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In the framework of factorizing S-matrices in If 1 dimensions, further restrictions 
for the construction of S-matrices are discussed. A relation between residues of S- 
matrix poles and the parities of corresponding bound states is derived. 

1. Introduction 

In theoretical elementary particle physics quantum field theory has gained 
renewed interest in the last years. Non-Abelian gauge theories unify weak and 
electromagnetic interactions and QCD seems to be a good candidate for the 
description of strong interactions. Since these theories in four dimensions are very 
complicated it is useful to study simpler models in two space-time dimensions with 
similar properties e.g., “asymptotic freedom”, “ confinement”, non-trivial topologi- 
cal structure, e-vacua, etc. There are models possessing some of these properties 
which have a chance to be explicitly solvable. This class of 2-dimensional field 
theories, the so-called soliton field theories, is characterized by an infinite set of 
conservation laws which imply the factorization of the S-matrix. It is amazing that 
the procedure used to solve these models is just the old analytic S-matrix program. 
First, by constraints due to unitarity, crossing, internal symmetries, and the special 
property of factorization, the S-matrix can be determined [la]*, then matrix ele- 
ments of local operators [2], and finally the correlation functions. The whole pro- 
gram has been carried out until now only in a very simple soliton field theory, the 
Ising model in the scaling limit [3]. 

The procedure is at several stages non-unique but minimality assumptions are 
necessary. Under the constraints mentioned above, the S-matrix is unique up to 
CDD-like singularities. It is the purpose of this paper to give more restrictions in 
order to select allowed S-matrices. We shall give a necessary condition for a CDD- 
like pole in a two-particle S-matrix to be connected with bound states. Otherwise 
the pole has to be redundant [4]. This condition is based on the positivity of the 

’ For reviews see ref. [lb] and references therein. 
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state space metric. The restrictions may be useful for the derivation of S-matrices 
in more models, such as the chiral SU(N) model [5], the CP” model [6], etc. 

In sect. 2 we present, for the case of bosons, the framework of factorizing S- 
matrices. The S-matrix for the scattering of bound states with fundamental particles 
is constructed in sect. 3. In appendix A we discuss the general case including 
supersymmetric models. In appendix B the general methods are applied to an U(2) 
S-matrix. 

2. Factorizing S-matrix 

We consider an S-matrix describing the scattering of fundamental particles of 
various kinds labeled by (Y with mass m. For simplicity we take the case of bosons, 
the general case is discussed in appendix A. Factorization means that for a scatter- 
ing process the sets of incoming and outgoing momenta are equal: 

{P 1, . . . . pJn={p;, . . . . p:.rt, (1) 

and the n-particle S-matrix is a product of two-particle ones in a special order 
(e.g., for pi > *.. >p!J [7] 

S’“‘(pl, . . . . p,) = :Ijl (jfil sc2’(Piy Pi)) 7 (2) 

where S”‘( pi, pj) = Sjj is given by 

Sjjl ... a(pi) ... OJ(pj) ***)=I ... a’(p-) j ... a’(pj) ***)~‘@‘S(2)(p’ p’) 0s I? , ’ (3) 

The factors in eq. (2) do not commute in general but they have to fulfil a special 
commutation rule, the factorization equation 

S’3’(p1, f72, p3) = s12&3s23 = s23s13&2 . (4) 

For convenience we introduce the rapidity difference variable by p1p2 = m2chB. 
Real analyticity, unitarity and crossing imply 

S’(O) = S(-e*) ) (5) 

S(-e)s(e) = 1 , (6) 

n&d@) = ora&r - e) , (7) 

where Cu denotes the antiparticle of a. PT invariance means for the n-particle S- 
matrix: 

S(n) = ( y/ *,f*s’“‘& ) 

where 6 and 71 are diagonal matrices with 
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d/3’...9&.. = &‘aq&pq@ ... , PldP)) = rlab(--PH. (8b) 
(It is convenient to take phases and use conventions such that & = 1 and na = 7, = 
*l for bosons and 7, = n6 = *i for fermions.) The two-particle S-matrix can be 
written as 

