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Abstract

The form factor equations are solved for an SU(N) invariant S-matrix
under the assumption that the anti-particle is identified with the bound
state of N — 1 particles. The solution is obtained explicitly in terms of
the nested off-shell Bethe ansatz where the contribution from each level is
written in terms of multiple contour integrals.
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1 Introduction

The Bethe ansatz [I], was initially formulated by Bethe 75 years ago to solve the
eigenvalue problem for the isotropic Heisenberg model. The approach has found
applications in the context of several integrable systems in different areas, such
as Statistical Mechanics, Quantum Field Theory, Condensed Matter Physics,
Atom and Molecular Physics, among others. The original techniques have been
refined into several directions: Lieb and Lininger [2] solved the one-dimensional
bose gas problem with J-function potential using the Bethe ansatz. The 6-
vertex model was solved by Lieb [3| [4] with the same technique. C.N. Yang
and C.P. Yang [5] proved ‘Bethe’s hypothesisﬂ for the ground state of the
anisotropic Heisenberg spin chain. Due to Yang [7] and Baxter [8] we have
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Yang and Yang decided to honor Bethe’s insight by calling his assumption “Bethe’s hy-
pothesis” [6], now usually called “Bethe ansatz”.
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the fundamental Yang-Baxter equation for the two-particle S-matrix or for the
matrix of the Boltzmann weights, which guarantees exact integrability of the
system. Subsequently, Faddeev and collaborators [9, [10] formulated these ideas
in an elegant algebraic way, known as the “algebraic Bethe ansatz”. Yang [7]
and Sutherland [11] generalized the technique of the Bethe ansatz for those
cases where the underlying symmetry group is larger than SU(2). This method
is now called the “nested” Bethe ansatz. This technique was applied in [12]
to derive the spectrum of the chiral SU(N) Gross-Neveu model [I3]. The
algebraic nested Bethe ansatz was formulated in [14] for the SU(N) and in
[15] for the O(2N) symmetric case, respectively. Another generalization of the
Bethe ansatz is the “off-shell” Bethe ansatzEl, which was originally formulated
by one of the authors (H.B.) [16] 17, 18, [19] to calculate correlation function in
WZNW models (see also [20, 21]). This version of the Bethe ansatz paves the
way to an analysis of off-shell quantities and opens up the intriguing possibility
to merge the Bethe ansatz and the form factor approach. In this context we
point out that recently the form factor program has received renewed interest in
connection with condensed matter physics [22, 23] [24] and atomic physics [25].
In particular, applications to Mott insulators and carbon nanotubes [26] 22]
doped two-leg ladders [27] and in the field of Bose-Einstein condensates of
ultracold atomic and molecular gases [28] 25] have been discussed and in some
instances correlation functions have been computed.

The bootstrap program to formulate particle physics in terms of the scatter-
ing data, i.e. in terms of the S-matrix goes back to Heisenberg [29] and Chew
[30]. Remarkably, this approach works very well for integrable quantum field
theories in 141 dimensions [31], 32, [33], 34}, 35, [36]. One of the present authors
(M.K.) et al. formulated the on-shell program [32] i.e. the exact determination
of the scattering matrix using the Yang-Baxter equations and the off-shell pro-
gram [35] i.e. the exact determination of form factors which are matrix elements
of local operators. This approach was developed further and studied in the con-
text of several explicit models by Smirnov [37] who proposed the form factor
equations (i) — (v) (see below) as extensions of similar formulae in the original
article [35]. The formulae were proven by two of the authors (H.B. and M.K.)
et al. [38]. In this article the techniques of the “off-shell” Bethe ansatz was
used to determine the form factors for the sine-Gordon model. There, however,
the underlying group structure is simple and there was no need to use a nested
version of the off-shell Bethe ansatz. In the present article we will focus on
the determination of the form factors for an SU(/N) model. The procedure is
similar as for the scaling Z(N) Ising and affine A(N — 1) Toda models [39], 40]
because the bound state structures of these models are similar. However, the
algebraic structure of the form factors for the SU(N) model is more compli-
cated, because the S-matrix possesses backward scattering. Therefore we have
to apply a nontrivial algebraic off-shell Bethe ansatz. For N > 2 we have to
develop the nested version of this technique (see also [41]).

24Off-shell” in the context of the Bethe ansatz means that the spectral parameters in the
algebraic Bethe ansatz state are not fixed by Bethe ansatz equations in order to get an eigen
state of a hamiltonian, but they are integrated over.
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It is expected that the results of this paper apply to the chiral SU(N)
Gross-Neveu model [13],142] 43| [44]. In a separate article [45] we will investigate
these physical applications and compare our exact results with two different
1/N-expansions of the chiral Gross-Neveu model [42] and [44]. We note that
SU(N) form factors were also calculated in [37, 46}, [47] using other techniques,
see also the related paper [48)].

1.1 The SU(N) S-matrix

The general solutions of the Yang-Baxter equations, unitarity and crossing re-
lations for a U(N) invariant S-matrix have been obtained in [49]. The S-matrix
for the scattering of two particles belonging to the vector representation of
SU(N) can be written as

S2(0) = oy 855 b(0) + Sasday c(0) (1)
Unitarity reads as S;(—0)5;(#) = 1for the S-matrix eigenvalues
S1(0) =b(0)+c(0), S_(6)="0b(0)—c(0).

The amplitude S;(0) = a(#) is the highest weight w = (2,0,...,0) S-matrix
eigenvalue for the two particle scattering. It will be essential for the Bethe
ansatz below.

As usual in this context we use in the notation

,Ul...n € Vl...n — Vl R ® v

for a vector in a tensor product space. The vector components are denoted by
& = v Below we will also use co-vectors vi._, € (Vl“'")T (the dual of

V11 with components Uq. A linear operator connecting two such spaces with

matrix elements AZ}gg/ is denoted by
A%/‘..n/ . Vln N Vl’..‘n’

...n :

where we omit the upper indices if they are obvious. All vector spaces V? are
isomorphic to a space V whose basis vectors label all kinds of particles (e.g.
V = CN for the vector representation of SU(N)). The vector spaces V* is
associated to a rapidity variable 6;. An S-matrix such as S;;(6;;) = Sf; (6; — ;)
acts nontrivially only on the factors V; ® V; and exchanges these factors. Using
this notation, the Yang-Baxter relation writes as

S12(012)513(013)523(623) = S23(023)S13(013)S12(012) (2)

and implies here the relation between the amplitudes [49]

m 27
(0) = ="Tv(0), ="

A solution [49, [42] 50] of all these equations writes as

F(l_Qim')P(l_%—i_ z)‘ (3)

0
a(@):b(9)+0(9):_F(1+%)F(1_%—§)
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This S-matrix possesses a bound state pole in S_(6) i.e. in the anti-symmetric
tensor channel. It is consistent with Swieca’s [51), 50}, 44] picture that the anti-
particle is a bound state of N — 1 particles (see also [39, 40]).

For later convenience and in order to simplify the formulae we introduce

S0y 510) _ 10— Pin

(4)

a(@)  0—in
where 1 is the unit, P the permutation operator. We depict this matrix as
0 Y
Soh(12) = >< = Gar0ps b(012) + Gasdsy E(012)
o 01 0o 3

and the amplitudes are explicitly

A

b(0) = .
(9) 0—in’ 0 —in

1.2 Generalized Form factors

For a state of n particles of kind «; with rapidities #; and a local operator O(z)
we define the form factor functions Fg_._an(el, ...,0y,), or using a short hand
notation FQO(Q), by

(0]O()]01,...,0,)7" = @Prt4p) pOG) | for ) >--- > 0,. (5)
where a = (g, ...,p) and 8 = (0y,...,60,,). For all other arrangements of the
rapidities the functions F (@) are given by analytic continuation. Note that
the physical value of the form factor, i.e. the left hand side of , is given
for ordered rapidities as indicated above and the statistics of the particles.
The F2(0) are considered as the components of a co-vector valued function

Flon(Q) EVin= (Vl"'")T which may be depicted as

FO,.(0) = | (6)
0,1 T,

Now we formulate the main properties of form factors in terms of the func-
tions F® . They follow from general LSZ-assumptions and “maximal analyt-
icity”, which means that F°  (6) is a meromorphic function with respect to all
¢’s and in the ‘physical’ strips 0 < Im#6;; < 7 (6;; = 0; — 0,4 < j) there are
only poles of physical origin as for example bound state poles. The generalized
form factor functions satisfy the following

Form factor equations: The co-vector valued auxiliary function FC  (8) is
meromorphic in all variables 61, ..., 0, and satisfies the following relations:
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(i)

(iii)

The Watson’s equations describe the symmetry property under the per-
mutation of both, the variables 0;,6; and the spaces i,j = i + 1 at the
same time

FOu (o0i,05,...) =F%; (....,0;,0;,...)Si;(6;;) (7)
for all possible arrangements of the 6’s.

