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Abstract. The loop gas in d = 2, 3 , 4  and 5 dimensions and with multiplicities m = 
0, 1, 1.5, 2, 3 and 4 is investigated by the Monte Carlo method. The critical temperatures 
and approximate values for the critical exponent v corresponding to second-order phase 
transitions are obtained for d = 2 and 3. 

1. Introduction 

The statistical behaviour of self-avoiding loops, i.e. non-intersecting closed lines in 
thermal equilibrium, has been studied recently in the context of defect-line mediated 
phase transitions in various dimensions (Rys and Helfrich 1982) and the equilibrium 
polymerisation of sulphur (Wheeler et a1 1980, Duplantier and Pfeuty (1982). The 
loops are thermally created, their energy being proportional to the total length of all 
loops in the configuration. Hence the statistical weight of a loop configuration equals 
x ’  where x =e-’, and p is proportional to the inverse temperature, p = & / ( k B T ) .  On 
a hypercubic lattice 1 denotes the total number of links constituting the lcops and E 

is the energy of a single link. Furthermore, a loop multiplicity m is introduced which 
allows a multiple counting of each of the loops, e.g. m = 1 for polymer rings and 
m = 2 for polar dislocation loops in three dimensions (Rys and Helfrich 1982). In 
another context, quantum field theories can be expressed by systems of loops (Symanzik 
1969, Brydges et a1 1982, Karowski et a1 1983). 

In equilibrium statistical mechanics a system of self-avoiding loops is described by 
the partition function 

z = E  m S x i  
C 

where the sum extends over all allowed configurations c of self-avoiding loops on a 
given domain L d  of Rd. For mathematical convenience, the problem is formulated 
on a regular lattice. The number of loops of a configuration is denoted by s, and 1 is 
their total length in units of the lattice spacing. The loop multiplicity m plays the 
role of a loop fugacity whereas x stands for the monomer fugacity. For generic values 
of m, Z is the partition function of a ‘gas’ of thermally created closed self-avoiding 
lines. Any phase transition shows up in a singularity of the free energy density 
f ( m ,  T )  = - (kBT In Z ) L d  in the thermodynamic limit L + Co. 
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Despite the difficulties of the underlying mathematical problem, due to the non- 
Markovian nature of the excluded volume problem, much progress has been made 
as regards single and dilute polymer chains (Flory 1967, de Gennes 1972, 1979). The 
few studies of closed polymers were restricted to a single ring (des Cloizeaux 1981, 
Baumgartner 1982). The critical exponent of the radius of gyration, v, of the ring 
appears to be equal to that of the chain. In  our description the ring polymer 
corresponds to the loop gas in the limit m+O. Studying a low-temperature series 
expansion of the loop gas in terms of the parameter x, one of us (Rys 1983) calculated 
for m = 0 the critical value x, and the exponent of the specific heat, a. The latter 
agrees with the value derived from v on the basis of hyperscaling (see below). 
Unfortunately, the use of this method was quite unsuccessful for any case m > 0 (Rys 
1981). A mean-field theory for the loop gas on a lattice with m > 0 has been proposed, 
characterising the critical point by the first appearance of one or more infinite loops 
(Helfrich 1983). An additional argument for the existence of a critical point relies 
on the fact that the analogous loop gas model with m = 1 on a honeycomb lattice is 
equivalent to the Ising model at zero magnetic field on that lattice (Nienhuis 1982). 
However, for the self-avoiding loop gas on other lattices with m > 0, the existence 
of critical points and, if they exist, their nature remain open questions. 

In this work we present a numerical analysis of the equilibrium loop gas problem. 
Applying a novel computer simulation technique which will be described in more 
detail in a separate publication (Karowski et a1 1983), we investigate several cases of 
the loop gas on finite lattices in d = 2 and 3 dimensions. Some preliminary results 
for four and five dimensions are also obtained. The linear size L of the considered 
hypercubic lattices ranges from 4 to 50 for d = 2 and from 4 to 12 for d = 3. We 
mainly concentrate on multiplicities m = 0 and 1 but also report some results for 
m = 1.5, 2, 3 and 4. 

In § 2 we give a short description of the Monte Carlo method. In § 3 we present 
our main results. Using finite-size scaling arguments (Fisher 1971, Binder 1976) we 
evaluate the critical temperatures from the positions of the maxima of the specific 
heat. In conjunction with an analysis of the heights of these maxima as a function of 
the lattice size, we also obtain estimates for the critical exponent a .  

In § 4 we discuss the distribution of the loop sizes for various temperatures and 
multiplicities. The nature of a ‘change-over’ from small loops to large ones apparently 
depends on the values of m ; there is a qualitative difference between the cases m < 2 
and m > 2 for d = 2. Concluding remarks follow in § 5. 

2. Monte Carlo simulation 

A detailed description of the Monte Carlo method (Metropolis et a1 1953, Friedberg 
and Cameron 1970) to construct loop gas configurations on a lattice will be given in 
a separate publication (Karowski et a1 1983). Here we only sketch the main ideas. 
Our variant of the heat bath method generates samples of equilibrium ensembles of 
configurations of loops which are self-avoiding by construction. For simplicity we 
illustrate it only for the case of multiplicity m = 1. 

