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A system of equations is derived which must be satisfied by multiparticle matrix ele- 
ments of any local operator in field theories with soliton behaviour. Form factors of va- 
rious operators of interest are calculated exactly by means of the known exact S-matrices 
in the sine-Gordon, massive Thirring, non-linear a-, and Gross-Neveu models. The finite 
sine-Gordon wave function renormalization constant is determined exactly. 

1. Introduction 

Two-dimensional field theories have for some time played the role of  testing 
grounds for general hypotheses and approximation schemes as well as acting as cata- 
lysts for new ideas and sources of  inspiration. Their recent investigation has mainly 
involved studies of  non(standard)-perturbation techniques, for example semiclassical 
methods [1], 1/N expansions [2] and topological structures [3]. The various ideas 
have motivated studies of  a wide class of  models and many new results have been 
established. The wonderful duality between the quantum sine-Gordon (SG) and the 
massive Thirring (MT) models, described by the Lagrangians 

_aa (cos 3¢ - 1) (1.1) • e s c  = ½(a~,~) 2 + ~2 

~MT = ~(ij~ -- m) ff -- ~g(~3,u~b) 2 , (1:2) 

respectively, first convincingly demonstrated by Coleman [4], has been one of  the 
highlights o f  these studies. Among other results was the unanticipated fact that many 
of  the models possess infinitely many conservation laws [5a] * also at the quantum 
level. 

The first such conservation laws were discovered in the SG and MT models [6] and 
recently they have also been established [7] in the O(N) non-linear sigma (NLS) 

* For a review see ref. [5b]. 
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model, the Gross-Neveu (GN) model, described by the Lagrangians [8] 

N N 

z?NLS = ! ~ ]  (auni)2 with g ~ n 2 = 1 (1.3) 
2 i=1  ' i=1 ' 

N N 

. /~GN = ~ ~aii~ka + ~ g 2 ( ~  ~a~ka) 2 (1.4) 
c~=l o t= l  ' 

respectively, and supersymmetric generalizations thereof. These conservation laws 
have drastic effects for on-shell matrix elements and express the fact that the par- 
ticles behave as solitons: that is in any scattering process the set of momenta is con- 
served [9] and secondly the S-matrix factorizes [10]. There are only special minimal 
S-matrices consistent with these properties. They depend on the symmetry of the 
model. For U(I), O(N) ( N >  2) and U(N) ( N >  1) there exist a one-parametric set 
[11], a uniquely determined [12], and a finite set [13] of minimal S-matrices, respec 
tively. By minimal is meant that S-matrix having the minimal number of poles and 
zeros in the physical sheet. Once the spectrum of the model is ascertained from 
other studies, then the exact S-matrix can be postulated, making minimality assump- 
tions on zeros and redundant poles (analogous to properties of a general class of 
non-relativistic S-matrices [14]). This has been done for the massive Thirring model 
[ 11 ] and recently for the NLS and GN models by Zamolodchikov and Zamolodchi- 
kov [ 12], and various perturbative checks have so far always been found in agree- 
ment [15]. 

There is the hope that such soliton quantum field theories are in fact soluble. 
One possible method to go off-shell is first to obtain all multiparticle form factors 
of various operators of interest and then ultimately sum over intermediate states to 
obtain the full Green functions. Despite the fact that the on-shell behaviour of 
such models is very simple, the off-shell behaviour is comparatively rich and compli- 
cated. The method of deriving the form factors involves solving generalized Watson's 
theorems [16], subject to proper analytic properties and incorporating the exact 
S.matrices. This is discussed in sect. 2. Again minimality assumptions are made and 
the proposed exact form factors are subjected to various perturbative tests. The full 
problem when many external particles and many degrees of freedom are involved 
has not yet been completely solved. In this paper we just present various examples 
which illustrate a variety of interesting behaviours. 

In sect. 3 we derive form factors for the SG solitons. The electromagnetic form 
factor agrees with semiclassical approximations and MT model perturbation theory. 
The form factor is asymPtotically dynamical-power behaved. Moreover, we use the 
form factor to obtain the exact wave function renormalization constant of the sine- 
Gordon field. As mentioned above, the form factors involving more than two soli- 
tons in the external states require solution of a matrix problem. The three-soliton 
form factors should prove prototypes for the general n-particle problem. 

In sect. 4 we consider form factors of the sine-Gordon (elementary) breathers. 
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As an example we propose the form factor of the operator: ~2 : (x) between two 
breathers and perform checks in perturbation theory. This form factor tends to a 
constant asymptotically. We also consider the three-breather form factor of the 
fundamental SG field; we check that it yields the correct S-matrix in the approp- 
riate on-sheU limit and perform additional perturbative tests. Finally, we use this 
exact form factor to obtain transition form factors from higher breathers. 

Our final examples in sect. 5 involve form factors in the GN and NLS models. 
Firstly we consider the two-particle matrix elements of the O(N) currents and per- 
form tests in the 1IN expansion. In both models the form factors fall as (N-depen- 
dent) powers of logarithms, characteristic of asymptotically free theories. Finally 
we consider the form factor of the mass operator ~ ( x )  in the GN model. 