The crossing relation implies a periodicity property under the cyclic per-
mutation of the rapidity variables and spaces

UL p1 | O(0) ] P2y P )o ™
=FP (61 +im, 0,...,0,)00CH = FP (0,...,0,,0, —im)CH (8)

where 0@ takes into account the statistics of the particle a with respect
to O. The charge conjugation matrix C'' will be discussed below.

There are poles determined by one-particle states in each sub-channel
given by a subset of particles of the state in . In particular the function
F2(0) has a pole at 615 = im such that

GRQS Ff?_n(Hl, e ,Gn) =2 012 F3On(93, e ,Qn) (1 - O‘?SQn. . .523) .
12=1T
(9)

If there are also bound states in the model the function Fé) (9) has addi-
tional poles. If for instance the particles 1 and 2 form a bound state (12),
there is a pole at 012 =in, (0 <n < ) such that

eResAanmn(Hlﬂg,...,Hn) = FQy 00y, 02) V2L, (10)
12=1

where the bound state intertwiner F§122)

n are given in [52), 53].

and the values of 01, 02, 6(12) and
Naturally, since we are dealing with relativistic quantum field theories we
finally have

FC (01 + 1y, 0n + ) = FL (61,...,0,) (11)

if the local operator transforms under Lorentz transformations as O —
e’ O where s is the “spin” of O.
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The property (i) - (iv) may be depicted as

. - |2

(111) 2Z 912 ’Lﬂ' -

. @ _

where x denotes the statistics factor 0©. As was shown in [38] the properties
(i) — (iii) follow from general LSZ-assumptions and “maximal analyticity”.

We will now provide a constructive and systematic way of how to solve the
form factor equations (i) — (v) for the co-vector valued function F ., once the
scattering matrix is given.

Minimal form factor: The solutions of Watson’s and the crossing equa-
tions (i) and (ii) for two particles with no poles in the physical strip 0 < Im6 < 7
and at most a simple zero at § = 0 are the minimal form factors. In particular
those for highest weight states are essential for the construction of the off-shell
Bethe ansatz. One easily finds the minimal solution of

F(8) =a(0) F(—0) = F (2ri — 0)

using (3] as

r + 1 0
= cexp/ ol eN sinh ¢ (1 - N> <1 — cosht (1 - m)) . (12)
0

It belongs to the highest weight w = (2,0,...,0). We define the corresponding
‘Jost-function’ as for the Z(N) models [39, [40] by the equation

N—-2 N—-1 o
0+ ki FO+kin)=1, n= =" 1
k]:[g¢(+m)k]:[0 (O+kin) =1, n=" (13)

which is typical for models where the bound state of N — 1 particles is the
anti-particle [40]. The solution is

6(0) =T <29m> T (1 _ % _ 297”> (14)
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and satisfies the relations

¢(0) = p(—=0)a(=0) = ¢((N — 1)in — 0)
1 a(f — 2mi)

= T@QZ)(QM'—Q) = ~50)

Notice that the equations and also determine the normalization con-
stant ¢ in (12)) as

11 °© 4, (sinh(1-%)t (1—+%)
— —2(1-1/N) ([ = _ ~t N _ N
e=T <2 2N> exp ( /0 “r ( tsinh? ¢ rsmnt ) %)

Generalized form factors: The co-vector valued function @ for n-
particles can be written as [35]

FPL.0) =KD ..0) T[] Foy) (16)

1<i<j<n

60 — 2mi) . (15)

where F'() is the minimal form factor function . The K-function K¢  (0)
contains the entire pole structure and its symmetry is determined by the form
factor equations (i) and (ii) where the S-matrix is replaced by S(0) = S(6)/a(0)

KO (..,0:,0;,...) =K%, (...,0;,0;,...)Si;(6:;) (17)

KO (01 +im,0,...,0,)00C" = K . 1(03,...,0,,0, —im)C  (18)
for all possible arrangements of the 0’s.

1.3 Nested “off-shell” Bethe ansatz for SU(N)

We consider a state with n particles and define as usual in the context of the
algebraic Bethe ansatz [9, [10] the monodromy matrix

Ti.n0(0,00) = S10(610) - - - Sno(Ono) = ‘ ‘ . (19)
1 ‘ n ‘ 0

It is a matrix acting in the tensor product of the “quantum space” V1" =
V1®-.-®V™ and the “auxiliary space” V0. All vector spaces V' are isomorphic
to a space V whose basis vectors label all kinds of particles. Here we consider
V =2 CN as the space of the vector representation of SU(N). The Yang-Baxter
algebra relation for the S-matrix yields

Tl...n,a<Q7 9&) Tl...n,b(Qy Hb) gab(ea - Hb) = gab(aa - Hb) Tl...n,b<Q7 9b> Tl...n,a(Qy 9(1)

(20)
a ?q ,
I VI o s
1 n Q K1
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which implies the basic algebraic properties of the sub-matrices A, B, C, D with
respect to the auxiliary space defined by

N Ar.n(0,2) Bi.np(0,2) /
o002 = = oL, . 2<B,8<N. (21

We propose the following ansatz for the general form factor F° () or the K-
function defined by in terms of a nested ‘off-shell’ Bethe ansatz and written
as a multiple contour integral

_ Mo [ dz
- _'m' CgR

[ G000 Baen) | (22)

where h(6, z) is a scalar function which depends only on the S-matrix and not
on the specific operator O(x)

ho,z) = H H $0:—z) [ 7(i—2) (23)

i=1j5=1 1<i<j<m
1 ~
7(2) = POLEOR ¢(0) = ¢(0)a(0) = ¢(-0). (24)

For the SU(N) S-matrix the function ¢(0) is given by with the solution
. The integration contour Cg is depicted in Fig. The constant R is
defined by R = fe dzé(@ — z) where the integration contour is a small circle
around z = ¢ as part of Cg.

e 0, +2mi(l — %) o 0y +2mi(1 — %)

® 6, (®) 62 o 01 — 2miz

o On — 2mig o 02 — 2mi

Y

001—27Ti
o 0, — 2mi e Oy — 2mi

Figure 1: The integration contour Cg. The bullets refer to poles of the integrand

resulting from a(6; — z;) ¢(6; — z;) and the small open circles refer to poles
originating from b(0; — z;) and c(0; — z;).

The dependence on the specific operator O(zx) is encoded in the scalar p-
function p© (6, z) which is in general a simple function of e and €% (see below).
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By means of the ansatz and we have transformed the complicated
form factor equations (i) - (v) (which are in general matrix equations) into
much simpler scalar equations for the p-function (see below). The K-function
is in general a linear combination of the fundamental building blocks [54, [39, 40]
given by - . We consider here cases where the sum consists only of one
term.

If in the range of f’s is non-trivial, i.e. if N > 2 the Bethe ansatz
co-vectors are of the form

Uy (0,2) = Ls(z) Pa(d, 2) (25)

where summation over all 8 = (f1,..., ) with 8; > 1 is assumed. The basic

Bethe ansatz co-vectors élén € (Vl'“")T are defined as

W ,0.2) = QuaCPn(82) - (8,20)
51 /Bm 1 1

82(0,2) = z% —1 2<Bi<N (26)
== 21 01 0, 31 ’ 1<o; <N.

aq Qp

Here the “pseudo-vacuum” is the highest weight co-vector (with weight w =
(n,0,...,0))

Mopn=cl)®---®e(l)
where the unit vectors e(a) (o« = 1,..., N) correspond to the particle of type

a which belong to the vector representation of SU(N). The pseudo-vacuum
vector satisfies

Q.o BY ,(0,2) = 0
anAln(Q,Z) - an
QD] 50.2) = 85 T]b(6: — ).

i=1

(27)

The amplitudes of the scattering matrices are given by egs. and . The
technique of the ‘nested Bethe ansatz’ means that one makes for the coeffi-
cients Lg(z) in the analogous construction re as for K,(#) where
now the indices § take only the values 2 < §; < 1S nesting is repeated
until the space of the coefficients becomes one dlmensmnal.

In this article we will focus on the determination of the form factors for an
SU(N) S-matrix. The paper is organized as follows: In Section 2 we construct
the general form factor formula for the simplest SU(2) case. In Section 3 we
construct the general form factor formula for the SU(3) case, which is more
complex due to the presence of the nesting procedure (more explicitly, we have
here two levels). We extend these results in Section 4, where the general form
factors for SU(N) are constructed and discussed in detail.
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2 SU(2) form factors

In this section we start with the simplest case. We perform the form factor
program for the SU(2) S-matrix. The results should apply to the well-known
SU(2) Gross-Neveu model [13], investigated by Bethe ansatz methods in [55]
56]. From the technical point of view the calculation of the form factors is very
similar to the one done for the sine-Gordon model in 38, 53].

