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Abstrac .

A review is given of the derivation of exact S-matrices in field theoretic models with soliton behaviour, that means models obeying
infinitcly many conservation laws which imply the factorization of the S-matrix. Form factors of various operators are calculated
exactly by means of Watson's theorem. The exact value of the finite Sine-Gordon wave function renormalization constant is determined.
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1. Introduction

1.1. The results

i) Fdr some field theoretic models we give the onshell solution. By means of analytic S-matrix
methods [1,2] we calculate exactly S-matrix elements like

o‘“<p'15 s ’p;u'lpla s ’pn>in

for the scattering of any number and arbitrary kinds of particles appearing in the models.
ii) We want to determine offshell quantities for these models like the two-point function

<0] $(x) () [0> = ; 0| B(x) [n>™ " n| $(y) 0.

Thus we try to calculate “generalized form factors” [3, 4] like

oul<pl, e 9pm| O(X) Ipm+1’ e ’pn)in!

where O(x) is a local operator. The problem is solved for the cases
a) n = 2 and N = (number of kinds of particles) arbitrary
b)n=3and N = 1.

1.2. The models

We will consider some field theoretic models in two space-time dimensions with special common
properties which we call soliton behaviour.

i) The Sine-Gordon (SG) model, defined by the Lagrangian
L5 = 40,6)* + l%(cos Bo — 1), (1)

is on the classical level completely integrable by means of the inverse scattering method [S].
There are localized clasgical solutions, the soliton and the breathers, which are soliton-antisoliton
bound states. The semiclassical breather spectrum is [6]

m, = 2msin (kn/24), k=1,2,...<4, (2)
_where m is the soliton mass and the parameter A is related to the SG-coupling constant § by
A =8n/p% - 1. (3)
i) The massive Thirring (MT) model
LM = gip — my — Sa(y, ) (4)

describes the interaction of fer:aions f, f. For g > 0 there exist fermion—antifermion bound states b, .
The famous equivalence of the quantum Sine-Gordon and the massive Thirring model due to

Coleman [7] says: identify the SG-soliton and breathers with the MT-fermion and bound states,
respectively, relate the SG-field to the MT-current by

e o, p = —2mj*

&)
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and the coupling constants by
A=8n/*> - 1=1+ 2g/n. ©)
iii) The nonlinear o (NLS) model [8], defined by

N N
PN =4 3 @n)* with gy =1 Q)

describes an O(N) symmetric interaction of N bosons which get a dynamically generated mass.
There are no two-particle bound states in this model.

iv) The Gross—Neveu (GN) model [9], with the Lagrangian
N N 2
e = 3 Fuith+ 301 5, k). ®

describes an U(N)-symmetric interaction of N fermions f, and N antifermions T, or, more precise.
an O(2N)-symmetric interaction of 2N selfconjugate fermions f; with a dynamically generated
mass. 1V here are bound states b'and b,, which transform like an O(2N) scalar and antisymmetric
tensor, respectively, with the semiclassical mass formula [6]

. n . T
m.,—mbm—msmN_l/smz(N__”. %)

2. Infinitely many conservation laws and S-matrix factorization

Tne models presented in the last section are in some sense simple because they possess infinitely
mary conservation laws.

2.1. The classical case
In the SG [10] and the MT [11] model there exist infinitely many local conservation laws:
3Jx) =0, n=135..., (10)

where the currents J* are local functions of the fields. In the NLS- and GN-model there exist
infinitely many nonlocal conservation laws [12].

2.2. Quantization

The BPHZ-quantization [13] of the conservation laws eq. (10) apparently produce anomalies
which cancel after redefinition of the currents J* [14]. The nonlocal charges of the NLS- and
GN-models are slso conserved in the quantized models [15]. Moreover, there exist also local
conservation laws in the quantum NLS-model [16]. In summary we can say the infinitely many
conservation laws are valid in the quantum models.
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2.3. Consequences

The conservation laws eq. (10) imply for a scattering process that
i) the set of incoming and outgoing momenta are equal

{(Prs-vns Pal™ = {Phs--» BL )™ (11)

This means absence of particle production and only momentum exchange.
ii) Furthermore one can show [17] that the n-particle S-matrix factorized into two-particle
ones (in a special order, e.g. for p! > ... > p!) [18]

n~1 n
S®py,...p) =[] (TI ‘ s‘z)(p,-,p,-)), (12)

i=1 \J=i+
where the matrix elements of S are defined by
0 a0 .5 = o) Y 5.

and ;,,,82), = ty1a2 w20 Sx; = T'aya, ar€ the transmission and reflection amplitudes, respectively,
for the scattering of two-particles of kind a, # a,, a; = 1,..., N. The factors in eq. (12) do not
commute in general, but they have to fulfill the rule (with S¥(p;, p)) = S;;) [18]

§12813823 = 823813512, (13)

which means that S® is symmetric, ie. time reflection invariant. The commutation relation
€q. (13) gives constraints for the two-particle scattering amplitudes called “factorization equations”,
which allow to calculate the S-matrix exactly [1].

