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Abslrac . 

A review is given of the derivation of exact S-matrices in field theoretic models with soliton behaviour, that means models obeying 
infinitely many conservation laws which imply the factorization of the S-matrix. Form factors of various operators are calculated 
exactly by means of Watson's theorem. The exact value of the finite Sine-Gordon wave function renormalization constant is determined. 



230 Non-perturbative aspects in quantum field theory 

1. Introduction 

1,1, m e  r e s u l t s  

i) For some field theoretic models we give the onshell solution. By means of analytic S-matrix 
methods I'l, 2] we calculate exactly S-matrix elements like 

out<p,x, .  . . , p,n. lpt ,  " .,pn>i, 

for the scattering of any number and arbitrary kinds of particles appearing in the models. 
ii) We want to determine offshell quantities for these models like the two-point function 

<0l = E <0l '"<"1 
I I  

Thus we try to calculate "generalized form factors" [3, 4] like 

°U'<Pl.--.. P-I O(x)IP-+ 1 , . . . ,  Pn) in' 
where O ( x )  is a local operator. The problem is solved for the cases 

a) n = 2 and N = (number of kinds of particles) arbitrary 
b) n = 3 a n d N = l .  

1.2. T h e  m o d e l s  

We will consider some field theoretic models in two space-time dimensions with special common 
properties which we call soliton behaviour. 

i) The Sine-Gordon (SG) model, defined by the Lagrangian 

.~s~  = ½ ( , ~ ) ,  + ~ ( c o s / ~  - 1), ( l )  

is on the classical level completely integrable by means of the inverse scattering method [5]. 
There are !ocalized classical solutions, the soliton and the breathers, which are soliton-antisoliton 
bound states. The semiclassical breather spectrum is [6] 

mk = 2m sin (kn/22), k = 1, 2 , . . .  < 2, (2) 

where m is the soliton mass and the parameter 2 is related to the SG-coupling constant/~ by 
,w 

;t = 81t/fl 2 - 1. (3) 

ii) The massive Thirring (MT) model 

, , ~ M T  .... ff(i~ - m)~ - ½ g ( i ~ )  2 (4) 

describes the interaction of fer~aions f, ~ For g > 0 there exist fermion-antifermion bound states bk. 
The famous equivalence of the quantum Sine-Gordon and the massive Thirring model due to 
Coleman [7] says: identify the SG-soliton andbreathers  with the MT-fermion and bound states, 
respectively, relate the SG-field to the MT-current by 

/~,"0,~ = - 2 ~ j ~  (5) 
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and the coupling constants by 

2 = 8~/#  2 - I = I + 20/~. (6) 

iii) The nonlinear a (NLS) model [8], defined by 
N N 

.T N t s = ½ ~ ( o . n , )  2 with g E  n ~ = l ,  (7) 
i =  i = 1  

describes an O(N) symmetric interaction of N bosons which get a dynamically generated mass. 
There are no two,article bound states in this model. 

iv) The Gross-Neveu (GN) model [9], with the Lagrangian 

a t = l  I 

describes an U(N)-symmetric interaction of N fermions f~ and N antifermions r~ or, more precise, 
an O(2N)-symmetric interaction of 2N selfconjugate fermions fi with a dynamically generated 
mass.  qhere are bound states band  b~h which transform like an O(2N) scalar and antisymmetric 
tensor, respectively, with the semiclassical mass formula [6] 

n /sin rc 
mb = mt,,~ = m sin/V ± 1 2 ( N  - 1)" (9) 

2. Infinitely m a n y  conservat ion  l aws  and S -matr ix  fac tor i za t ion  

"l'ae models presented in the last section are in some sense simple because they possess infinitely 
mar y conservation laws. 

2.1. The classical case 

In the SG [10] and the MT [11] model there exist infinitely many local conservation laws: 

~J~(x)  = 0, n = 1, 3, 5 , . . . ,  l l0) 

where the currents J~ are local functions of the fields. In the NLS- and GN-model there exist 
infinitely many nonlocal conservation laws [12]. 