S-matrix: The SU(2) S matrixﬁ is given by (1) and (3|) for N = 2. It turns out
that the amplitudes satisfy the relations b(0) = —a(im — 0) and ¢(0) = c(im —0)
which may be written as

S2(6) = - (mg b(im — 0) + Meas clin — 9)) . (28)

We have introduced

€ap = pﬁ cer=J

which are antisymmetric and e1o = €2! = 1 such that

ape?l =67 : N - and eagAse'YB: =—trdA (29)

for a matrix A. Formula may be understood as an unusual crossing relation

(c.f. [511)

S0 Coa S50 (im — 6)C7 (30)
if we define the “charge conjugation matrices” as C,g = €,4 and CoB = 2P,
This means that particle 1 is the anti-particle of 2 and vice versa.

For 6 — 0 and 47 the S-matrix yield the permutation matrix and the
annihilation-creation operator, respectively, or in terms of S = S/a

6 v 6 v
. - o/
52575(0) = 53% = > < , ;Pies SZ%(G) = ineVeqp = im -~

a f a 8

ansatz for form factors: Because of the crossing equation writes
in components as

K® _ (01,0s,...,0,)0° = —K© (0, ...,0,, 60, — 2mi) (31)

a...00 Q2...0n Q1

31t is related to the sine-Gordon S-matrix for % = 87 by (a, b, ¢)°Y® = (a, —b, )% (see
e.g. [38)).
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The form factor equation (iii) here reads as

Res Flon<91, PN ,Hn) =2 €12 F?fon<93, N ,Hn) (1 — 0'595271 . 823) . (32)

O1o=1im

Using the crossing relation it turns out that the statistics factor in (18]
and has to satisfy (0©)” = (—1)" with the solutions

09 =i% for Qv =nmod?2. (33)

We define the SU(2) ‘Jost-function’ ¢(f) and 7(z) by the same equations
as for the sine-Gordon [38] and the Z(2) models [39, 40]

S(OVF(O)F(0 + im) = 1 (34)
7(2)d(2)p(—2) =1 (35)

with the solution for ¢(6) given by (14). The functions ¢ (z) and 7(z) are for
SU(2) explicitly given as

=3 = ()1 (- ) - -

2mi 2mi
The scalar function h(6, z) in encodes only data from the scattering
matrix. The p-function p®(#,2) on the other hand depends on the explicit

nature of the local operator O. It is analytic in all variables and in order that
the form factors satisfy (i), (ii) and (iii) of eqs. - (O) prm (6, 2) has to satisfy

(i")2 Pnm (8, z) is symmetric under 6; <+ 6; and z; <> z;
(ii/)Q { Gpnm(el + 21, 027 s 7§) = (_1)m71pnm(917 927 s 7&)
pnm(Qa 21+ 2mi, 29, ... ) = (_1)npnm(Qa 215225+ ) (36)

(iii/)2 if 912 =T :pnm(Q7 §)|21:91 = (_1)m_10-pnm(g7 §)|z1:92
= Upn_gm_l(eg, R ,Hm 22y, Zm) +p

where o is the statistics factor of and . In order to simplify the notation
we have suppressed the dependence of the p-function p© and the statistics factor
0@ on the operator O(z). By means of the ansatz and - we have
transformed the complicated form factor equations (i) - (iii) to the simple ones
(i')2 - (iii")2 for the p-function.

Theorem 1 The co-vector valued function FS(Q) given by the ansatz and
(22) satisfies the form factor equations (i), (i) and (iii) (see (7) - if the
p-function p©(6,2) satisfies the equations (1')a, (ii')2, (iii')s of @) and the
normalization constants satisfies the recursion relation

ir(im)F(im)N, = 2iN,_s .

The proof of this theorem for SU(2) is similar to that for the sine-Gordon model
in [38] and may easily obtained from the ones for SU(3) or SU(N) established
below.
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3 SU(3) form factors

In this section we construct the form factors for the SU(3) model, which corre-
sponds to the simplest example where the nested Bethe ansatz technique has to
be applied together with the off-shell Bethe ansatz. In comparison to the previ-
ous SU(2) case, there are additional properties to be obeyed by the second-level
Bethe ansatz function (See lemma [3| below for details).

3.1 S-matrix

The SU(3) S-matrix is given by and for N = 3. The eigenvalue S_
has a pole at 0 = in = %’iﬂ' which means that there exist bound states of two
fundamental particles a + 5 — (po) (with 1 < p < ¢ < 3) which transform as
the anti-symmetric SU(3) tensor representation. The general bound state S-
matrix formula [52] 53] for the scattering of a bound state with another particle
reads in particular for the SU(3) case as

S(Vpé—[;a,g )(9(12)3)11&;)5) = ng,/;)sgj, (913)5%7’8 (023) A (37)
3 1
1o 9 3

where 0(19) is the bound state rapidity and 1 the bound state fusion angle. The

bound state fusion intertwiner F&%T ) is defined by

/8/ a/
o B gy N el (e0) _
iRes S (0) = > _T(olas’ = [(p9).
p<o
a B

With a convenient choice of an undetermined phase factor one obtains

o) — (5gag . 5gag) . e

e hoy =T (o5 — o7 55") (38)

)

where I' = iy/ia(in)in is a number. Choosing in special cases for the
external particles we calculate

S212(6) = b(6 + Lim)b(0 — bim) = alim — )
5(21(21)22)(9) =b(0 + Lim)a(f — im) = b(mi — 0)
SAI2(6) = ~b(8 + him)e(d — Lim) = c(i — 6)

which may be written as

ST (0) = 5 5 (i — ) + € eyl — 6)
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with the total anti-symmetric tensors e, and €78 (€193 = €321 = 1). These
formulae may be again understood as a crossing relation (c.f. [51])

carrs ST (0 + Lin) 3P (0 — Lin) = eapy S5 (im — 0) (39)
,y/ ,yl
a B v a By o

or 8(7 (o )lf )(9) = C(aﬁ)ijy (im — 0)CO(@'#) if we write the charge conjugation

matrices as

Clap)y = Cu(sy) = €apy » Cco67) — glab)y = cabr | (40)
Therefore we have the relations (c.f. (29))
Co(po)CPP =68 | Cppo) AGCPP) = tr A (41)
and
Copo) T = Cloy T = €apa T (42)

These resultsﬂ are consistent with the picture that the bound state of particles
1 and 2 is to be identified with the anti-particle of 3. For later convenience
we consider the total 3-particle S-matrix in the neighborhood of its poles at
012,023 = in
ST (01,02,05) = 82,2, (012) 515 (013)53.7" (03)
ZT] ZT] o 8o 43
912 —in b —in" cob (43)

3.2 Form factors

In order to obtain a recursion relation where only form factors for the fun-
damental particles of type a = 1,2,3 (which transform as the SU(3) vector
representation) are involved, we have to apply the bound state relation (iv) to
get the anti-particle and then the creation annihilation equation (iii)
12
Res F123 n(01, 02, 93, N ,Hn) = Fg2)3...n<6(12)7 93, ey Gn)\/ﬁ“gz )

012=1n

Res (12)3,””(9(12), O3,...,00) = 2iC12)3Fy (0, ..., 0n)

0 (12)3=1m

X (1—0’:?5371...534)

where F(1122) is the bound state intertwiner (see [52,53]), O(12) = (01 +05)
is the bound state rapidity, n = %W is the bound state fusion angle and C;2)3

is the charge conjugation matrix . We obtain with the short notation § =
(O4,...,6y)

Res Res F(3; ,(0) = 2ie123V2IFy ,(0) (1 — 0§ S5, ... 534)  (44)
023=1in 612=in

where (| . ) has been used.

“The physical aspects of these facts will we discussed elsewhere [45].
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ansatz for form factors: We propose that the n-particle form factor of
an operator O(z) is given by the same formula as for SU(2) where the
form factor equations (i) and (ii) for K-function write again as and (L3).
Consistency of , and the crossing relation means that the statistics
factors are of the form 09 = o©(r,) if the particle of type a belongs to a SU(3)

representation of rank r, = 1,2 and
a9(r) = ™30 for Qo =nmod3 (45)

as an extension of . As for SU(2), we propose again for the K-function
the ansatz in form of the integral representation with . However, the
Bethe ansatz co-vector is here for SU(3) of the form

V(0 2) = Ly(2)Pa(0, 2) (46)

where the basic Bethe states ® (9 z) are given by (26| and the indices o; run
over 1 < a; < 3 and the §; over 2 < 5; < 3. For the function Lg(z) one makes
an analogous ansatz (22)) as for K,(6) where the indices run here over a set
with one element less. By this procedure one obtains the nested Bethe ansatz.
The next level function Lg(z) is assumed to satisfy

(i)(l)
L”( c ey Ry Zj, N ) = Lﬂ( cey Zj, Ziyeoe ) S](Z”) (47)

(ii)(l)
Chlem(zl +im, 29,y 2m) = Lo, m1(22, .-y Zm, 21 — i7T)C11 (48)

(iii)(l) there is a pole at z10 = i such that

ResnLﬁ( 2) = c1 [ [ 6(zi2) Res sBlBQ(zIQ)LB@ (49)
212=1 — i—3 Z12= —

with ¢; = ¢(in).