3. S-matrix and bound state spectrum

We calculate the S-matrix from the assumptions:
i) Factorization.
ii) Qualitative knowledge of the bound state spectrum, i.e. we assume:
for the SG = MT-model, the existence of a coupling region with no bound states,
for the NLS-model, the absence of bound states,
for the GN-model, the existence of a bound state in the O(2N)-isoscalar and antisymmetric tensor
channel and absence of bound states in the traceless symmetric tensor channel.
iij) Absence of redundant poles (which do not correspond to bound states) and zeros in the

physical sheet for the transmission amplitudes (which can be proved for one-dimensional potential
scattering [19]). '

a) O(N) or U(N) symmetry,
b) factorization,
¢) unitarity and crossing, -

d) S™" analytic and not zero in the physical sheet and
S™" = o {exp (p,p,/m)} for p,p, - o,

then S™" is “uniquely” determined or, more precise, we have
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for U(1) = O(2) a one-parametric set of solutions [1]

for U(N), N > 1 five solutions [20]

for O(N), N > 2 one solution [2].

Remark: If we modify d) and allow poles, the general solutlon is

5(0) = H sh@ + isina, Sming),

k=1sh@ —isina, (14)

where 8 = |0, — 0, is the rapidity difference of p; = m(ch 6;, sh 6)).

A sketch of the proof [1,2,20]: The factorization eq. (13) imply a functional equation for the
ratio of transmission and reflection

h(6) = t(6)/r(6).

For U(1) we obtain [1]: k(o + B) = h(in + a)h(B) + h(x)h(ix — ) with the solution k()
= sh(A0)/sh(Ain) where A is a free parameter.

For O(N)(N > 2) we obtain [2] h(x + ) = h(«) + h(B) with the solution h(f) = const. 8
where the const. is determined by unitarity const. = —(N — 2)/2xi.

The U(N) case is more complicated, see ref. [20].

Together with unitarity and crossing S™"(6) can be calculated from A(6).

3.1. The SG = MT S-matrix

The minimal U(1) symmetric two-particle S-matric for 0 < 4 < 1 which describes the scattering
of fermions f (antifermions f) is in diagonalized form

| °
s™n0,2) = [S 0\ mo _ Sh3d0 + )

* ff S(i) _ sh ”12‘3.(9 - ln) mm(g /1)

ff o) = _ch 146 + in)

0 ff S ch ‘%/1(0 - 17:)

ff \ 0 1
where
- [dxshixl -2 0 _g(=9) as)
©.4) = e"pj ~ sh2Deh I M i T @)
and

o @ 4+ 1+ kA + 0fim) {20 + 1 + (k — 1)/4 + 0fin}
90 = I1 Ul Cl+ k/2 ~ 0fim) {21 + 2 + (k — 1)/A + Ofin}

Since S™" has no poles in the physical sheet for 0 < 2 < 1 and the MT-model has no bound states
for g < 0, we propose in this coupling region

SMT(9) = S™"(0, A). {16)
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For 4 > 1 we take the analytic continuation. There are polesin 0 < Im 0 < = at
0, =in(l —k/2), k=12,...<4,

cortesponding to bound states with masses
m, = 2m sin (kn/21)

in agreement with the WKB-spectrum eq. (2), if we relate the parameter 4 to the coupling constants
g and B by eq. (6). The S-matrix given by egs. (16) and (15) was first proposed by Zamolodchikov
[21] v ho used results of Korepin and Faddeev [22]. All these results were checked in perturbation
theory at g — 0 and g — 0 [22].