2. Generalized Watson's theorem [ 16 ] 

In this section we derive a set of equations for matrix elements of local operators 
which follow from CPT invariance, crossing symmetry, unitarity and factorization 
[10] of the S-matrix. The latter special property is fulfilled in field theoretic models 
with an infinite set of conservation laws like the sine-Gordon (SG), the massive Thir- 
ring (MT), the Gross-Neveu (GN) and the nonlinear o-model (NLS). Factorization 
means that for a scattering process the sets of incoming and out~oing particle momen- 
ta are equal: 

{Pl . . . . .  Pn }in = {P'I .... ,Pn' }out, (2.1) 

and the n-particle S-matrix is a product of two-particle ones 

S(n)(Pl . . . .  , Pn)  = l-I s(2)(pi ,  p/)  . (2.2) 
i</ 

The matrix S (n) is defined by 

S ] t ~ l ( . P l )  . . . .  ) in  la l(Pl) ,  in s(n)  r ,  (2.3) = ' " " )  '~ i  "'" Ot I . . . W l  . . . .  ) "  

For non-vanishing backward scattering the factors on the r.h.s, of eq. (2.2) will not 
commute and the ordering has to be specified [ 17]. For simplicity we consider a 
theory with N different kinds of self-conjugate bosons ak, k = 1 ..... N and a hermi- 
tian local scalar operator O ( x )  = Or (x ) .  The  generalization for charged particles, 
fermions and more complicated operators is straightforward. 

We discuss an arbitrary matrix element like 

° u t ( o t l  (P 1 ) . . . . .  am  (Pro)lO (X)lOt m + 1 (Pro + 1 ) . . . .  , Otn (Pn)) in  , (2.4) 

which we call a "generalized form factor". The absence of particle production implies 
that these matrix elements have simple analytic behaviour in terms of rapidity dif- 
ference variables defined by 

PiP/+ ie = rnim j ch 0q,  (2.5) 
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with Oi/= IOi - 0/I and Pk = mk(ch0k,  sh 0k). We define a vector function Fee(0), 
where a = ( a l ,  ..., an), 0 = (Oi/; 1 <~ i </<~ n) (there are, of  course, only n - 1 inde- 
pendent variables 01/) by 

(010(x)lax (P l )  ..... an(Pn) )in = e-iXOh +...+Pn) Fee(O). (2.6) 

CPT invariance implies (since P i P / -  ie corresponds to -Oil - -Oi/) 

(010(0)lal(Px)  ..... an(Pn) )°ut = Fa(-O ) , (2.7) 

and crossing implies (since - P I P / -  ie corresponds to Oi/= in --Oi/) 

°ut(al (P l )  ..... a m)[O (0)1 .... an(Pn)) in = Fa(Ot/, Ors, 0 kl) , (2.8) 

w h e r e l < ~ i < j < ~ m ,  l <~r<<,m <s<~n,  andm < k  <l<~n.  

Let us first derive Watson's equations for the case n = 2. Using unitarity we have 

F a  1 c~2(012) = (OIO(O) lal (Pl) ,  a2(P2))in 

= ~ (0lO(0)ln'> °ut °Ut(n' lal(Pa),  a2(P2))  in . 
r l  f 

(2.9) 

With CPT invariance, eq. (2.7), factorization, eq. (2.1), and eq. (2.3) we then obtain 

and 

or 

(2) f~la2(O12) =fee'la~(-O12) a'la~S~ ee (012) 1 2 
(2.10) 

FeelS2(012 ) - - ,  - F e e l S 2 ( - 0 1 2 )  (2.11) 

F e e l e e 2 ( i r r  - 012 ) =.Feelee2(i'tr + 012 ) . 

The last equation (2.11) is obtained by starting with (ax(pa)lO(0)la2(p2)> using the 
crossing relation, eq. (2.8), and the fact that the one-particle S-matrix is trivial. 

For arbitrary n the generalized Watson theorem reads for 1 ~< m ~< n 

Fee(%, Ors, 0,,3 
= s(m,) , (Oi:)Fcd(-Oi.. ,-O~,-Oki)~' 1...ee'nS~nm-?)l...an(Okl) eel . . .eem ¢x I "" .tv m I I s m + 

(2.12) 
where the conventions are the same as in eq. (2.8). 

We do not yet know methods to find solutions of  the set of  matrix equations 
(2.12) for the form factor functions Fa(O) in the most general case. In this paper 
we discuss two simple cases: n = 2, N = arbitrary and n = 3, N = 1. For n = 2 and 
N = arbitrary the matrix equations (2.12) can be simplified by diagonalizing the two- 
particle S-matrix. This results in a set of  decoupled equations with the S-matrix eigen- 
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0 

Fig. 1. General two-particle form-factor diagram. 
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values S(0) 

F(O) = F(-O) S(O) , (2.13) 

F(iTr - 0) = F(iTr + 0) .  

Theorem. If F(0) is meromorphic in the physical strip 0 ~< Im 0 ~< 7r with possible 
poles (or zeros) only on the imaginary axis and F(O) = O(exp expl01) for IRe 01-+ oo, 
the solutions of eqs. (2.13) are uniquely determined by the poles at 0 = ie, k (and 
zeros) up to a normalization constant. They can be written as 

F(O) = K(O) Fmin(0),  (2.14) 

where the minimal solution of eqs. (2 .13)F rain (with Fmin(irr) = 1)has no poles 
(and zeros) in the physical strip and K(O) is a solution of 

K(O) = K(-O) = K(Zrri + 0) .  (2.15) 

Remarks. (a) Poles of F(0) will be determined by one-particle states in the chan- 
nel corresponding to the S-matrix eigenvalue denoted by the dashed line in fig. 1. 

(b) There are necessarily zeros at threshold 0 = 0 if S(0) = -1 .  
For all examples we discuss in sects. 3, 4 and 5 we make the minimality assump- 

tion that there are no zeros away from threshold in the physical strip. We give the 
proof of the theorem for the case that there are only poles present: generalizations 
are simple. 