These properties of the next level Bethe ansatz function Lg(z) are discussed in
lemma [3
The minimal two particle form factor function

T 2
= cexp/ 63 sinh —¢ (1 — cosht <1 - 0)) (50)
tsinh 3 i
0

belongs to the highest weight w = (2,0,0). The SU(3) and the Z(3) model
[39] 40] possess the same bound state structure, namely the anti-particle is to
be identified with the bound state of two particles. Therefore we define the
SU(3) ‘Jost-function’ ¢ (z) by the same equation as for the Z(3) model

d(0)p(0 +in)F(0)F (0 +in)F (0 + 2in) =1 (51)
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with the solution )
z 4
T (—) r(z_-_=2).
¢(2) omi <3 2m‘)

These equations determine also the constant ¢ in (50). The function 7(2) is
again defined by .

The function h(6,z) is scalar and encodes only data from the scattering
matrix. The p-function p®(f,2) on the other hand depends on the explicit
nature of the local operator O. It is analytic in all variables and, in order that
the form factors satisfy (i) - (iii) of egs. - (9), we assume

(i")3 p(8,z) is symmetric under 6; <> 6;
(11/) Up(91+27Ti,92,...,§) = ( ) (017927"' g)
3 p(Q,21+27Ti,Z2,...) = (— ) (0 21,29, .. ) (52)

p(8; 02,63, 2) = (=1)" p(d, 2)

c"/ . D
(ii)s  for b1z = bz = in { p(0:01. 0, 2) = o p(d, 2)

with § = (64,...,0,), 2 = (23,...,2n). In (ii')3 and (iii')3 o is the statistics
factor of the operator O with respect to the fundamental particle belonging to
the vector representation of SU(3).

Theorem 2 Let the co-vector valued function FO(H) be defined by the ansatz

(@) (-) and (@) Let the pfunctwn satzsfy( s, (ii')3 and (iii')s of
E and let the function Lg(z) satisfy OO, (i) and (i)™ of (.) (.)

et the normalization constants satisfy the recursion relation
2(in)*¢" (in)é(2in) F(in) F (2in) Ny = 20V/20 Ny 3. (53)
Then the function FS(0) satisfies the form factor equations (i), (i) and (ii)
(see (1) - (9)). In particular is satisfied.

Proof. Property (i) in the form of follows directly from (i’)s, the
Yang-Baxter equations and the action of the S-matrix on the pseudo-ground
state 2

Qi Coji (005,0;...)8i(0i5) = _ji Sij(0i5) Cij. (-..0:,0;...)

because S}1(0) = SH(0)/a() =1 and F(0) = F(—0)a(9).
Using (i) and the property (ii) in the form of may be rewritten as
a matrix difference equation [57, 58] [41]

K. n(gl)U—Kl n(0) Q1..n(0) (54)

where 0/ = (61 + 2mi, 05 ...,0,) and o is a statistics factor. The matrix Q(#) =
Q(0,1) is a special case (for i = 1) of the trace

C ol o a%)

Qu.n(8,4) = tro T1..n0(0,1) = o RY
1

a1 Q; 79



3 SU(3) FORM FACTORS 16

of a modified monodromy matrix
To1..n0(0,7) = S10(01 —605) - Pig- - Spo (0 — 0;)

where P is the permutation matrix. For the special case ¢ = 1 the matrix
Q(0,1) = Q(#) may be written as a trace of the ordinary monodromy matrix
over the auxiliary space for the specific value of the spectral parameter
0o = 01 )

Q1..(8) = tro T1..n0(0,61) (55)

because S (0) = P. The difference equation may be depicted as

where we use the rule that the rapidity of a line changes by 274 if the line bends
by 360° in the positive sense.

In the following we will suppress the indices 1...n. The Yang-Baxter rela-
tions imply the typical commutation rules for the matrices A, C, D defined

in eq. 1)

G808, )A0.0) = — 40,007 (0. 2) — =2 A % 0.0) (56
(€2)40.0) = 7= A@OC @ 7) - 1T 240 60
C (0,07 (0.0) = 553tz = D] 0,007 0.2
_ iz —0) = DB Y
g D07 @)

where 3,8,7,7,7" € {2,3}. In addition there are the Zapletal commutation
rules [57, [58], [41] where also the matrices Ag, Cq, Dq defined by

. [ Ag®) BY(©)
Tel®)= ( ) Dc?;’(e))

are involved [57]

8. A _ 8 Z_C(Il z) 5 Ve
CH(0.2)A0(0) = 70— AoOCW.2) ~ £ 0402050 (57)
CP(8,2)DoY (8) = Mﬁgif,, (= — 0))DoY" (0)CP (¢, 2)
- D005 ). 58)

Note that we assign to the auxiliary space of TQ (0) corresponding to the hori-
zontal line the spectral parameter 6; on the right hand side and 0] = 6, + 2mi
on the left hand side.
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We are now going to prove in the form

3
K(©9) | Ag(0) + > Doh(0) | = K(0) Q(0) = K(8')o (59)
B=2

where K(0) is a co-vector valued function as given by eq. and the Bethe
ansatz state . To analyze the left hand side of eq. we proceed as follows:

We apply the trace of TQ which is le + 22:2 Egg to the co-vector K(0)

1 5m 11 1
\ ‘ Zm 1
QCP (0, zn)---CP1 (0, 21 TQ R I .
0
/ ' ’y
91 0 0,

In the contribution from AQ(Q) which means v/ = v = 1 one may use Yang-
Baxter relations to observe that only the amplitudes 5’1111(01 —z;) = 1 appear in
the S-matrices S(f; — z;) which are constituents of the C-operators. Therefore
we may shift all zj-integration contours Cg to Cy without changing the values
of the integrals, because there are no singularities inside CoU—Cy (cf. Fig. [1).
Using a short notation we have

K(8) dg(6) = /C dzh(8, 2)p(0, 2) ¥(8, ) Ag(6)

(with fCe dz = % fCe d—f%l e fC9 d%’” ). We now proceed as usual in the algebraic

Bethe ansatz and push the Ag(0) and Dg (@) through all the C-operators using
the commutation rules and and obtain

O (9, zm) -~ O (8, 21) Ag(0) = [[ - Ao(®)

x CPm(@, 2 - CP (0, 21 +ZuwA,

~ ~ ~ / m 1 / "
O (0, z) -+ % (8, 21) Dgf) (0) = || - TW 5 5u(2.6) Dal) (0)

x CPm(0, z) - - CP1(0, 2 +Zuwp

The “wanted terms” written out explicitly originate from the first term in the
commutations rules ; all other contributions yield the so-called “unwanted
terms”. The next level monodromy matrix is

ey _ ) 5 g
TOPE )= (S10(z1 = 0) - oo (zm — 0)) ©
éﬂ(f ) (10(1 ) 0( )>/3,3
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where the ’s and also the internal summation indices take the values 2, 3. If
we insert these equations into the representation of K(0) we first find that
the wanted contribution from le already gives the result we are looking for.
Secondly the wanted contribution from BQ applied to €2 gives zero. Thirdly
the unwanted contributions from le and ZNDQ cancel after integration over the
zj. All these three facts can be seen as follows. We have

QAg0) =, QD ()=o) Hb0 —6)Q (60)
which follow from eq. . Therefore the wanted term from le yields
~ w m 1 ~ ~
K©)Ao®)]" = [ dz [ h6.20(6. 280" 2)
|: ] CQ’ ]1:]1 b(0/1 — ZJ)

:aé dz b0, 2)p(8), 2) T (@, 2)

o/

=oK(0).

It has been used that the ‘shift relation’ of the function ¢(#) in and (ii’) of
for the function p imply that

i 1 7 7 / /
1;[ o h8, 2)p(8, z) = oh(8', 2)p(¢, 2) -

The wanted contribution from D¢ vanish, since b(0) = 0. Therefore it remains
to prove that the unwanted terms cancel. The commutation relations
and |.D imply that the unwanted terms are proportional to a product of C—
operators, where one C(, zj) is replaced by CQ (0). Because of the symmetry
(i)' of Lp(z) it is sufficient to consider only the unwanted terms for j = 1
which are denoted by uw, and uw? p- They originate from the second term in
the commutation rules when Ag(6) is commuted with C(6,2). Then the
resulting fl(Q, 21) pushed through the other C’s. Taking into account only the
first terms in (H6)) we arrive at

m

5(9’1 — Zl) 1 -~ B o . -5
8(93 —21) H B(Zl — Zj) QA@,2) €70, 2m) - 'CQ @)

Using and Yang-Baxter relations (always taking into account the ‘SU(N)
ice rule’ which means ‘color conservation’) and a(f) = 1 one obtains

uwy(z) = —

(QA(8,20) €O (0, 2) ... CHO)| = 02150 2)

B1B2Bm 11 1
21 1 B1B2fm 1 1 1
Zm 1 K& 01
. : Zm | )
211 = : 1
0 | 211 9
N 16, 0, 1
o1 Qo o 02 O,

a1 2 On
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where ég(é, 2) does not depend on aq, 31,61, z1. Similarly, we obtain the first

unwanted contribution from ) 8 EQg as

m

b = 21 —01) H ( 7 g%/(g’ 21))

Zl - 91 ]:2 - Zl

x QD" (8, 21)C% (8, zm) - - Co(6)

which may be depicted as

(T(l)ﬂl (2, 2’1)> QDg (8,21)C7 (80, 2n) - - C’gl ()

B1 B2 Bm 11 1
z
B \‘ \ Z:n B
~1
= Z2 : 1 .