Starting from an arbitrary allowed configuration c of loops with total length I, a 
new one c’  with length 1’ is proposed (which differs from the old one only by a local 
change). In our updating procedure we sequentially sweep the plaquettes of the entire 
lattice. At each of the Ld lattice points we look in turn at d(d - 1)/2 plaquettes. In 



Numerical study of the self-avoiding loop gas 4075 

a given plaquette we make a local change of the present configuration. The four 
possible types (up to rotation) of such changes are depicted in figure 1. One has to 

Figure 1. Local changes of loop configurations within a plaquette. 

make sure, however, that the global configuration remains self-avoiding (no crossings 
and branchings). In a thermal cycle we start at low temperature from the empty lattice 
for loop gas configurations (multiplicity m >O), and from one small square for the 
one-loop case (m  = O), respectively. In the latter case we have to exclude local changes 
of the types a and d in figure 1. We decide to take the new configuration c', if a 
pseudo-random number (equally distributed in the unit interval) is less than e-'"(e-'"+ 
e-'')-', otherwise we retain the old one. Since every allowed configuration can in 
principle be attained after sufficiently many iterations the 'ergodic condition' is 
satisfied. Obviously a large set of configurations with a probability distribution propor- 
tional to the Boltzmann factor e-" is stable under this procedure. Moreover, starting 
from an arbitrary initial configuration, we expect to reach such an equilibrium set 
after an appropriate 'warming up' period. From this sequence we select a subset of 
configurations which are separated by so many single steps that their correlation seems 
negligible. 

Then the thermal average value of a variable A 

is approximated by 

where now the sum extends only over a sufficiently large sample of configurations ci 
constructed above. 

3. Critical behaviour of loop gas systems 

We consider loop gas systems on hypercubic lattices with periodic boundary conditions. 
For fixed dimension d ,  multiplicity m and lattice size L we 'measure' the average 
length (1) (proportional to the energy) and the fluctuation (AI2)  = ( I 2 )  -(1)' (propor- 
tional to the specific heat) in a so-called thermal cycle: p = p i ,  PI  -Sp, . . . , p2,  
p2+Sp, .  . . , p1 (cf Creutz et a1 1979). 

Figure 2 ( a )  shows a typical configuration on a 40 x 40 lattice with periodic boundary 
conditions at low temperature (p  = 1.16). There are only a few small loops. Around 
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Figure 2. Three typical loop gas configurations for 
multiplicity m = 1 on a 40 x 40 lattice with periodic 
boundary conditions. The temperatures are: ( a )  far 
below (p  = 1.16), ( b )  close to (0 = 0.86) and (c )  far 
above ( p  = 0.56) the critical point. 

p ~ 0 . 8 6 ,  (I)  grows rapidly with temperature and (Al') has a maximum. The single 
configurations show strong fluctuations: some of them contain loops of medium size, 
others also comprise rather large ones (cf figure 2 ( b ) ) .  For high temperatures the 
energy approaches its asymptotic value and the specific heat decreases again. Figure 
2(c) is a typical example for a high temperature configuration (P = 0.56) where the 
lattice is filled with many loops, among them a very large one. (In this regime only 
few configurations contain more than one very long loop.) 

The characteristic dependence on P of ( I )  and (A[*) is displayed in figure 3 for a 
5 x 5 lattice and multiplicity m = 1. Since the corresponding data for other lattice 
sizes and multiplicities and for dimensions d = 3 , 4  and 5 look similar we refrain from 
presenting them in the same manner. Instead, in figures 4 (a )  and 4(6) we have plotted 
fits for (AZ2)/Ld against P for m = 1 for several lattice sizes L in 2 and 3 dimensions, 
respectively. The peaks are interpreted as the remainders of the singular behaviour 
of the specific heat 

C(P)  - IP -Pcr,tl-OL (4) 
of an infinite system at a second-order phase transition. We observe the typical shift 



Numerical study of the self-avoiding loop gas 4077 

1 

1 , , , , , , , , , I 
0 0 5  1 0  

P 

Figure 3. The average energy ( l )  and the length fluctuation (1*)--(1)' against p for a loop 
gas of multiplicity m = 1 on a 5 x 5 lattice. The thermal cycle runs from = 1.02 to 0 = 0 
in steps of 80 = 0.01. For each temperature (in both directions) a sample of 4000 configur- 
ations has been taken. 

of the locations of the maxima according to finite size corrections (Fisher 1971, Binder 
1976) 

P m a x  - aL ( 5 )  

for L + CC. 