P = 1 S,( BP, ) (9) 
a 

where S,(e) are the eigenvalues and Pa the projectors on the corresponding eigen- 
states 

la(p1 +p2,eu = l4PlM(P2D45.(~)~ (10) 

3. Bound states 

Let us assume that some of the eigenvalues of SC2’ have a pole in the physical 
sheet at 19 = Inca (0 < (Y < 1) corresponding to bound states b with parities qb and 
the same mass 

mb = 2m cos $a . (11) 

We are of course not able to construct the bound states (i.e., the wave functions of 
the states b) rigorously from the fundamental particles (Y, since we only know the 
theory on-shell. We even do not know whether they exist. The support of the b 
wave function intersects the a-particle mass-shell only at two points in the 
Euclidean region: 

~r,~=(~~zq+~‘), q=iJm2-fm? 

(in the c.m.s.). 

(12) 

Formally we identify the bound states with the corresponding eigenstates of S’*’ 
at rapidity difference 8 = &.x 

Ib(~1+~2))=la(~l fp2, ira)). (13) 

Let R, be the residues of S, (which are real) and & the projectors on lb) and 

Res 
(Pl+Pd*=d 

&&9)=Rr2=.CR&, . (14) 
b 

Then from the factorization equation (4) we derive: 

R12&3S23 = S23S13Rl2, (15) 

Wa) 
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We now construct the two particle S-matrix for the scattering of bound states b 
with fundamental particles (Y by means of the conditions of factorization and uni- 
tarity. We make the ansatz 

S1+2,3 (0) =A Res 
h+P2)z=mz 

S’3’(P1, p2, p3P 9 (16) 

where the matrices A and B (which act only on the constituents of b) are to be 
determined and the rapidity differences are 0 13 = 8 + $a, 023 = 0 - $m. The 
factorization equation (4) now reads 

Sl+2,3Sl+2,4S34= ~34~1+2,4~1+2,3 . (17) 

It is easy to see from eqs. (15), (15a) that this commutation relation holds true if* 

BAR12 = CP,. (18) 
b 

Unitarity for the bound state S-matrix means 

l= s;+2.3(e)SI+2,3(e) 

= B+S:3S:3R:2A+A&&R12B 

= B+E~~S;~~S~~EI~R:~A+AS~~S~~R~~B, 

where El2 is the “exchange operator” defined by 

E12kd3(~2) . ..)= ~P(PIMP~M. 

In eq. (19) the fact has been used that 

(1% 

(20) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (21) 

Eqs. (19) and (15a) show that S1+2+3 is unitary if* 

E12R12A+A const = 1 Pb. 
b 

(22) 

From eqs. (2), (10) and (8b) we obtain the action of El2 on an S-matrix eigenstate 

E&)= daha. (23) 

where 7-i = 1 for a boson-antiboson state. Since A’A is a positive operator we 
derive from eq. (22) the condition for the residues and the bound state parities: 
Rbnb const > 0 for all bound states b corresponding to the pole of S”’ at 0 = I’m. 

In potential scattering the number Rbnb can be shown to be always negative, which 
is also true for the sine-Gordon model. Therefore the condition 

R bTb<o (24) 

should hold in general. From eqs. (16), (18), (22) and (23) we finally obtain the 

?? Solutions of factorization equations and unitarity are unique up to CDD-like singularities 
[l]. The solution given by eqs. (18), (22) is a minimal one. 
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S-matrix for the scattering of a bound state and a fundamental particle: 

s1+2,3 (e) = $ I&p%S*3&3 c lRb11’2Pb. 
b 

(25) 