91 1

R O

109 [67%%

Again and Yang-Baxter relations yield

~/

(205 @ 2)C% (@ 2m) O ©)] =55 T 6 — =) el 85 6.2
i=1

o3

while assumption (i)™ for Lp(z) means

Lg(&)@mg (2) = Ls(@)

where analogously to eq. QU 6’( z) = T(I)BB (z z1) is the next level Q-
matrix and 2/ = (2] = 21 + 27, ..., 2m). Therefore we finally obtain

uw

:_/c dgﬁ(ﬁ,z)p(ﬁ,g)f?w:l:'zl) HE L ‘ La(2)05: ®2(0, 2)

7 / /é(zl_el)m 1 / 51*BVV
dzh(0,2)p(6,2)= Hz ——— Lp(z)05 56, 2).

It has been used that the ‘shift relation’ of the function ¢(#) in and (ii’) of
for the function p imply

f[g 0; — 1) =) ﬁ h(8,2")p(8,2") -

=2 — ) ja blan — ZJ)
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For the DQ—term we rewrite the zj-integral by replacing z; — z; — 27 (such
that 2] — 21 and Cy — Cg + 27i) and obtain for the sum of the unwanted term

from Ag and Dg (using &(2)/b(2) = —&(—2)/b(—2))

5(0) (Aa(0) + Da(0) Ew - </cg dz—/cﬁzmdzl /Cg dz)

B 00 21y [ 50,
/) : b _ Z] @

é(z1—07) 7
b(z1—6))

/dz---: 2mRes—|—/ dz1 /di
CQ/ 21 91 Cg CQ/

where again (fcgl - f%) dz--- =0 and for the Dg-term

/ dzl/ dZ ---=| —27i Res + /d21 /di---
Co+2mi Co Z1= 91 Co Co

which proves the cancellation of the unwanted terms.
The proof of (iii) is similar to that for the Z(3) model in [40]. We use the
short notations

Taking into account the pole structure of - h(8, z) we may replace for the

AQ -term

9_(91? "ae’IZ)v é:(01a92763)? Q:(947---,9n),
Q:(ala"'van)7 Q:(Oél,OdQ,Oég), Q_(Oézl, e’ )7
:(Zla"'v'zm)7 22(21722), 22(23,...727”),

4
ﬁ: (617"')61%)7 é: (Blaﬁ?)v év: (537"-7/3771)
and prove which may be depicted as

i (o

We will show that the K-function given by the integral representation with
(23)) satisfies

QReS'WQReSn K1 n = C9 | | | | gb ij 8123 K4 n(@) (1 — UgSgn 534) (61)
23=1n t12=1
=4 j=2

co = 22T F~2(in) F~1(2in) .

This is equivalent to because of the ansatz for F1. (@) and the relation
of F(z) and ¢(z) given by . The residues of K7 ,,(0) consists of three terms

Res Res Ki._,(0) :Rgl)n+R§2)n+R§3)n_
612=in O23=1in
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This is because each pair of the z integration contours will be “pinched” at
three points. Due to symmetry it is sufficient to determine the contribution
from the z;- and the zs-integrations and multiply the result by m(m —1). The
pinching points are

(1) 21 =02, 20 = 03,
(2) 21 =01, 2o =09,
(3) z1 =0y —in, z9 = 03 —in.

The contribution of (1) is given by zj-and zs-integrations 399 dzy fe dzg - -
along small circles around z; = 02 and zo = 63 (see ﬁgure. The S-matrices
S(0 — z1) and S(f3 — z2) yield the permutation operator S(0) = P

B1B2B3 Bm 111 1 1

|| .
(Qéﬂm(@ ) - CP2(0,03)CP (0, 92 kk L B )
N

Q1 Qa3 Oy Qp,

—_

= gﬁ?ig(ew Sgig? 012) H (01 — zj) (Qéﬂm(é, Zm)"'(jﬁs(é, 23)) -

o3

We have used the fact that because of the SU(N) ice rule only the amplitude
b contributes to the S-matrices S(#; — z;) and only @ = 1 to the S-matrices
S(0g — 2;),5(03 — z;), S(6; — 21),5(8; — 22) after having applied Yang-Baxter
relations. Further we use that for z19 — #23 — in by assumption (iii)(l) (c.f.

#9))

s

Lg(z) = c1

¢ (2:2)S5 5, (212)L3(2)
=3

c1 = ¢(212) = P(023) = P(in)
and that because of

Res Res ¢(012)0(013) 55240, (01,02, 03) = &(in)$(2in)2 (1) €ayagas -

012=1n O23=1n

We combine this with the scalar functions h and p and after having performed
the remaining z;-integrations we obtain

n 3
RY =co [T ]I ¢0:5) caKa(6)
=4 j=2

because of b(01—2)p (01 —2)p(03—2)p(z2—03) p(03—2) T (02— 2) 7 (03— 2) = —1, the
relation (iii’)3 of (52)) for the p-functions p(8, 02, 03, 2)|pyp=0a5—in = (—1)™ p(, 2)
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and the relation for the normalization constants Ny,c12(in)2¢(in)d(2in) =
Ny, _3¢0.

The remaining contribution to is due to Rgz)n + Rf’)n It is convenient
to shift the particle with momentum 63 to the right by applying S-matrices
using (i). Then we have to prove that

n 3
(R?)n + Rf’)n) Saz ... Sn3 + co H H &(0i) €123 Ka..n(0)03 =0.
i=4j=2 ajopaos

(62)
Note that because of (i) (c.f. .

K1 n(0)Sas. - Sns = [ [ a(is) K1 4 ms(0r, .., ..., 00, 05) .
i=4

Due to Lemma |§| in appendix |A| it is sufficient to prove equation only
for a3 = 1 since the left hand side of this equation is a highest weight co-vector.
This is because Bethe ansatz vectors, in particular also off-shell Bethe ansatz
vectors are of highest weight (see [57]). Therefore we consider this equation
for the components with ag = 1. The contribution of pinching (2) is given by
the z1-, zo-integrations along the small circles around z; = 61 and z3 = 65 (see
again figure . Now S(#; — z1) and S(f2 — z9) yield permutation operators P
and the co-vector part of this contribution for ag =1 is

<Q CPm (0, zm) - - oL (0, Qg)éﬂl (0, QI)PS(I))

BiBaBm 111 1
| ;
1
O 1
N
a1 (v Qg ag =1
= 051002 (27 (8, 2m) - C (6, Z3>)d oy (63)

where P3(1) projects onto the components with a3 = 1. We have used the
fact that because of the SU(N) ice rule the amplitude a only contributes to
the S-matrices S(61 — z;), S(02 — 2;), S(03 — z;), S(0; — z1) after having applied
Yang-Baxter relations. One derives the formula

Res Res ¢(031)0(032) S0, (612) = =6 (in)$(2in)2(in) caan1

O23=1in O12=in
using (43), €32 = 1, §52! (03 +2mi, 01, 02) = (03 +2m’)b(932+2m)533a2 (612)
(because of the SU&B) ice rule) and ¢(f) = —5(9~+ 2mi) (04 27i) (see (1 ) We

combine this and (63)) with the scalar functions h and p taking into account the
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property (iii)(l) of 1} and after having performed the remaining z;-integrations
we obtain

Rf_),nSzm . SpaPs(1 =—COHH¢ i) €123 Ka_n(0)o3Ps(1) . (64)

1=4 j=2

We have used the following equations a(f;3)$(0i1) = ¢(i3) (because of .
the definition of 7(z) which implies ¢(z — 02)p(01 — 2)P(02 — 2)p(H3 —
2)1(01 — z)7(02 — z) = 1, the second relation (iii’)s of . ) for the p-functions
p(0, 01,02, 2)]915=005=in = = op(f,2) and the relation for the normalization
constants Ny, c1¢(in)$(2in)2(in)? = N,_sco.

The contribution of pinching (3) is given by the z;-, zo-integrations along
the small circles around 21 = 6, —in and 2o = 3 —in, (see again figure[l]). Now
S(3 — zo) yields 5’% (03— 2z9) — F?gg)l“gpg) and the residue of the Bethe ansatz
state

BiB2fm 111

1
i Res (Q G0, 2) - C(0, 1) P # 1

1

a1 (g a3 =1

vanishes for a3 = 1 because F((Xp ) is antisymmetric with respect to a, 8. There-
fore equation is proved for a3 = 1 and because of Lemma@ also in general.