Proof. Let/a 1 ..... /aL be the locations of poles ofF(0)  in the physical strip and 

L 

K(O) = const [-I [sh I(0 - iak) sh ½(0 +iak)] -1 , (2.16) 
k=l  

which is a solution of eqs. (2.15), then Fmin(0) = F(O)/K(O) is analytic in 0 ~< Im 0 
~< 7r and satisfies eqs. (2.13). Cauchy's theorem implies if C is a contour enclosing 
the strip 0 ~< Im 0 ~< 2rr 

d [ln Fmin(0) ] _ 1 f dz 
d--O - ~ / c  sh2 l-(z - 0)In Fmin(z) 

2 

_ 1 £ ~  dz F m i n ( z )  
In 

87ri _J** sh 2 ½(z - 0) Fmm(z + 2rti) 
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I i = 8~i _** sh 2 -~(z - 0) InS(z).  (2.17) 

This means we can calculate the (normalized) minimal solution Fmin(0) uniquely 
from the S-matrix (eigenvalue) S(O). In practice one can use a simpler formula. If 
the S-matrix is given by an integral representation 

then 

S(O) = exp f dx f(x) sh x O 
lff 

o 

(2.18) 

sin 2 0)/2rr] 
ymin(0) = exp J dx f(x) (2.19) 

sh x 
o 

If the operatorO (x) is connected with a "charge" such that [t~(p)} is an eigenstate, 
the normalization constant can be determined from 

(a(p)lO(x)l~p))  = F(irr). (2.20) 

In the following sections we apply this theorem to calculate the SG soliton (i.e. the 
MTM fermion), GN and NLS-model form factors. 

The other simple case for Watson's equations (2.12) is where n is arbitrary but 
N = 1 (i.e. there is only one kind of particle). Then the two-particle S-matrix is only 
a number and the factors in eq. (2.2) commute. The solutions of the generalized 
Watson equations are 

F(012 .... ) =K(012 .... ) I-I Fmin(ot/), (2.21) 
i</ 

where K satisfies eqs. (2.12) with S = 1, and F rain is given by eq. (2.17) or (2.19). 
The poles of K will again be determined by one-particle states in alt subchannels 
(ak, ..., a t ) c  (~1, ..., an), el. fig. 2. 

In sect. 4 we consider the case n = 3, N = 1 to calculate the matrix element of the 
sine-Gordon field with three elementary bosons: 

(0kb(x)lbl(Pl) bl(P2) bl(P3))  in . 

O 

Fig. 2. General n-paxticle form-factor diagram. 
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3. Sine-Gordon sol i ton form factor and wave funct ion  renormalization constant 

The sine-Gordon (SG) soliton form factor (i.e. the form factor of the fermion f 
in the massive Thirring model (MT)) has been calculated previously [18]. The diago- 
nalized two-particle MT model S-matrix is [ 19] 

I o o l Ii 01 0 = = - sh½k(0  - in) chlk(0 + in) 

0 - ch~%(0 sM~(o, k) s~p s~-) s~ o o -'~)1~ 

X S~(O, X), (3.1) 

where 

dx sh-~x(1 - l/h) 0 
Sff(O, X) = exp --d- s-ff(x~i ch-~-~x sh x tz-~. (3.2) 

0 

The parameter k is related to the MT and SG coupling constants g and r, respectively, 
by 

k = l  +2g 8rt 
rr =~-- - 1. (3.3) 

The fermion-antifermion S-matrix eigenvaluesS~)correspond to positive (negative) 
C.parity. Watson's equations read 

FMT(0, k) = FMT(--0, k) sMT(0, k) ,  FMT(Br -- 0, k) = FMT(irt + 0, k) .  
(3.4) 

Forg < 0 (i,e. k < 1) FMT(o, k) has no poles in the physical strip, since in the repul- 
sive region g < 0 there are no ff- bound states (we assume absence of redundant poles). 
Hence, for k < 1,FMT(0, k) = FMT'min(0, k) and the solution of eqs. (3.4) is given 
by 

FMT(o, k) = £~MT /~,MT FMT F~T) 

= ' sh~X(irr-0) '  c h ~ - ' - 0 - ) '  1 FMT(0, k) ,  (3.5) 

where 

FMT(0, X) = exp / dx sh ~x(1 - l/X) sin2(x0/21r) 
o x sh(x/2k) ch½x shx 

(3.6) 
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and for 3. > 1 by means of analytic continuation. 
The electromagnetic current form factor is given by 

(f(Pl)ljU(O)lf(P2) ) = if(P1 ) 7Uu(p2) F ~  T (in - 012,3`), (3.7) 

since ju is odd under charge conjugation. This formula has been checked in perturba- 
tion theory around 3̀  = 1 and in the classical limit X --> ~ [18]. As interesting prop- 
erties we note: 

(i) the asymptotic (t ~ _o~) behaviour of the form factor is 

FMT ~ (_t)~/27r ; 

(ii) the charge radius is given by 

1 R2 = d F M T ,  =8~(3`2 ~ -- 
- d t  - t = 0  

f dx x sh ~x(1 -1/;~) _ 1) (3.8) 

o ' 

with expected behaviour R 2 ~ 3`2/8m2 in the limit 3  ̀-~ ~. 
The lowest fermion-antifermion bound state bl with mass m I = 2m sin(u/23`) 

