plet  of  particles Pi of mass m. The S-matrix elements 

are g!ven by 

°ut(pj(p l )Pl(P 2) l Pi(P l ) Pk (P 2 ) )in 

= i Sjl(O,N)5( l-pl) (  1 -  (1) 

+ ikS l j (O ,N)6(~  - p~)6(~ 1 - p~), 

with 

ikSjl (0, N)  = o 1 (0, N)  ~ ik~)jl 

+ 02(0 , N)6ij  6kl + a 3 (0, N) f i l6 jk ,  

where 0 the rapidity variable is given by 

PlP2 = m2 ch 0, 

and the + ( - )  in (1) refers to bosons (fermions), respec- 
tively. 
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Fig. 1. Tree graph contribution to 02. 

For special models, such as the NLS and the GN, 
the S-matrix factorizes in terms of two-particle scatter- 
ing matrices and the S-matrix fulfills severe constraints 
[3]. Indeed, as Zamolodchikov and Zamolodchikov 
[1] showed, the amplitude a 3 is simply related to 0 2 
(remember crossing: ol( in - 0) = 03(0)) by: 

2hi 02(0, N) 
a3(O'N)=- N -  2 0 (2) 

And the general solution of o 2 is given by 

[kD_ - sh0+isina~k ] (20)(O,N) 02(0, N )  = o 
1 sh 0 - i sin 

where the real parameters ak correspond to poles in 
the physical plane. The minimal solution is given by 

0(20)(0, N) = a(o, N)Q(in - 0, N) 

with 

P(1/(N - 2) - (i0/27r))P(-~ - (i0/2~r)) 
Q(O,N)= +  I/(N - 2 )  - ( i 0 / Z . ) ) "  

For 1/N-perturbation calculations it is more convenient 
to cast the solution into the form 

dt ch¼t(1 + (2i0/r0) 
ln o(20)(O , N) = F 

J 7- ch t' 
o 

X { 1 - e x p ( - t / ( N - 2 ) ) }  f o r 0 K I m 0 K u .  

In the O(N) NLS-model no bound states are expected 
and, hence, 

oNLS(0, N) = o(20)(0, N) 

was proposed [ 1 ]. 
Assuming for the U(N) GN-model the qualitative 

nature of the rich bound state spectrum which was ob- 
tained in the semiclassical analysis [8], the exact S- 
matrix is proposed [2] to be given by 

sh 0 + i sin rr/(N- 1) 0(20)(0,2N). 
o2GN(0,2N) - sh 0 - i sin rr/(N - 1) 

We expand the amplitudes to order 1IN 2 and obtain 

+ + + + 

P, 02 P, P= q ~ q P2 P, ~= 
lal (b) (c) {d I 

Fig. 2. Contributions in order 1/N 2 to e 2. 

for the T-matrix elements 

TNLS(0, N) = 4 sh 0(oNLS(0, N) - 1) 

8~ri t- 1 _  
N N 2 (X(0) - 167ri) + O(N -3) 

(3a) 

TGN(O,N) = 4 sh o(oGN(o, 2N) - 1) 

= 4rr.___i_N +4-~ (x(O) + 167ri) + O(N -3) 

where 

(3b) 

0 o  

X(0) = 2 s h 0 [  f d r / c h ¼ t ( 1  + 2i0/7r)- 4rr2"] 
0 ch ¼ t sh20 J 

which has the behaviour 

x(O) ~ 16n2/0 as 0 -+ 0, 

at threshold. Since the linearity relation (2), which is 
a consequence of the conversation laws [4 -6 ] ,  relates 
03 to o2, it is sufficient to calculate T GN and T NLS 
defined in eq. (3). 

To first order 1IN only the tree diagram (fig. 1) con. 
tributes and one obtains: 

TNLS(o, N) = - ( l / N )  87ri tree ~ 

T GN (0 N) = ( l /N)  4~i tree t , 

in agreement with (3). 
In second order 1IN 2 a variety of graphs contribute 

(fig. 2). Of these only the box diagrams 2(a) and 2(b) 
give energy dependent contributions. Due to the 
asymptotic (log k2) -1 behaviour of the propagator 

2zri th-~ q5 where k 2 = - 4 m 2  sh 2 ~b DGN(k2)= N ~b 

TGN(o,N) is convergent. TNoLS(o,N) diverges as the 
ultraviolet cut-off parameter A ~ ~o. But again due to 
(log k2) -1 factor in 
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= 8rri rn 2 sh¢ DNLS(k2) 
N ¢ 

it is sufficient to make only one subtraction. First we 
can show 

T NLS - 4 T GN = const. 
Box Box 

Hence, it is sufficient to check only T GN in detail to 
obtain agreement for T NLS up to a constant. We calcu- 
late GN TBox(0, N)  by introducing the dispersion relation 

oo 

2=(27r)2 f de[ ¢ cb3±¢ 2 

[DGN(k2)] N 2 (¢2 + rr2)2 sh }¢  

The @integrations can be done by means of Laplace 
transformations. 

Summing up the contributions (4), (5) and (6) we 
reproduce the Zamolodchikov prediction. Details of 
the present investigation [9] and the calculation of the 
form factors [10] will be published elsewhere. 
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+~1 8(¢) ] 4m2 

rr 2 k 2 - 4m2ch 2 }¢  + ie 

and then performing the k-integration. We find 
GN 1 1 

Tho x(O, N)=~-~{ 'SX(0) -  16 i I~2  in 2 

+ f d~b ¢ ch 2 "}q~ (4) 
0 (¢2 + zr2)2 

X ( 2 c t h - ~ ¢ l n ( 2 c h ½ ¢ ) - ¢ ) ] } + O ( N  -3) 

reproducing the energy dependent term in (3b). 
Finally we evaluate the constant contribution com- 

ing from diagrams (2c) and (2d). They are separately 
divergent but their sum is convergent: 

cth ~ 
T GN ¢0 N) =8 t r i l l  + f d ¢  2+rr  2 

2c+2d~ ' N2 [ 0 
(5) 

X [-~¢ - cth-~¢ In ch}¢]  / + O(N-3). 
/ 

The final contribution comes from the (finite)Z 2 fac- 
tor multiplying the one-particle irreducible 4-point 
function 
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o0 

(Z 2 _ 1)TGNe(O,N)_ 16rri + f de ch2 ~¢ 
N 2 ¢2 + rr2 

0 

× [ ~ c t h ¢ - l n ( 2 c h ~ ¢ ) ] }  +O(~-~-). 
(6) 
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