The higher level Bethe ansatz

Lemma 3 Let the constant R and the contour C, be defined as in the context
of (@ Then the higher level function

1 d’LL1 duk ~ = (1)

_ 2 L (1) (
Lp(2) Ml ® ) R Wz, wp™ (z,u) V' (2, 1)

U ERNE (Q()C(l)(z k) @(1)(&1“))

i=1j=1 1<i<j<k
satisfies (1)M) - (iii)(1) of the equations - (@ if
P (2, 1) is symmetric under z; < z;

L 2T, = (- )pmk<zl,zQ,...,g> (65)
pfni( uy + 2mi, ug, ... ) = (— )pmk(z U, Uy .. )

1 1

(i) p&i(g,@>|zlgzm,ul:@=< D10 (50).
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Proof. The proofs of the second level equations (i)(!) and (ii)(") are similar
to the ones for the first level. For the proof of (iii)(!) we observe that for
I (1)(

z12 — 11 there is a pinching at u; = 29 which means that in ¥ 5 (2 u) we may

replace 5(22 —u1) — P and we have to consider (for z;2 — in and up = 29)

2 2 2 2
3 Ty
@®@WNM~CW@@)=3' us
B ] U1 = 29 9
Z1 \ z9 1 23 Zm
B B2 3 Brm

k
_S5152 z12 H Z1 —u] \ifﬁ )
7j=2

with é = B3y, Bm), 2= (23,...,2m), &= (ug,...,ur). Therefore because
of b(z1 — u)p(z1 — u)P(z — u)T(22 — u) = —1 and (iii’)él) for z12 — in

Ls(2) ~ ¢(212)

o

&(22) S35, (212)L3(2)

Il
w

%

which proves the claim (iii)(") of (49).

4 SU(N) form factors

In this section we perform the form factor program for the general SU(N) S-
matrix. For this purpose, we extend the procedures of the previous section,
i.e., the nested Bethe ansatz method now with N — 1 levels combined with the
off-shell Bethe ansatz. Applications of the results to the SU(N) Gross-Neveu
model [13] will be investigated in a separate article [45].

4.1 S-matrix

The SU(N) S-matrix is given by and (3). Again, the eigenvalue S_(6)
has a pole at § = in = %z’w which means that there exist bound states of r
fundamental particles a1 + -+ + a, — (p1...pr) (with py < -+ < p,) which
transform as the anti-symmetric SU () tensor representation of rank r, (0 <
r < N). The masses of the bound states satisfy m, = my_, which suggests
Swieca’s [51, [50, [44] picture that the antiparticle of a particle of rank r is to be
identified with the particle of rank N — r (see also [39] 40]).

Iterating N — 1 times the general bound state formula one obtains for the
scattering of a bound state (810s ... Bn—1) with another particle ¢ (analogously
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to for the SU(3) case)

5«5'(7172---71\7—1) (6)1—\(5152---51\771)

(B1B2...Bn—-1)0 Qarag..an_]

YN—1) o0 . . IN_2aly_ . .
= lejjmggfj)sal?l (0 +im —in)... Sazj?N (O —im + i)

with the total bound state fusion intertwiner
P(5152~--5N—1) _ (B1B2...8Nn-1)

a1o...00N—1

F(BlﬁQﬁB)r(,@ﬁﬁz)
(B1B2..Bn—2)an—1 """ (B1f2)az” @102 °

Taking special cases for the external particles we obtain
N(1,2..,N—1)
S(l,Q...,N—1)N(9)

N—1(1,2...N—1)
5(1,2...,N71)N71(9)

Sy (0) = b0 + im — i) ...c(0 — im + i) = (~1)NLe(mi

which may be written as

b(0 +im —in)...b(0 —im +in) = (—1)N"La(wi — 0)

b0+ im —in)...a(0 —im +in) = (=) "b(7i — 0)

—0).

SﬁN(ﬁl--ﬂN—ﬂ 0

(al...ozN_l)aN( )

= (0! (%1@%?355% b(mi — 0) + 55N51“'B§V_16&1---a1v_1a1v c(mi — 0))

with the total anti-symmetric tensors €q,..q, and €N (e n = Nl — 1).

These results may be interpreted as an unusual crossing relation
&’ ON—28N— N-1 8 .
€81B2...0n-108 Salﬂzsll (01)... Saizv\,_zléN HOn-1) = (=1) €agan..an_17 Sgﬁ (im — 0)

(66)

ar az any—1 fB

ap az an—1 S

with 0; = 0 +im — jin if we write the charge conjugation matrices as

C(al...aN_l)aN = Cal(ag.,.aN) = €aq...an

C(OllmaN—l)OéN _ COé1(0¢2~-OlN) — X1ON

Therefore we have the relations (c.f. and (41))

Ca(al...aN_l)C(almaN_l)ﬁ = 557 C (

oy AFOPOT ) = ()Y gy A

and C(ﬂl...ﬂN,l)ny(xﬁll.fffjﬂvff) = €ay..an_17L (67)

where the constant I' is

25
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These results are consistent with the picture (c.f. [51]) that the bound state
of N — 1 particles of rank 1 is to be identified with the anti-particle of rank
1. As already remarked, the physical aspects of these facts will be discussed
elsewhere [45].

For later convenience we consider as a generalization of the total N-
particle S-matrix (consisting of N(N — 1)/2 factors) in terms of S

Sia.N = <§12§13 e §1N) (323 . §2N> . Snoan (68)

in the limit 6;;11 — in (j = 1,... N — 1) which behaves as

um m BN B2 €aram..on - (69)

SBN--B2B1 o (N — 1)) — ... :
( ) 912 —n HN—lN —1m

a1ag...aN

The algebraic structure of this relation follows because one can use the Yang-
Baxter equations to shift in any factor Sjipq ~ (1 — P);;,1 to the right or
the left. Therefore the expression is totally anti-symmetric with respect to the
«; and the ;. The factor follows from .

4.2 The general form factor formula

In order to obtain a recursion relation where only form factors for the fundamen-
tal particles of type a (which transform as the SU(N) vector representation)
are involved, we have to apply iteratively the bound state relation (iv) to get
the (N — 1)-bound state which is to be identified with the anti-particle

Res ... Res FP (0)

612=in ON_2N—_1=1n

N—-2_(1..N-1
= F(Cl)...N—l)N...n(‘9(1...N—1)a ON, ..., 0n0)V2 Fg...N—l :

and finally the annihilation residue equation (iii)

Res F(?...N—I)N...n(9(1...N71)’ ON,- -5 0n)

01..N—1)N=IT

= zic(l...N—l)NF](\?—i-l,..n(0N+17 e ,Gn) (1 - U](\OTSNn e SNN—i-l) .

Similar as for N = 3 we obtain with (67

Res ... Res F9; . (61,...,600)

ON_1N=1n O12=1n

i N—-2
=2ier. V2 TFS 1 n(Ons1, .- 00) (1 — 09 SNn ... Synt1) . (70)

ansatz for form factors: We propose the n-particle form factors of an oper-
ator O(x) as given by the same formula as for SU(2) and SU(3) in terms of
the K-function and the minimal form factor function F' () given by which
belongs to the highest weight w = (2,0,...,0). The form factor equations (i)

and (ii) for K-function write again as and . Consistency of ,
and the crossing relation means that the statistics factors are of the form
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09 = 09(ry) if the particle of type o belongs to an SU(N) representation of

rank r, =1,...,N —1 and
oO(r) = ™ (1=1/NrQo  for Qp = nmod N (71)

as an extension of and . For the K-function K g () we propose again
the ansatz in form of the integral representation with and . The
Bethe ansatz co-vector W, (6, z) is again of the form and for the function
Lg(z) one makes again an analogous ansatz as for the K-function lb where
the indices run over sets with one element less. For the SU(N) case we have to
iterate this N — 2 times

B0, 2) = 1§ ()% (0, 2)

/ / %h(z wpV(z,u) ¥ (z,u)  (72)
H

H T(2i — 25)

j=1 1<i<j<k

(z
é,

TR
m
foril=1,....N—2, o;=1,....,N, Bi=1+1,...,N, (#© = ¥). By this
procedure one obtains the nested Bethe ansat7]

As for the Z(N) and A(N — 1) models [39, 40] the ‘Jost-function’ ¢ (0) =
#(0)/a (8) = (—0) is a solution of the equation

N—-2 N—-1
[T ¢ 0+ kin) [ F (0 + kin) =1 (73)
k=0 k=0

which is typical for models where the bound state of N — 1 particles is the
anti-particle. The solution is

The higher level Bethe ansatz: In order that the form factor F© () given
by (16) and (72| satisfies the form factor equations (i) - (iii) the higher level

L- functlons L61 oo (21,22, -+, 2m), (I < Bi < N, m = n;) have to satisfy:
(i) Watson’s equations

l l &
L()U( sy Ry Ry e ) = L( )Z( cey Ry Ry )Sz](zz]) y

(ii)® the crossing relation

! l .
LY o122y 2m) = L) s (22, 2, 21— 2)

and

°In [41] the nested off-shell Bethe ansatz was formulated in terms of “Jackson-type inte-
grals” instead of contour integrals.
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(iii)® the function Lg) (2) has to possess simple poles at z12,...,2Nv_j—1,N—] =
in and it has to factorize in the neighborhood of these poles as

m N—I
l b & . .
1@ ~a [ Il[é)S) oL@ 0
i=N—l+1 j=2 =
- T Toes (s) (200
~ L®
roq H H¢(Zij) @ '
B i=N—l+1 j=2 = e
- B B
where we have used the short notations ﬁ = (P1,..-,BN-1),
5 = (BN—H-L s 7ﬂm) and Z = (Zla ) ZN—l)a zZ= (ZN—l-‘rl: SRR Zm)~ The

S-matrix S'év "'l+1(§) describes the total scattering of the N — [ particles

with rapidi;ies Z for the initial quantum numbers ﬁ and the final config-
uration of quantum numbers (N,... 1+ 1).