Note, that if there exist “wrong” bound states with Rbqb>O and there are 
transitions between “wrong” and “right” StateS (with Rbnb < 0) 

b wrong + (y ~ bright + p , 

the “wrong” ones would appear as intermediate states in the unitarity equation (19) 
with a minus sign. This means they have negative norm. If we want to consider an 
S-matrix defined in a positive definite state space, we have the following 
conclusion: a pole of a two-particle S-matrix can only have a physical meaning, if 
all residues of the S-matrix eigenvalues Rb and the eigenstate parities nb cor- 
responding to this pole fulfil the condition Rt,nb < 0, or “wrong” states with 
R b?jV, > 0 decouple from the “right” ones; otherwise this pole has to be redundant 
[4]. This condition gives a strong restriction for introducing CDD-like poles in an 
S-matrix by multiplication of a minimal one by a factor fl sh(0 + Bi)/sh(B - &) and 
interpreting these poles as physical ones corresponding to physical bound states. 

I thank B. Berg, V. Kurak, B. Schroer, H. J; Thun and P. Weisz for useful 
discussions. 

AQQendix A 

In this appendix we discuss a general factorizing S-matrix where transitions are 
also allowed like fermion-antifermion + boson-antiboson, typical for supersymmetric 
models. The general n-particle S-matrix is given by 

S’“‘= ul...n Jli (flS)i; = II (US)iiU”“” Y 
i<j 

(A.11 

where the matrices u take into account the statistics of the particles. They are 
defined by 

a’@‘U& = Q3&‘&‘l3 7 (A.21 

with amp = *l for commuting or anticommuting particles (Y and p, respectively, and 

If there are no supersymmetric like transitions from fermions to bosons, the signs 
given by the (T’S cancel and we get back formula (2). The factorization equations 
read 

s(3)= 
~‘*‘(c+~),,(~~),,(~~;s)23 = ~‘23~~~)23(~~)13(~~)12. 64.4) 
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Eigenstates of SC’) given by eq. (10) which are dominated at low energy by parti- 
cles CY, /3 which commute or anticommute fulfil 

&%I(--0) = N3 (WL(@)a.3 3 6.5) 

with u, = +l or -1, respectively. 
PT invariance implies for real 0 

aLJ&(N%& = W?P&&~: (O)fl,. 

Hence we have 

and for t!3 + im we obtain the generalization of eq. (14): 

Res 
(PI+Pd2=m2 

Sr2= R~2=~Rm,Pt,u. (‘4.6) 
b 

If we make the same ansatz (10) for the S-matrix S1+2,3 the factorization equation 
reads (with U1+2,3 = U13U23) 

U1+2,3AU’23(UR)12(US)13(US)23~U~+2.3AU124(UR)~2(US)~~(US)2~~(US)3~ 

= (US)3,U,+,,3AU’24(UR)~2(US)~~(US)2~BU1+2,3 

xAU’~~(UR)~~(US)~~(US)~~B, (A.7) 

which is a consequence of eq. (A.4) if 

BuI+~,~A~I+~,~RI~ =x pb . 
b 

(‘4.8) 

Similarly we derive a constraint from unitarity 

1 = S:+2,3&+2,3 

= B+(US):~(US):~(URI~) U + 123A+Au123 bShbShbRhBr 
which is fulfilled, by arguments analogous to the boson case, if 

E12(uR)~2u'23A+Au123~ const=~‘~~~&r~~~. 
b 

The consequence is, as above, that the operator 

64.9) 

&2U12 ~Pb&U12 ’ COnSt=~ UbRbl7b(l-‘U)l2Ul2Pb(+12 ’ COnSt 
b b 

has to be positive. To be in agreement with potential scattering we demand that 

UbRb77bU~up/Wl/3 < 0, (A.lO) 
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for all bound states b of mass r&, built up by the constituents cy and /3. Note that 
(Tb = *l for boson-antiboson and fermion-antifermion states, respectively, and 
g,Jvan8 = 1 for both cases. Finally we obtain the S-matrix for the scattering of a 
bound state with an elementary particle: 

s1+2,3 (0) = c lR~j-“2Pb’a123(~S)23((+S)13 1 IRbil”Pb 
b’ b 

(A.ll) 

If there are no supersymmetric like transitions, the signs given by the (+‘s cancel 
again and we get back formula (25). 