2.2. Quantization 

The BPHZ-quantization [13] of the conservation laws eq. (10)apparently produce anomalies 
which cancel after redefinition of the currents J~ [14]. The nonlocal charges of the NLS- and 
GN-models are ~,lso conserved in the quantized models [15]. Moreover, there exist also local 
conservation laws in the quantum NLS-model [16]. In summary we can say the infinitely many 
conservation laws are valid in the quantum models. 
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2.3. Consequences 

T h e  conservation laws eq. (10) imply for a scattering process that 
i) the se tof  incoming and outgoing momenta are equal 

. - ,  ," ",en'S • ( I I )  

This means absence of particle production and only momentum exchange. 
ii) Furthermore one can show [17] that the n-particle S-matrix factorized into two-particle 

ones (in a special order, e.g. for p~ > . . .  > p~) [I 8] 

) s t " } ( p l , . . . ,  p , )  = " st2}(pi ,  pj) , (12)  
i= j = | +  1 

where the matrix elements of S (") are defined by 

s(n) 10Cl(Pl) , ,  " .>in __. 1 0 ~ ( p l ) , ,  " .>in  ,i . , .  S ~ ) . . .  

and .~{2) = t,,t,t2, .~{2) • ,~2-~,.2 .2.,-~,~ = r~,~2 are the transmission and reflection amplitudes, respectively, 
for the scattering of two-particles of kind ~1 ~ ~q, 0q = 1 , . . . ,  N. The factors in eq. (12) do not 
commute in general, but they have to fulfill the rule (with S{2}(pi, pj) = So) [18] 

S12S13S23 = $23S13S12, (13) 

which means that S {3~ is symmetric, i.e. time reflection invariant. The commutation relation 
eq. (13) gives constraints for the two-particle scattering amplitudes called "factorization equations", 
which allow to calculate the S-matrix exactly [1 ]. 

3. S-matrix and bound state spectrum 

We calculate the S-matrix from the assumptions: 
i) Factorization. 
ii) Qualitative knowledge of the bound state spectrum, i.e. we assume: 

for the SG - MT-model, the existence of a coupling region with no bound states, 
for the NLS-model, the absence of bound states, 
for the GN-model, the existence of a bound state in the O(2N)-isoscalar and antisymmetric tensor 
channel and absence of bound states in the traceless symmetric tensor channel. 

iii) Absence of redundant poles (which do not correspond to bound states) and zeros in the 
physical sheet for the transmission amplitudes (which can be proved for one-dimensional potential 
scattering [19]). 

Theorem !: Let a so-ca!led minimal two-particle S-matrix S mi" fulfill: 
a) O(N) or U(N) symmetry, 
b) factorization, 
c) unitarity and crossing, - 
d) S m~" analytic and not zero in the physical sheet and 

S mi" = o {exp(plp2/m)} for PlP2 "} ~ ,  

then S mi" is "uniquely" determined or, more precise, we have 
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for U(I) ~ 0(2) a one-parametric set of solutions [1 ] 
for U(N), N > 1 five solutions [20] 
for O(N), N > 2 one solution [2]. 
Remai'k: If we modify d) and allow poles, the general solution is 

L s h O + i s i n %  mi. 
S(O) 1"1~ sh 0 -isin--ak S (0), (14) 

where 0 = 10t - 02] is the rapidity difference, of Pi = m(ch 0i, sh 0i). 
A sketch of the proof [1, 2, 20]: The factorization eq. (13) imply a functional equation for the 

ratio of transmission and reflection 

h(O) = t(O)/r(O). 

For U(1) we obtain ['1]" h(0~ + f l )=  h(ilt + ~t)h(fl)+ h(a)h(bz- fl) with the solution h(O) 
= sh0.0)/sh(Ain) where 2 is a free parameter. 