We also notice that with increasing lattice size the peaks of the specific heat 
are higher and sharper. On an infinite lattice the correlation length diverges as 
(-ID -Pcrltl-", Finite-size corrections set in when the correlation length 6 becomes 
comparable to the lattice size: ( -- L.  The positions of the maxima Pmax as functions 
of the lattice size L are plotted in figure 5 together with least squares fits according 
to (5) with A = 1.25 and 1.6 for d = 2 and 3,  respectively. Using the relation A = 1 / v  
(which was checked in the case of the Ising model (Fisher 1971, Binder 1976)) we 
obtain first estimates of the critical exponent v. Assuming a further finite-size scaling 
relationship (Fisher 1971, Binder 1976) 

c,,, - Le/"  (6) 

and hyperscaling, dv = 2 -a, we get slightly higher values for v. However, the case 
d = 2, m = 1 is compatible with a logarithmic increase of C,,,, too. At present we 
cannot decide whether the above finite-size relations may be unambiguously applied 
to the self-avoiding loop gas. In  a subsequent publication we shall concentrate on 
the determination of additional quantities revealing the critical behaviour. 

Our results for the critical inverse temperature Po,, and estimates for the critical 
exponent v are collected in table 1. For multiplicity m = 0 we find good agreement 
with results obtained by other methods on the polymer problem (Flory 1967, de 
Gennes 1972, 1979, Rys 1983, Sykes et al 1972, AragHo de Carvalho and Caracciolo' 
1983P). Our values Po,, = 0.963 and P C , ,  = 1.54 for two and three dimensions compare 

- W e  thank B Berg for bringing this reference to our attention after completion of our manuscript. 
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Figure 4. The average length fluctuation density ( ( l z ) - ( l ) * ) / L d  against p for multiplicity 
m = 1 for various lattice sizes L in ( a )  d = 2 and ( b )  d = 3 dimensions. The curves are 
fits to Monte Carlo data collected in several thermal cycles. Suitable samples (from 1000 
up to 8000 configurations depending on the lattice size and the temperature regime) have 
been taken into account. 
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Figure 5. Fits to the values &,ax obtained from figure 4 (and from some additional lattice 
sizes) for m = 1. The extrapolation L + Q, gives the critical inverse temperature p,,,, = 0.86 
and 1.50 for d = 2 and 3, respectively. 
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Table 1. Monte Carlo results for self-avoiding loop gas systems in d dimensions for 
multiplicities m : critical inverse temperatures &it and some estimates for the critical 
exponent U. 

d 2 2 2 2 2 3 3 4 5 
m 0 1 1.5 2 4 0 1 1 1 
Pmt 0.963 0.86 0.8 0.8 10.8) 1.54 1.50 1.9 ( 2 )  
U 0.75-0.85 0 8-1.0 ? ? ? 0.55-0.65 0.6-0.7 ? ? 

closely with those results. The loop gas calculations with non-zero m values, on the 
other hand, give novel results for the critical inverse temperature Pcrir and the critical 
exponent v. As mentioned before, most calculations were performed for dimensions 
d = 2 and 3 and m = 0 and 1; the other results are very preliminary. 

4. Loop distributions 

As mentioned before, the critical behaviour of a loop gas seems to be related to the 
appearance of very large loops (probably of infinite size on an infinite lattice, cf figure 
2). This can be investigated more quantitatively by means of the loop distribution 
function ( ~ ( 1 ) )  where s([) is the number of loops of length 1 in a configuration. Figure 
6 ( a )  shows the first moment of the loop distribution function, l ( s ( l ) )  for dimension 
d = 2, multiplicity m = 1, and three typical temperatures: far below, close to, and far 
above the critical temperature. Obviously, the critical temperature separates two 
regions of different behaviour. At the low temperature side only small loops appear 
and the whole energy is shared by them. This picture changes rather abruptly when 
the critical temperature is passed. Then most of the energy resides in large loops. 
The second maximum of the high temperature curve seems to indicate the existence 
of infinitely large loops in an infinite system. This behaviour is typical also for other 
dimensions and sufficiently low multiplicities. However, in two dimensions and for 
multiplicities m > 2 the second maximum of the loop distribution at high temperatures 
is absent (cf figure 6(c)) indicating that very large loops do not dominate. In figure 
6 ( b )  the case m = 2, d = 2 is shown which looks marginal. It is not clear whether the 
(still present) peaks in the specific heat signal a critical behaviour for loop gases with 
multiplicities m > 2 in two dimensions. 

5. Conclusion 

By means of Monte Carlo simulations we studied self-avoiding loop gas systems with 
various multiplicities on hypercubic lattices in several dimensions. We found second- 
order phase transitions. The most extensive data were obtained for dimensions two 
and three, and for multiplicities zero and one. For multiplicity zero which correspond 
to the one-loop (or polymer) problem our values of Pcrit and v are in good agreement 
with those obtained by other methods. The investigations for non-zero multiplicities, 
however, to our knowledge are novel. They furnish fairly accurate critical temperatures 
but so far only crude values for the critical exponent of the correlation length. 
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Figure 6. Loop distributions for loop gas systems on a 12 x 12 lattice for temperatures 
far above, close to, and far below the critical value. We have plotted the function I ( s ( l ) )  
against I where s ( I )  is the number of loops of length 1 in a configuration. The average 
has been taken over samples of 1 0 0 0 0  configurations. ( a ) ,  ( 6 )  and (c )  correspond to 
multiplicity 1, 2 and 3, respectively. A, p = 0.42; 0, p = 0.82; 0, fl = 1.22. 
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