(existing for 3̀  > 1), which is the elementary boson corresponding to the sine-Gor- 
don field ~(x), can be built up only by an ff- pair [17]. Hence, the one-particle 
pole of the two-point function (T ~(x) ~b(y)) in momentum space at k 2 = m~ comes 
only from ff- intermediate states. By means of eqs. (3.5), (3.6) and (3.7) we can cal- 
culate these contributions exactly, since Coleman's correspondence [4] relates ~b and 
Ju by 

2rr 
eUVavC~ = _ __flu.  (3.9) 

The quantized sine-Gordon field theory is finite after "tadpole" subtractions by 
normal ordering (cf  appendix A). We determine exactly the SG wave-function renor- 
malization constant, defined for X > 1 by (0kb(0)lbl) = ~ or 

(~(x) ~y) )  = Z(3`) A+(x - y ,  m 2) 

+ contributions from larger masses, (3.10) 

or in momentum space 

i k2 (Tdp(k)c~(O))~Z(X)k2_m21 at ~m21. 

We consider first the case 3̀  < 1 where the bound state bl does not exist and the 
SG-propagator has no pole but only a cut starting at k 2 = 4m 2 . The contribution 
from fermion-antifermion intermediate states is given by 

f~ - dPldP2 
(~b(x) ~/(y)) =f47reo14rr~o : . ,  (0lq~(x)lf(Pl)f-(p2)) in in(f(Pl)f(p2)lq~v)[0) 
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,f 
41r dO12 g(O12)g(-O12) A + ( x -  y' (Pl +P2)2) ' 

where (Pl +P2): = 2m2( 1 + ch 012), 

2 r d2k ikx 
A+(x, M ) = J ~ - ~ - e -  O(ko) 2rrf(k 2 - M2),  

(3.11) 

g(012) = (0]~(0)[f(P 1 ) f-(P2) )in 

_ 27r/3 ch ~0'1 12FMT(012' ~) ' (3.12) 

The last equation has been obtained from eqs. (3.7) and (3.9). 
The function g(0) has a pole at 0 = ia = i7r(1 - l/X) corresponding to the bound 

state bl (for X < 1 in the unphysical sheet). This pole crosses the integration path, 
if X changes from X < 1 to X > 1. Hence, we obtain by analytic continuation from 
(3.11) for X > 1: 

ia -ia _ o 0  

= 15 d0 - y ,  + . . . .  (3.13) 
l a  

Since the bound state bl can only be built up by an ff- pair [17], we can determine 
the sine-Gordon wave-function renormalization constant by comparing eqs. (3.10) 
and (3.13). After some calculation using eqs. (3.12), (3.5) and (3.6) it follows: 

Z(X) = ~--'~4dO g(O) g(-O) 
l a  

( I- l~[2X rr ~-1 1 , ,  x 
= 1 + ~) ~--~- sin ~-~) exp ~o s i n x "  (3.14) 

For X ~ 1 the MTM becomes free and the bound state bl decays into an f f  pair. 
This fact is reflected by the relation 

Z(1 + 2g/Tr) = const, g + O(g2). (3.15) 

For ~ ~ ~ the SG theory becomes free and 

Z [8zr - 1) =1 (~2~ 2 (1 - ~7r2) +O(/~6) (3.16) 
!~-~" - \ 8 n /  

For arbitrary X with 1 ~< X ~< ~ we have 0 ~< Z(X) ~< 1 which is a general consequen- 
ce of positivity [20]. The first non-trivial contribution in SG perturbation theory 
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is calculated in appendix A. The result, eq. (A.7), agrees with the proposed exact for- 
mula (3.14) or (3.16). 

4. Form factors in the sine-Gordon theory 

In this section we turn to some examples of exact form factors for the elementary 
bosons of the sine-Gordon theory (alias the lowest lying bound states in the Thirring 
model in the attractive region with mass m 1 = 2m sin(Tr/2X)). The necessary ingre- 
dient is the S-matrix element Sbb(O, X) for the scattering of two such bosons. This is 
determined [ 17] as the residue at the appropriate poles in the (presumably) exact 
Zamolodchikov [19] S-matrix for the scattering of an initial four-particle state of 
two solitons and two antisolitons to be simply given by 

sh0 +/sin(n/X) = _ ~ dx chx(  1 - l /h) shx O __ 
Sbb(O 

, X)-  sh 0 - i sin (1r/X) exp 2 oJ  x ch --~x ilr ' 
(4.1) 

a result which is in agreement with perturbation theory to order/36 if the usual iden- 
tification 

8rr 

is made. 
We first consider the minimal form factor for a scalar operator 0 (x) connecting 

the two-particle state to the vacuum 

(010(0)lb i (Pl )  b l (P2)~n = FSG (012, X). (4.2) 

Using the general methods described in sect. 2 together with the particular form for 
the S-matrix (4.1), we directly obtain 

FSG,min t a  X) = ch ½/) exp 2 f (4.3) 
dx ch x( 1 l/h) sin2 (x0/21r) 

bb w, X ch Ix sh x 
0 

As explained before, the full form factor of a specific operator 0 (x) depends cruci- 
ally on further knowledge of the allowed poles. For example, with O(x)  = : c~ 2 : (x)  
we consider it probable that only the b 2 pole at (Pl + P 2 )  2 = m 2  = 4m2 sin21r/X 

Fi~. 3. Diagrams contributing to the sine-Gordon two-particle matrix element of the operator 
¢2-up to order #4. 
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[ 17] is present and, hence, postulate 