For O(N)(N > 2) we obtain [2] h(a + f l )=  h (a )+  h(fl) with the solution h(O)= const. 0 
where the const, is determined by unitarity const. = - ( N  - 2)/2~i. 

The U(N) case is more complicated, see ref. [20]. 
Together with unitarity and crossing Stain(0)can be calculated from h(O). 

3.1. The SG = MT S-matrix 

The minimal U(I)symmetric two-particle S-matric for 0 < 2 < 1 which describes the scattering 
of fermions f (antifermions ~ is in diagonalized form 

smin(o, ,~) ..__ t Sffo S~ ) S~f ) s~O train 
1 sh ½2(0 + hz) 0 1 

sh ½2(0 - iu) 
ch ½;t(0 + bz) 
ch ½;t(O - in) 

o 

s~"(O. ;,). 

where 
00 

sm,,ta 2) = exp I dx sh ½x(1 - 1/2) 0 g( - 0) 
ff kt" T sh (x/22) ch ½x sh x m-- - g(O) (15) 

and 

0(0) = 11 (2 /+  1 + k/2 + 0/br ){2 /+  1 + (k - 1),'2 + 0/hr} 
~=o k=t ( 2 1 + k / a + 0 / b r ) { 2 1 + 2 + ( k -  1)/2+O/br} 

Since S =in has no poles in the physical sheet for 0 < 2 < l and the MT-model  has no bound states 
for 0 < 0, we propose in this coupling region 

sMT(0) _. stain(0, ~). (16) 
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For 2 > 1 we take the analytic continuation. There are poles in 0 < lm 0 < n at 

Ok = i~(1 - k/2), k = 1, 2 , . . .  < 2, 

corresponding to bound states with masses 

mk= 2m sin (kn/22) 

in agreement with the WKB-spectrum eq. (2)~ if we relate the parameter ;t to the coupling constants 
0 and fl by eq. (6). The S-matrix given by eqs. (16) and (15) was first proposed by Zamolodchikov 
[21] ,,ho used results of Korepin and Faddeev [22]. All these results were checked in perturbation 
theory at 0 --* 0 and//--,  0 [22]. 

3.2. The NLS- and the G N - S - m a t r i x  [2] 

Tae O(N)-symmetric minimal S-matrix eigenvalues corresponding to the scalar, traceless 
symmetric and antisymmetric channel, respectively, are given by 

O + i n  i '  (~o O )  m'n - - i~  
= 0 - 2ni / (N ..- 2) Sm"~(O, N), (17) 

smi"(0, N )  = S+ S_ 0 + 2ni / (N .- 2) 

0 

where 
oo 

f - - 0 S~i"(O, N)  = exp 2 dx e 2;i ts-  2) 1 sh x__ . 
x e x + 1 17t 

Since the O(N)-NLS-model has no bound states, one proposes [2] 

sNLS(o, N) = smin(0, N). (18) 

Since for the O(2N)-GN-model So and S_ should have a pole and S+ not, one proposes [2] 

SGNtO, 2 N  ) sh0 + i sin { r r / (N-  1)} smi,(O, 2N)  ' (19) 
= s h 0  - isin { ~ / ( N  - 1)} 

with bound state masses in agreement with eq. (9). All formulas were checked in 1/N-expar.sion 
up to 1 /N  2, [2, 24]. 

The scattering of bound states can be calculated by considering the residue of three-particle 
S-matrices [ 18-1 

Res St3)(pl, P2, P3) -'* S(2)(pI  "}" P2, P3), (Pl + P2) 2 = m~ 

where m b is the mass of the bound state. 
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4. Form factors 

We want to calculate "generalized form factors" like °~t(ctx(pl)...IO(x)l...~,(p.))~, where 
0q = 1 , . . . ,  N denote the kinds of the particles. , 

4.1. Watson's theorem [25] 

For simplicity we only consider the case n = 2, N = 1, and O + = O, for the general case see [4]. 
If we define (with PIP2 = m2 ch 0) 