Appendix B 

This appendix contains an application of the general framework developed in 
this paper. We consider an U(2) symmetric factorizing S-matrix for the scattering 
of a doublet of fermions and antifermions. There exist five classes of non-trivial 
S-matrices [8]. Here we consider the class II, which is characterized by the absence 
of particle-antiparticle reflection 

The amplitudes ul, u2 and t2 are related to tl due to the factorization equation and 
crossing as follows 

t2hP) = 
1 

---t1(cp), 
(o-1 

U*(P) = -+, h(rp)=h(l-cp), 03.2) 

where we have introduced the variable cp = @/jr. The minimal solution of eqs. (B.2) 
which has no poles (nor zeroes) in the physical sheet together with unitarity is [8]: 

p(Q)= 
r(;+:Q)r(l -+Q) 
T(&&)T(l +&Y) 

A non-minimal solution with a pole at cp = cy (and cp = 1 -a) for 0 < LY < 1 is 

[l(Q) = t?(Q) 
sin 7r~ + sin IT(Y 
sin TQ -sin off ’ 

(B.3) 

(B.4) 

This pole appears in the triplet amplitude S,, = 11 and the singlet amplitude S,, = 
tl + 2t2, corresponding to states ri and 77 with positive as well as negative parity 

I~:)=:(la(Pl)P(P2))fIp(Pl)a(Pz,),~~, , 

117*_)=~(lcu(pl)a(P2))fl~(Pl)a(P2))). 03.5) 
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The residues at (pr +p# = rnt = 4m2 cos’ 37~~ fulfil 

Rr<O, R, >o, R,,/R~ = ‘2. 
a 

From the general condition (A.lO) we know that the 7r!+ and the n_ are “wrong”’ 
states with negative norms. But it can easily be shown by explicit calculation that 
the “wrong” states decouple from the “right” ones, e.g., (+y’IS1n+y)=O etc. 
(Note that this would not be true if we replace the pole factor in eq. (B.4) by the 
simpler one 

sin $(cp +(u) 

sin &(cp -a) 

From eq. (A.ll) we derive the S-matrix for scattering of bound states ni and r] 
with the fundamental particles (Y and Cu. The amplitudes defined by 

(~‘culSl~‘P)=(~‘~ISI~‘a)= GijSaoU +iEijkTkgb, 

(TplSIP’/3) =-(?#lAi) = T&C , (B.7) 

(V&P) = (~@ISlna) = &fid, 

are then given by 

[.1_ -~rl;~;*J 
(B.7a) 

where the arguments on the r.h.s. are cp --$I and cp +&x. Applying formula (A.1 1) 
again we obtain the bound state S-matrix elements 

(ria’lSlpkp’) = 8ij8klcl + Sikaj[flz+ 8i[ajk(T3 3 

(7/~lSlTi77j)=6ijT, 

h?lsl?7d=P~ 
where 

(B.8) 

ul=ab+ba+bb-cc, m=aa+cc, 

u3=-ab-ba+bb-cc, 

-(ca+2cb+dc), p=dd-3cc, (B.8a) 

and the arguments are to be taken again at 9 -&Y and 9 +$Y. 
Note that in the limit (Y + 1 where m/mb+ co the amplitudes c and 7 vanish, 

which means that the triplet a’ decouples from the singlet 7. The triplet S-matrix 
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in this limit is the minimal O(3) symmetric one, which is the S-matrix of the O(3) 
non-linear u model [9]. In a recent paper [lo] this fact was interpreted as the 
confinement property of the CP’ model [6] in S-matrix language. 
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