The constants satisfy the recursion relation

N-l-1
€ = Ci41 H o(jin) (75)
j=1
with the solution
c1 = o™ 2 (i)™ P (2im) - - (N — 2)in) (76)

if cy—1 =1 (see appendix .

Lemma 4 The higher level function Lg)(g) satisfies (1)) - (i), if the higher

level p-function in the integral representation (@ satisfies

(D pO(z,u) is symmetric under z; > 2;

(i) 0 p%k(zl +2mi, 29, ..., u) = (l)kp%f)(zl, 29,...,U)
P2 Ut + 2mi, ug, .. ) = (=1)"p, (2, u1, ug, . .. )

N0 (5 )

! y

(111/)(0 pmk(g) B2y« ZN—Z)Q)’212="'=ZZN7171,N71=1'77 = (71)
withm =M —N+1, k=M —-N+1—1.
This lemma is proved in appendix [C]

The p-function: In order that the form factor F© () given by and
- satisfies the form factor equations (i) - (iii) the p-function p© (6, 2) in
which depends on the explicit nature of the local operator O is assumed
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to satisfy

(i")  pnm(8,2) is symmetric under 6; <+ 60;

(11,) { Gpnm('gl + 27Tia 027 s 11) = (_1>m+N71pnm(91’ 921 s 7&)
Prm (0,21 + 270, 29, ... ) = (= 1)"Ppm (8, 21, 22, .. . ) )
(iiil) pnm(ga 02, .., 0N, )|912— =0N_1N=in — ( 1)m7N+l pn—N[n—N-I—l(Q? é)
pnm(Qv 01,...,0n_1,2 )‘6’12 =0On_1n=in — UpanmfN+1(Q, Z)

(78)
where 0 = (61,...,0,), 0= (ONt1s---30n), 2= (21,...,2m) and
Z2=(2N,...,2m). In order to simplify the notation, we have in these equations
suppressed the dependence of the p-function p© and the statistics factor o€ on

the operator O(z).

Theorem 5 The co-vector valued function Fy(0) given by the ansatz @) and
the integral representation (29) satisfies the form factor equations (i), (ii) and

(iii) of (@) - (@), in particular (70) if
1. Lg(z) satisfies the equation HD, ({H)D, (i) and @) of lemma
2. p©(0, 2) satisfies the equation ('), (ii') and (iii’) of (@ and

3. the normalization constants satisfy

N-1 i
= 0™ | T (aGimEGim)~ | Mo =20v2" TN,y
j=1
(79)

The proof of this theorem can be found in appendix [B}

4.3 Examples

To illustrate our general results we present some simple examples.

The energy momentum tensor: For the local operator O(z) = T77(z)
(where p, o = + denote the light cone components) the p-function is, as for the
sine-Gordon model in [53]

Tpd 4,2) Zepe Ze”’.

For the n = N particle form factor there are n; = N — [ integrations in the [-th
level of the off-shell Bethe ansatz. The SU(N) weights are (see [41])

w = (n—nl,nl —n2,...,nN_2—nN_1,nN_1) = (1,1,...,1,1) .

We calculate the form factor of the particle a and the bound state (8) =
(B1y-..,Bn—1) of N — 1 particles. In each level all integrations up to one may
be performed iteratively using the bound state relation (iv) (similar as in the
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proof of theorem . Then all remaining integrations in the higher levels can
be done by means of the formula

| dsP(ats)L(b+8)l(c—s)I(d—s) = 2mi T(a+b+c+d)

/ioo T(a+c)T(a+d)I'(b+ c)I'(b+d) .

The result for the form factor of the particle o and the bound state (3) writes
as

Fo(5)(01,02) = K (5)(61,62) G (612)

: ’ dz £ oz
K301, 02) = N7 (e + ) /C FO01 =) Lb2—2)  (80)

0

x €5, 3401 — 2) 505 (62 — 2)

where the summation is over v and § > 1 and G() is the minimal form factor
function of two particles of rank » =1 and » = N — 1. The functions G(#) and
L(0) are given by

Glim — 0)F(0)6(0) = 1
L(9):F<;+2HM>F<—;+;]—279TZ,>.

The remaining integral in may be performed (similar as in [53]) with the

resultf]
)sinh% (012 — im)

(0 T?(0) |61, 02 5) = AMPeqges Pt Crttutin G(62)

010 —im

Similar as in [53] one can prove the eigenvalue equation

(/d:cTiO sz>|91,..., W) =0

for arbitrary states.
The fields ¢, (x): Because the Bethe ansatz yields highest weight states we

obtain the matrix elements of the spinor field 1(z) = 11 (z). The p-function for
the local operator 1)) (z) is (see also [38])

) 1)
(0, 2) = expt (ZZZ <1 - N) ;0) |
For example the 1-particle form factor is

(09 (0)]0) = b1 720777

5In [58] [41] this result has been obtained using Jackson type integrals.
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The last two formulae are consistent with the proposal of Swieca et al. [51], [44]
that the statistics of the fundamental particles in the chiral SU(N) Gross-
Neveu model should be o = exp (2ris), where s = 3 (1 — ) is the spin (see
also ) For the n = N + 1 particle form factor there are again n; = N —{
integrations in the [-th level of the off-shell Bethe ansatz and the SU(N) weights
are w = (2,1,...,1,1). Similar as above one obtains the 2-particle and 1-bound
state form factor

(£) (+)
F g (01,02,03) = Ky (61, 62,03) F(612) G(613) G (62)

KU = Neeri(-4) T / 25000 — 2)3(0; — )L (85 — 2)e*
aply, C R

- Sl ()
X €5yS0nc(01 — 2)S5he (02 — 2) S @11 (05— z).
We were not able to perform this integration. In [45] we will discuss the 1/N
expansion. There we will also discuss the physical interpretation of the results
for the chiral Gross-Neveu model.
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Appendix
A A Lemma

Lemma 6 Let v'" € V1" be a highest weight vector, i.e. Ey_nv'"™ = 0.
Then v'™ vanishes if the components v1°2n for aq = 1 vanish.

Proof. By definition £ acts on the basis vectors e;“” =€n Ve, @ -Qeq,
as

n
Brone ™= e @ @ Beq, @ @ ea,
=1

FEe, =en_1 where ey =0.
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Therefore we may write

0= El...nvlmn — 2 : vogoaz...anElmne;..n

a,a1>1
n
_ Z Ua1a2...anzea1 ® - ®eq—1Q R eq,
a,a1>1 i=1
_ Z U2a2...ozn61 Q- ® Ca, + Z wala2“'a"6a1 QR ® Ca,
a,a1=2 o, >2

for some vector w'™. Because the second term w'™ is orthogonal to the first

one all components v2??® vanish. Iterating this procedure proves the claim.
]

B Proof of Theorem 5

The proof of the main theorem of this article for SU(N) is a straightforward
extension of the one for SU(3) above.