<oi = F(O), 

it follows from 
a) CPT-invariance (01 0(0)Ip~p2> °u' - F(-O) 

b} unitarity F(O) = ~, ,  (0[ 0(0)[if)out out(if[ pip2>in 
c) factorization F(O) = (0} 0(0)[p~p2> °"' S(O) 
d) crossing (P~I O(0)IP2> - F(in - O) (remark IP> -[p>~° = Ip>°~') • 

From a~-d) we obtain Watson's equations 

F(O) = F(-O)S(O), F(in - 0) = F(in + 0). (20) 

Theorem 2 [4]" F(O) fulfilling eqs. (20) is uniquely (up to a normalization) determined by the 
poles at 0 -- iak in the physical strip 0 < Im 0 < rt (and zeros): 

F(O) = K(O)Fmin(o),  121) 

where 
L 

K(O) = const l--I (sh ~0 - iak) sh ½(0 + iak))- 1 
k = l  

and 

d [In Fmin(0)] = 1 
d---0 8r6 sh  2 ½(Z -- O) 

- O0 

In S(z). 

Remarks: The poles of F(O) are determined by one-particle states in the channel given bv O(x). 
We assume absence of redundant poles and zeros in 0 < lm 0 < n. 

4.2. Examples 

i) The electromagnetic SG-soliton form factor [3] is defined by 

( J  ~ P I J I J ' ~ v J I J  ~e21/  = ~ ( P l I ¥  " ~ F 2 I "  - ~, . . . .  1, - . - .  

where PiP2 = m2 ch 0. Since there are no bound states for g < 0, i.e. 2 < 1. we propose Fs_ ~x to 
be the minimal solution of Watson's equations (20) with the negative C-parity S-matrix eigenvaluc 
given by eq. (15)" 

oo 

ch½0 ~" dx s h ½ x ( 1 -  1/2) sin2(xO/2n) 
F_ur(in - 0) = ch ½20 exp j - -  (23) x sh (x/22) ch ½x sh x 
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This formula was checked in perturbation theory. The asymptotic behaviour of the form factor 
is F_ mr ~ ( - t )  g/2,' for large momentum transfer t = (Pt + P2) 2 -'* - ~ o .  
.... ii) The O ( ~  current d.~. = n i ~ n ~ f o ~  factor in  the NLS-model [4], defined by . l J  

~bk~t)] J~(0)]b,(p2)) i(~,~6~, -~5n6i~,) (Pt + P2) ~' F-mS( i~r - 0), (24) 

is proposed to be the minimal solution of Watson's equations (20) with the S-matrix eigenvalue 
$ ~  given by eqs. (I 7, 18): 

GO 

0 

-2 , , / ,N-2,-  1 sin2(xO/2n)~, 

e " +  1 s h x  J" 
(25) 

The asymptotic behaviour FN_ Ls ~ (In ( -  t))- tin- 2 is to be anticipated from the asymptotic freedom 
of the model. Formula (25) was checked in 1/N-expansion [4]. 

iii) The exact value of the SG-wave function renormalization constant defined by (0[  (0)lbl) 
= w/Z can be calculated from 

( dp(x) dp(y)) " ~ ( dp(x)[ f (pt) f (p2))  tn in( f (pt) f(p2) I¢(y)> + . . .  

since the elementary SG-boson bt can be built up only by an ff pair. Using eqs. (5, 6, 22, 23) one 
obtains 

1 ] Z (1 + -t2) ( ~ -  sin ~-~) - t  I 1 x = exp - - dx , 
n Sin x 

= O(g) for g - ,  O, where ~he MT-model becomes free, 

= 1 -- 24 + O(/~6) for/~ ~ 0, where the SG-model becomes free. 

The last equation can be checked in SG-perturbation theory [4]. For  1 < 2 < ~ where the 
state b t exist we have 0 < Z < 1 in agreement with a general theorem [26]. 
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