3.2. The NLS- and the GN-S-matrix [2]

Toe O(N)-symmetric minimal S-matrix eigenvalues corresponding to the scalar, traceless
symmetric and antisymmetric channel, respectively, are given by

0+ -m o\
) S o min 9 -1z
S™%(6, N) = (00 5+ 5 ) B 6 — 2zi/(N ~2) | S2@,N), (17)
- 0 + 2x:i/(N - 2)
0 1
where |
‘ wdx e-2x(N=2) _ | P
Smin , — 2 — .
70, N) = exp !x 11 Shxp

Since the O(N)-NLS-model has no bound states, one proposes [2]
SNLS(0, N) = S™i"(g, N). (18)
Since for the O(2N)-GN-model S, and S_ should have a pole and S, not, one proposes [2]

sh@ + isin {n/(N — 1)}

GN =
STO.2N) = o —Tsin (m/(N < 1))

S™"(6, 2N), : (19)

with bound state masses in agreement with eq. (9). All formulas were checked in 1/N-exparsion
up to 1/N?, [2, 24].
The scattering of bound states can be calculated by considering the residue of three-particle
S-matrices [18]

Res 890y, p,,p3) = SP(p, + p,, p3),
b

(P1+p2)%=m

where my,, is the mass of the bound state.
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4. Form factors

We want to calculate “generalized form factors” like Uay(py) ... |OX)]. .. 2,(p)>™ where
a; = 1,..., N denote the kinds of the particles. .

4.1. V’atson’s theorem [25]

For simplicity we only consider the case n = 2,N = 1,and 0" = O, for the general case see [4].
If we define (with p,p, = m? ch 6)

<0] 0(0) |p,p, D™ = F(6),

it follows from _

a) CPT-invariance {0| 0(0) |p,p,>*"* = F(—6)

b) unitarity F(0) = ).,. (0| O(0) |’ >** **(r’| p,p, D™

c) factorization F(6) = (0| O(0) |p,p, >°* 5(6)

d) crossing {p,| 0(0) |p,> = F(in — 6) (remark |p) = |p>™ = |p>°).
From 1}-d) we obtain Watson’s equations

F(0) = F(—6) 5(0), F(in — 0) = F(iz + 0). (20)

Theorem 2 [4]: F(6) fulfilling egs. (20) is uniquely (up to a normalization) determined by the
poles at 6 = ia, in the physical strip 0 < Im 0 < = (and zeros):

F(8) = K(6)F™~(0), (20

where
L
K(8) = const [] (sh(0 — ia,) sh (8 + i)~
k=1

and

o0

d mingan] _ dz

Remarks: The poles of F() are determined by one-particle states in the channel given by O(x).
We assume absence of redundant poles and zeros in 0 < Im 6 < =.

4.2. Examples

i) The electromagnetic SG-soliton form factor [3] is defined by

@O ()Y = wp )y ulp ) F W in — 8), (2
where p,p, = m? ch 0. Since there are no bound states for g < 0, i.e. 4 < 1, we propose FM' to
be the minimal solution of Watson’s equations (20) with the negative C-parity S-matrix eigenvalue
given by eq. (15):

[=¢]

chi6 Ig__;g shix(1 — 1/2) sin%(x6/2n)

MT(i __ -
F=m =60 =316°P | X sh(x2hchlx  shx

. (23)
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This formula was checked in perturbation theory. The asymptotic behaviour of the form factor
is FMT ~ (—t)%/?" for large momentum transfer t = (p, + p,)* = — .
ii) The O(N) cutrent J¥ = n,0n; form factor in the NLS-model [4], defined by

(P JE0) |bip2)> = i(6udy — Sudy) (py + po)* FRS(im — 0), (24)

is proposed to be the minimal solution of Watson’s equations (20) with the S-matrix eigenvalue
SNIS given by egs. (17, 18):

=]

dx e~ 2¥N=2 _ 1 sin%(x0/2n)
NLS(: _ 0\ — A
. F= (".C 0) = exp {2_" x e* +1 sh x (25)

The asymptétic behaviour FN'S ~ (In (—1£))” /¥~ s to be anticipated from the asymptotic freedom
of the model. Formula (25) was checked in 1/N-expansion [4].

iii) The exact value of the SG-wave function renormalization constant defined by (0| (0)|b,)>
= ﬁ can be calculated from

(P(x) $(1)> = ¥ <) f(P)F @)D" < f(p1) f(p2) |90 + ...

since the elementary SG-boson b, can be built up only by an ff pair. Using egs. (5, 6, 22, 23) one
obtains )

/A
24 . wm\"! 1 X
- H{Lsin 2 - e
Z=(1+ 2)(7t sm2,1> exp[ - fdxsinx]’
= O(g) for g - 0, where ihe MT-model becomes free,
_ ﬁZ 2
=1 (87:

The last equation can be checked in SG-perturbation theory [4]. For 1 < A < 0 where the
state b, exist we have 0 < Z < 1 in agreement with a general theorem [26].

(21 - 214) + O(B°) for § — 0, where the SG-model becomes free.
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