Proof. The form factor equations (i) and (ii) may be proved quite analo-
gously as for SU(3). The proof of (iii) is similar to that for the Z(N) model in
[40]. We use the short hand notations

0= (01,....00), 8= (01,....0n), 8= (Oni1,....00),
a=(a1,...,an), &= (a1,...,an), &= (AN+1,...,0n),
z=(21,-.-,2m), 2= (21,---,2nv-1), 2= (2N,---, Zm),
B=Br,-,Bm), B=(Br,...,Bn-1), B=(BN:---Bm)

That FP . (0) given by , , and satisfies (iii) in the form of

is equivalent to that K (@) satisfies

n N
Res ... Res K1 ,(0)=c¢ 5(0i) er. NEKn41..n(0
ON_1N=17 012=in b (7) Oi_gi_ljl_gﬁb( J) LA (7)

X (L —onSnn---Snn+1) (81)

N-1
co=2iv2 T[] F~ ™9 (jin)
j=1
where the relation of F'(z) and ¢(z) given by has been used. The residues
of K1, n(6) consists again of three terms

Res ... Res Ki.q(6) = R, + R, + Ry’
On—_1n=in  O12=in
because N — 1 of the z integration contours will be “pinched” at three points.
Again due to symmetry it is sufficient to determine the contribution from the
21,..., zy—1-integrations and multiply the result by m...(m — N + 2). The
pinching points are
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(1) 21:92,...,21\1_1:91\7,
(2) z1="01,..., 2v—1 = ON_1,
(3) z1 =02 —in,..., zy_1 = On —1in,

The contribution of (1) is given by N — 1 integrations along small circles
around z1 = 0y, 29 = 03,...,z2y_1 = O (see figure . The S-matrices 5(92 -
21),..., S(On — zy_1) yield the permutation operator S(0) = P. Therefore for
bh2,...,O0N—2an—1,0N_1N — i

(Q CBm (0, 2m) - - ol (0, ZN)C’BN—l(Q7 On) - - oL (6, 92))

B1 BN-1 Bm 111 11 l
L sz 1
1
N 2 !
1
lw 9N Hn
aq an (079
m ~ ~ 371 ~ 3 ~ 5
= T 861 - =) (SIN...SH); <QCﬁm(Q,zm)---C’BN(Q,ZN)>&. (82)
j=N = <

It has been used that due to the SU(N) ice rule only the amplitude b(-)
contributes to the S-matrices S(61 — z;) and a(-) to the S-matrices S(f —
2j), .., S(ON—25),8(0;i—21),...,5(0;—2n—2) after having applied Yang-Baxter
relations. One observes that the product of S-matrices in together with
the one in yields the total N — 1 S-matrix

- ~ ~\B1 -
§Y-2(2) (Suv- - Sia) - = S5-2(0)
for which the residue formula applies

Res ... Res SN-21 :(N—1)!(in)NﬁleN“'mem,_aN.

. al...Qx
012=1n On_in=in TN

We combine l) with the function Lg(z) with the property 1} for (1 = 1)
and the scalar functions h and p and after having performed the remaining
zj-integrations we obtain

n N
Rgl)n = Co H H d(0ij) 1. .NO) Kny1 n(f).

i=N+1j=2
We have used the following equations b(f; — 2)¢(61 — 2) = —¢(z — 6s) (for
012 = in) together with the definition of 7(z), the relation (iii’) of (78|

for the p-function p(@,6s,...,0N,2) = (=1)m N+l (Q,g) (for O120 = -+ =
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On_1in = in) the relation ) for the normalization constants Nypci(N —
1)!(in)N -1 H 1 olgin) = Nn ~Co and the recursion relation for the con-
stants ¢ With the solution

The remaining contribution to is due to Ry and Rj

n N

R§2)n + Rg3)n =% H H 25(913) e1. NEN11.n(0)oNShn - SN 11
i=N+1j=2

It is convenient to shift the particle with momentum 6y to the right by applying
S-matrices and write

(R?)n + Rf’)n) SN4IN ---Sun +co H H ¢(0i7) e1. . NEnt1..n(@)on =0
i=N+1j=2
(83)
where the components of this co-vector are now denoted by Va1 AN 1N 41 OO -

Note that because of (i) ([17)

n

K1 n(@)Svian - Sov =[] al0in)Kr ni1.mn(O1,- 0841, 00, O8) -
i=N+1

Again due to Lemma |§| in appendix |A|it is sufficient to prove equation
only for ay = 1 since the left hand side of this equation is a highest weight
co-vector. This is because Bethe ansatz vectors, in particular also off-shell
Bethe ansatz vectors are of highest weight (see [57]). Therefore we consider
this equation for the components with any = 1 only. The contribution of Rgmn
is given by the z1,...,zy_1-integrations along the small circles around z; =
01,...,2nv-1 = On_1 (see again figure . Now S(01 — 21)1, ..., S(ON_1 — 2n_1)
yield permutation operators P and the co-vector part of this contribution for
anN — 1is

(QCH (8,2 -+ C¥4(8, 01+ O (0.0, P (D))

Q1..ON_1N41--QnQN

BNlﬁml

e

N 1
1 9]V+1 9]\[

aq an+1 any =1

= 551 o 55%: (Q()@m (Q Zm) ... BN (Q, ZN))@ (%W (84)

where Py(1) projects onto the components with ay = 1. We have used the
fact that because of the SU(IV) ice rule the amplitude a(-) only contributes to
the S-matrices S(01 — z;), S(02 — 2;), S(On — zj), S(0; — z1) after having applied
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Yang-Baxter relations. We use ¢(6) = —b(f + 2mi)$(0 + 2mi) to replace for
i=1,...,N—1land 8 #1

$(0n:) = Si1 (On:)@(On:) = —S15(Oni + 2mi) (O + 2mi)
therefore using again we obtain

Res -+ Res ¢(On1) -~ p(Onn—1)SN2 (61, ,0n_1)

On—1N=in 012=in

= (=DM 1o(in) - (N — 1)in)

x Res --- Res S‘{\(flma (On + 27, 01, ,0Nn_1)
On_in=in  Orp=in 1 TINTL

= —¢(in) -+ ¢((N = 1)in)(N — 1)!(in)V e, ay_11 -

We combine with the function Lg(z) with the property (for I = 1)
and the scalar functions h and p and after having performed the remaining
zj-integrations we obtain
) n N ~ .
Rﬁ,,),nSNHN . SpNPN(1) = —co H H #(0ij)e1. . N(O)Knt1.n(@)onPn(1).
i=N+1j=2

We have used the following equations: a(;n)¢(0i1) = ¢(0;n) (because of
(15)), the definition of 7(z), the relation (iii’) of for the p-function
p(0,61,...,0N_1,2) = ap(é, Z) (for 013 = --- = On_1n = in), the relation
for the normalization constants Ny,ci(N — 1)!(in)VN—! H;V:_ll d(jin) = Np_nco
and the recursion relation for the constants ¢;.

The contribution of pinching (3) is given by the z1,..., zy_1-integrations
along the small circles around 2z; = 6y — in,..., 2ny_2 = On_1 — i1, ZN_1 =
On —in, (see again figure . As for N = 3 the S-matrix S(%(HN —zy_1) yields
F‘(SZU) g) ; ) and the residue of the Bethe ansatz state vanishes,

Res (Qé(g,zm)---é(g,z1>PN(1)) —0,

ZN,1:9N—7:17 Q

because Fg) 5 ) is antisymmetric with respect to «, 5. Therefore equation is
proved for ay = 1 and because of Lemma [0] also in general. m

C The higher level Bethe ansatz

Proof of lemma For the higher level functions Lg)(g) one may verify the

equations (1)) and (ii)!) quite analogously to the corresponding ones for the
main theorem (e.g. for N = 3).
We prove (iii)!) by induction and assume:
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for wia,...,un—j—2 n—2 — 1. In the integral representation 1| of L(Bl)(g)
there are pinchings at u1 = 29,...,un—1—1 = 2n—; if 212,..., 2N_1—1, N1 — .

Therefore in \if(l) z,u) the S-matrices S zo —ut),...,S8(zN_; —uny_;_1) yield
B
the permutation operator P and we have to consider

&)gh(g? w) = (gu) O (2, ) - - COW-11(z, 2y ) -+ CON (2, 22))6

1+1 1+1 1+1

Yk L I+1

Uk

N : Q UN—]—1 41
: 141

il \ ‘ UL = 23
z1l z9) T 2N Zm

B B2 Bn-i Bm
k
~ ~ M- YN —1—1l+1 ~ ()5, . .
= (512(212) . SlN—l(ZlN—z)> H b(z1 — Uj)@é)l(& )
B1---BN-1 - e
J=N-—1
where é = (ﬁN—l—‘rla e 76777,)7 é = (ZN—Z+17 cee )Zm)a Q = (UN—lv LR ,Uk). We
may write for 4 = (u1,...,uny_j—1) = (22,.-.,2N-1)

M- YN—1—1l+1 _ g{V...H—l
B1--BN—1 B

5'5“““2(@) (5'12(212) . glel(Zlel)) (2)

with the notation Z = (z1,...,2nx_;). Therefore using the assumption (85 we
obtain when z12,...,2n_1—1 N—1 = 11

) 1 du1 % duN,l,1 duN,l / duk =
S Rl T vy R Jo. R c. R (2u)

~ (1 ~ R ~ .
x LD ) 8 (2, u) = a8Y-H(2) Oz LY (2)

where & = k — N 4+ 1+ 1. The following formulae have been used: b(z —
u) TINS duj—2) TIXS! (2 —uy) [TV 7(zi—uj) = —1, the relation (i’ ) of
for the p-function p{ (z, 22, ... zn—1,@) = (=1 N4 p (5 ) (if 215 =

0= Ziy oy y = 1) and the recursion relation ¢; = ¢4 H;V:El*l dN)(]zn) The
solution to this recursion relation with ¢y_1 =1 is
cr = N2 (i)™ 3 (2in) - (N — 2)in) (86)
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