FSbbG(O, X) = --2ZZ(2)gbb(O, X)FSbG'min(0, X), 

1 
Kbb(O, X) = sh -~(0 - in~X) sh ½(0 + in~h)" (4.4) 

The normalization constant Z(2 ) can be calculated by means of the asymptotic beha- 
viour. Weinberg's power counting implies that in the limit of infinite momentum 
transfer the form factor tends to a constant given by the first diagram of fig. 3: 

F sG (0, X) -+ 2Z as t~ = br - 0 ~ oo. (4.5) 

For Z(2 ) we obtain after some calculation 

Z(2 ) =Z  -1 1 +~- ~-~cot~- .  (4.6) 

The diagrams contributing to the amputated three-point function are shown in fig. 
3 and yield a contribution to the form factor 

rS~(o, X) = 

2ZI+~8rr  sh ~0 4- \8rr/(~2~2 [ ~  4 sh----0 8 + O(~ 6) . (4.7) 

It can be checked that this perturbation theoretic result is in complete agreement 
with the proposed exact expression (4.4) with Z(2 ) given by 

Z,2) = l + ~  +(/32]2 (~ - lrt2) + O(/36) 
\8n!  

which agrees with eq. (4.6). 
Furthermore, the leading threshold behaviour of the proposed exact form factor 

agrees with perturbation theory to all orders/32n. To see this we note that the lea- 
ding threshold behaviour in each order is given by the factor sh lO[sh ~(0 - iTr[X) 
in (4.4), the remaining part being finite at threshold order by order. Hence, the lea- 
ding threshold behaviour in nth order is given by 

FS~O0(O) ~ 2(/32] " as 0 - + 0  (4.8) 
\8~r/ 

which is the same as that of the chain diagram, fig. 4. 

Fig. 4. Sine-Gordon chain diagram. 
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Our next example is the matrix element of the field between three lowest lying 
boson state and the vacuum 

(O l_ ( [ ]+m2)~O) lb l (P l )b l (P2 )b l (P3 )~n__  F~bb(012 , s G  013, 023 ) . (4.9) 

We propose the exact F sG to be given by 

SG 8zr 2 
F~,bb(012, 013, 023) =-~- ml Z(3)Z 3t2 ]-I Kbb(Oi/, ~) F~SG min (Oil ' X) . 

I~i<./6 3 
(4.10) 

Note that we suggest no other explicit factors corresponding to higher bound states 
to be present. However, there is a pole at (Pl +P2 +P3) 2 = m2 on submanifolds 
where a subenergy (Pi + p/)2 is on the m] mass shell. This is analogous to the situa- 
tion in the three-particle S-matrix element [21 ]. By crossing one of the particles 
and using the LSZ formalism (4.10) should reproduce the 2-2 T-matrix element. 
Indeed it can be checked that 

1 1 FSG rn 
4m~l sh O iZ---i~ bbb~v, irr, in -- O)=Sbb(O ) -- I , (4.11) 

provided that 

(1 + 1/~)2(?~/~r) sin(rt/~) cos4(Tr/2~k) 2 1 17 
Z(3) Za((2X/rt) sinQr/2X)) 2 = 1 +-~ + ~  ( s _ rr2) + 

(4.12) 

The perturbation theory checks up to one-loop are easily performed, the diagrams 
being simply given by fig. 5. However, the two-loop diagrams in fig. 6 are more 
involved to analyse. We ivill not give all the details here but assert that (4.10) is in 
agreement with perturbation theory to order/~6 (see appendix A). 

Finally, we can calculate the electromagnetic transition form factor for bound 
states bl and b2, 

(b2(Pl)l/u(O)lbl (P2)) = ieuv(Pl - P2) v Fb2bl (in -- 012), (4.13) 

by taking the residue of eq. (4.9) at 012 = irtD~. We obtain 
SG,min 

Fb2bl(0) = Z(2,1) Kb2bl(0, )Q F~2bl (0, X), (4.14) 

Fig. 5. Sine-Gordon four-point vertex function diagrams up to order #4. 

Fig. 6. Sine-Gordon four-point vertex function diagrams in order j36. 
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where the pole corresponding to the bound state b3 is given by 

1 m 
Kb2bl sh ½(0 - 3zri/2X) sh ½(0 + 3zri/2X) ' (4.15) 

~* dx ch x(½ - 1/X) ch(x/2X) sin 2 (x0/2rr) F sG'min (0, ~) = exp 4 f b2b ! -~" (4.16) 
ch ½x sh x o 

The function FS?l~l in is, of course, the minimal solution ofWatson's eqs. (2.13) 
with [17] 

sh 0 + i sin(3rr/2X) sh 0 + i sinQr/2X) 
S b 2 b l ( 0 '  ~) = sh 0 - i sin(3rt/2X) sh 0 - i sin(n/2X) " (4.17) 

In the limit of infinite momentum transfer the transition form fac'tor tends to a con- 
stant. 

5. F o r m  f a c t o r s  in  t h e  n o n - l i n e a r  a - m o d e l  a n d  G r o s s - N e v e u  m o d e l  

In this section we study two-particle form factors in the O(N) non-linear a-model 
and the SU(N) (or more precise O(2N)) Gross-Neveu model. (For the GN model we 
use O(2N) notations, i.e. we combine the SU(N) fermions fa and their antifermions 
~ ( a  = 1 ..... N) to 2N self-conjugate fermions fi.) Both models have recently been 
shown to possess infinite sets of conserved charges which at the quantum level imply 
absence of particle production and factorization. Assuming the situations to be so, 
Zamolodchikov and Zamolodchikov [ 12] previously analysed the constraints of 
factorisation on the 2-2 S-matrix elements and further incorporating the qualitative 
information on the spectrum of the models from semiclassical analyses proposed 
exact 2 ~ 2 S-matrix elements for both models. For the non-linear O(N) a-model 

• ~NLS(o N~ = min 
kr- i /  , , , ktSi/  ( O , N ) ,  (5.1) 

and for the O(2N) Gross-Neveu model 

GN sh 0 + i sin r t / ( N  - 1) k:i] (0, 2N) = , smin (0, ~ ) ,  (s o2~ sh 0 - i sin ~r/(N 1) k- - i j  

where s m i n ( o ,  N )  is the unique minimal O(N)-symmetric S-matrix which is consis- 
tent with factorization. The three eigenvalues o fS  min belonging to the scalar, sym- 
metric traceless, and antisymmetric tensor representations, respectively, are 

2hi 

, S +  , _ _ , 1 s m i n ( o , N )  (5.3) 
- lrr 2¢ri ' - ' 

0+ 
N - 2  
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where 

Sin_in(0, N)  = exp 2 f~  __dx e -2x/0v-2) - 1 sh x O .  (5.4) 
x e x + 1 in 

0 

These expressions have been checked in perturbation theory to order 1IN 2 [12,15] 
and we thus have some confidence in their validity. 

We first consider the form factor of the O(N) current 

J# = nia~n/-  nj~Uni (5.5) 

in the non-linear o-model 

(OlJ~/(O)lbk(pl) b2(P2)) in = i(~ik~jl -- 6it~jkXPl - p2~FNLS(o, N ) .  (5.6) 

The phase shift in the channel corresponding to the relevant O(N) representation 
(antisymmetric tensor of rank two) is given by eq. (5.4). Hence, using the general 
methods described in sect. 2 we postulate the current form factor FN_ Ls to be pre- 
cisely the minimum one 

FNLS(0, N)  = exp 2 f dx e -2x/(N-2) - 1 sin2(x0/21r) (5.7) 
- x e x +1 shx  

0 

We have checked that this expression agrees with perturbation theory in the NLS 
model to order 1/N (we relegate the details to appendix B). We note that the form 
factor tends to zero as a power of the logarithm of - t ,  the momentum transfer, 
as t ->' - ~  

FNLS(0, N) ~ ~-II(N -2) as 0 = in -- 0 + o0. (5.8) 

This is to be anticipated from the asymptotic freedom of the model. 
Considerations of the form factor of the O(2N) current J~ = ~O ,~ 41 in the Gross- 

Neveu model are analogous. The only important difference being that we must take 
into account the presence of bound-state poles. Defining the form factor 

<OIJ~/(O)lfk(Pl )fl(P2))> in = i(8ik817 _ 8tlfjk ) v-(Pl ) ~'Uu(P2) FG-N( O, 2N) , 
(5.9) 

we make the usual minimality assumptions and propose 
7{" SG m i n  FG_N(o, 2N) = cos 2 2(N - 1) Kbb(0' N - 1) Ft~ b ' (0, N - 1) F_NL$(0, 2N) ,  

(5.10) 

where gbb(0 , ~,) F SG' min(0, ~k) was introduced in the discussion of the sine.Gordon 
theory form factors (4.4). Again we have checked agreement of (5.10) in perturba- 
tion theory to order 1IN (see appendix B). The form factor FG_N(O, 2N) also decrea- 
ses logarithmically for large momentum transfer 

F_  GN (0, 2N) ~ 0 -1/(2N-2) as/) = in -- 0 ~ oo. (5.1 1) 
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A. 
Fig. 7. Diagrams contr ibut ing to the  O(N) current  form factor in the non-linear a- and Gross- 
Neveu models  up to order N - 1  . 

Finally, we calculate the form factor of the isoscalar operator ~i-~i~ki(x) defined 
by 

<01~k(0)l]~(pl ) J')(P 2))ha = 8i/~(p 1 ) u(p2 ) EGo N (0, 2 N ) ,  (5.12) 

with the normalization FoGN(iTr) = 1. One easily sees from eqs. (5.2,3) that 

/~o N(0, 2N) = 2 ~ FG_N(O, 2 N )  (5.13) 

satisfies Watson's equations with S GN and has the right pole structure, since the sca- 
lar and antisymmetric tensor channel contains bound states at the same mass [22]. 
Perturbative checks of the proposed scalar form factor eq. (5.13) are much more 
complicated, since in contrast to eq. (5.10) not only one but 12 diagrams contri- 
bute to the order 1IN (see appendix B). For large momentum transfer the scalar 
form factor tends also to zero logarithmically: 

FGN(o,  2N)  ~ ~-1/(2N-2)-1 as 0 = in -- 0 -'> o, . (5.14) 

We thank B. Berg, V. Kurak, S. Meyer, and B. Schroer for discussions. One of the 
authors (M.K.) acknowledges discussions with members of the Abteilung Physik, Uni- 
versit/it Dortmund, where parts of this work were performed. 

Appendix A 

The sine-Gordon theory is described by the Lagrangian 

ot 
.~SG = 1(0U~)2 +~_y (cos ~ -- 1). (A.1) 

In such a theory all ultraviolet divergences are removed by normal ordering of the 
interaction Hamiltonian in the interaction picture. This will in the following always 
be understood, with respect to the mass parameter (~1/2. 

The ~ self-energy defined in the ~b propagator 

i 
D *( k2 ) = k 2 - a - II(k 2 ) (A.2) 
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is to lowest order given by the two-loop diagram in fig. 7: 

2 /f12 \2 2 
II(k ) = - a ( ~ - ~ )  ~ K ( - ~ ) +  0(1~6), (A.3) 

where 

K(p 2) = fd2gld2g2 [(k~ - 1)(k 2 - 1)((p - k I - k2 )  2 - 1)] - 1  . (A.4)  

The physical mass of the elementary SG boson (alias the lowest lying soliton-anti- 
solition bound state) and the (finite) wave function renormalization constant Z 
defined in 

iZ 
D~°(k2) ~ k 2 - m~ (A.5) 

are then given (using K(1) = ~rr4), 

[1 - (  fl212 lrr2+ 0(/36)] (A.6) 
m~ =,~ + rI(m~) = ~ \8rr/ 

and (using K'(1) = ~rt2(3 - ~7r2)), 

Z -1 = 1 - II'(m21) (A.7) 

+ (  ~2 ]2 1 
= I \~/ (3 - 2~ 7r2) + 0(/36) " 

For the calculation of the diagrams of figs. 3, 4, and 5 the following identities 
have been used (with p 2 = 1 andp 2 = (Pl +P2) 2 = -4 sh 2 ½0) 

1 I 0 
fd 2k k2 - 1 (k - p)2 _ 1 - ilr ~ - ~ ,  (A.8) 

1 1 1 1 
fd2k ld2k2  (kl + P 2 )  2 - -  1 (kl - k 2 )  2 - 1 (kl - P l )  2 - 1 k 2 - 1 

2 20 

4 \sh20 sh0 4 c ~  ' 

/ 1 1 1 1 14 
f d 2 k l d 2 k 2 k 2 -  l k ~ - _ l ( p _ k l  k 2 ) 2 _ 1  p 2 - 1  

(A.9) 

( 1 1 1 ] 
+ + 

+ k l - p l - P 2 ) 2 - 1  ( k 2 - P 2 - P 3 )  2 - 1  (Pl - k l " k 2 )  2 - i  

+ [Pl ~P2]  + [Pl ~P3]  = 41- ~'4 p2 _ 1 I_sh 012 sta~a 
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023 031 + 031 bl~ ] (A.10) 
+ sh 023 sh 0a----~ sh t}al sh 012.J ' 

The expression of the left-hand side of eq. (A.10) is (up to factors) the contribution 
from the last three diagrams in fig. 6. Note that the bracket in the integrand is just 
the sum of trees occurring in scattering (PlP2P3) -> (kl k2k3 ) the principal part 
of which vanishes when all k's are on-shell. We have not completely succeeded in 
demonstrating (A.10) although we believe in its validity. Indeed, we have shown (a) 
the equality on-sheU (as stated above the exact Sbb ) is in agreement with perturba- 
tion theory to order/3 6, (b) the discontinuities over all three two-particle cuts taken 
simultaneously are equal on either side of eq. (A. 10) (i.e. Oi/~ -Oq), and finally (c) 
we have checked the relation at a non-trivial p2 off-shell unphysicfl point, namely 
at p = O, Oi/= ~Tri. 

Appendix B 

In this appendix we check the proposed exact form factors in the nonlinear e- 
and Gross-Neveu models in 1/iV expansion. Fig. 7 shows the diagrams contributing 
to F_ yLs and F_ GN in order N o and N - l  which give (besides isospin matrices) 

i f d2k DNLStk s~ i(Pl -ps)~FN_ LS =i(pl --P2)# + J ( ~ - ~  ~ / 

I (Pl - P2 - 2k)u - 1 
× ( ( k _ p l ) S _ m S ) ( ( k + p s ) S _ m 2 )  subtr. + .... (B.la) 

i~ (p=) ~,~'u(p~) Y2_ N = io-fpO '? '~q'0 

f ~  IF 1 7u 1 u ( p , ) -  subtr~B +i DGN(k s) (P2)= + ~ - - m  ~ l  k - - m  
) t. ~'2 - .lb) 

We use spectral representation of the propagators D(k) [23] (with k s = -4mSsh s ~K 
and M s = 4m s chS½¢) 

DNLS(kS) 8nim2shK 87ti s (  kS / pNLS(MS) 
- ~ m 1 -- dM s (B.2a) 

= ' ~ -  g ~ 4m 2 M2-~  _- ~ '2)] ,  

DGN(k2 )_  2~'i th ~K_ 1 ? dM: 
N f¢ N 4m2 

where 

pNLS(M2) . sh 
= - - 2 ~ ' t  ~ ,  

peN(M2) 

k 2 _ M 2 (B.2b) 

( B . 3 a )  
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• coth½~ 
pGN(M2) = 21ri ~b 2 + n--------- ~ . (B.3b) 

The k integration can now be performed and we obtain (with PiP2 = m 2ch 0 and 
= in - O) 

1 f , ~ ,  sh2½¢ {~ cothlq~-0coth~0 } 
F-NLs(0'N)--I+ o ~ - - ~  ch~_ch2½ ~ -(~-*0) +O(N ~2) 

1 { 1 - ½ 0 ( c ° t h ~ 0 - t h ~ 0 ) - l ~ ( l + 2 ~ / ) - ~ k ( 1  ~ i ) + ~ ( ½ ) }  = 1 + ~  

+ 0(N - 2 ) ,  (B.4a) 

+ 1 0 1) F_°N(0,2N)-~=½(F~Ls(0,~)-I) fi(~-~- +O(N-2), (B.4b) 

where ~(z) = (In P(z))'. 
These perturbative results agree with the proposed exact expressions, eqs. (5.7) and 

(5.10). 
The I / N  expansion for F_ is simple because a loop vanishes which has one anti- 

symmetric Jff vertex This is no longer true for F~o N. The diagrams contributing to 
zl 

/~o N in order N O are drawn in fig. 8. A corresponding equality holds in any order. 
This reflects the fact that the field equation for the auxiliary field o(x)  introduced 
by.~GN ~./gGN _ ½(O/g +g~ff)2 [8] reads 

O(X) + g 2 ~ ( X )  = 0 .  (B.5) 

Thus we consider the matrix element (0lo(0)lft(pl) f/(P2 ))in in order N O , N - t  (cf. 

+ = c o n s t .  

Fig. 8. Diagrams contributing to the scalar form factor in the Gross-Neveu model in order N 0. 

Fig. 9. Diagrams contributing to the scalar form factor in the Gross-Neveu model in order N -1 . 
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figs. 8 and 9) and obtain, with the normalization F~0 N(irt) = 1, 

FoGN(O, 2N) = const D G N ( p  1 +p2) 2) + O(N -1) 

2 1 - {  
=~-th~0 1 + IIc(Pl +p2)DGN(pl +P2) 

4m 2 + l  2 8m 2 ( p l  - p 2 ) l  
r d2/ DGN,.,. , F -- (Pl --P2) 2 l) t-  L subtr'-4mZ ° (P, + p : -  

1 (Pl  - P 2 )  l 

( _ p , - p 2 ) 2 N f d 2 q ~ [ 1  1 1 )1 } 
X 12 _ 21pl j ( 2 n ) 2  tr + O(N-2 ) ,  - m a[ + IC - m ~l + t -  m 

(B.6) 
in agreement with eq. (5.13) in order N O . There are two independent methods to cal- 
culate the a self-energy IIc(k) contributing to Fo ~N in order N -~ . The direct calcu- 
lation of the diagrams is rather complicated [23]. An alternative method uses the fac- 
torization constraints which relate the three independent two-particle scattering ampli- 
tudes ol ,  02, a3 for the processes 

fi(Pl)  + fi(P2) ~ f/(Pl) + f/(P2) , 

f i(Pl) + fl(P2) -~ fi(Pl)  + fi(P2),  

f , (Pl)  + fi(P2) "* fl(Pl) + ft(P2),  

respectively. They are related to the S-matrix eigenvalues, eq. (5.3), by 

S o = N o  1 +02 +03 , 

S_+ = o2 -+ o3 • (B.7) 

The relations from crossing and factorization are [ 12] 

01(o, 2N) = o3(b, 2N) = i~ a2( 0, 2N) (B.8) 
N - 1  0 

The r.h.s, can easily be calculated up to order N - l  to give (since only the tree dia- 

(a) (b) (c} 

Fig. 10. Diagrams contributing to the scattering amplitude o 1 in the Gross-Neveu model in order 
N -2. 
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gram contributes to 02) 

1 in 1 in ( i~ ~ a 
° I ( 0 ' 2 N ) = - N O  - N  2 0 ,1 + s-h-~)+ 0(N-  ).  

On the other hand, o 1 in orderN -1 is given by the diagrams of fig. 10. 
The vertex graphs and the box graph can be calculated (with k = Pl + P2) 

(B.9) 

d21 Ily 1 1 
Oa(b)4m2sh 0 = -2u(p2) o(m ) D(g) f (~-~D(O (p~) r - . ~  - m r + ~v2 - m 

Xu(p2) - subtr. 

r d 2 q  . ~ 1  1 1 )1 
- 4D(k - l)~(pl)~_411 _ m u ( p 2 ) N l ~  tr me+r- m4r+k - m ' 

(B.11)  

r d21 D D "  1 
°~C)4m2shO=-2J(~n)2 (/) (K- / )g(Pl )p"  2 - t - m U ( p 2 )  

XI~(p2)/. 411_mO(pl)+(pl  ~ p 2 ) l .  (B.11) 

Thus we obtain for the finite part of the IIc self-energy after some calculations from 
(B.9, 10, 11) 

2 -4m2 +12 -8m2 (Pl -P2)  l 
iic(k)= D_l(k)  ( N iTr 2 r d  I D I (Pl---P2~ 

sh 0 J ( 2 - ~  (/)L Q$ --2~Pl-~ + 2lp2) 

d21 2 -1  / + 2m D (k)f~-~D(l)D(k --t) L 

d21 
- 16m 2 -~-~O(l)'(l 2 

(Pl - P2)l ~2 

(Pl -P2)  2 ~P2) J l 2 - 21pl ~(Pl 

] (/91 +P2)/ 
(Px +P2) 2 + const.} 

- 2 l p l ) q  2 - 2tp2) 

Inserting eq. (B. 12) into eq. (B:6) we obtain 

- subtr. 1 

(B.12) 

FoGN(0, 2N) : 2the0 [1 +j~Drd2l GN(/) ~/(l s - - ~ P I ~  l ~ 4 m 2  - 12+ 2lp2) subtr.)] 

+ 0(N -2) , (B.13) 
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using the identity 

(Pl +P2) l 1 
1 in 2 " d21 (Pl +P2)  2 = 8m 2 d21 ~.~ 

NshO 8m J(~-~D(l) (l: _2lplXl2 _21p2) f ~ l J ( O  

@1 - P2)  l 
1 

(Pl -- P2) 2 
X (12 _ 21pl Xl2 + 2/p2 ). (B.14) 

Comparing eqs. (B. 13) and (B. 1 b) we observe agreement of Fo GN up to order N -1 
with the proposed exact scalar form factor, eq. (5.13). 
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