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Abstract
The form factor equations are solved for a SU(N) invariant S-matrix under
the assumption that the anti-particle is identified with the bound state of
N − 1 particles. The solution is obtained explicitly in terms of the nested
off-shell Bethe ansatz where the contribution from each level is written in
terms of multiple contour integrals. The general solution is illustrated for
some operators, such as the energy–momentum tensor, the fields and the
current.

PACS numbers: 11.10.−z, 11.10.Kk, 11.55.Ds

1. Introduction

Thirty five years after the discovery of asymptotic freedom [1, 2], quantum chromodynamics
(QCD), the theory of the strong interactions between quarks and gluons remains a challenge.
One of the most important trends in theoretical physics in the last several decades is the
development of exact methods which are completely different from the perturbation theory
since the perturbation theory is not applicable in the strong coupling regime. Resolution
of the strong coupling problem would give us a full understanding of the structure of
interactions in non-Abelian gauge theory and, in particular, would shed light on the mysterious
confinement phenomena in QCD. One promising possibility of overcoming the limitations of
the perturbation theory is the application of exact integrability. This is one of the reasons why
investigation of two-dimensional exactly solvable lattice statistical systems, one-dimensional
spin chains and quantum field theory models in 1 + 1 dimensions in the framework of the
Bethe ansatz method is still quite actual [3]. Some two-dimensional exactly integrable field
theories, such as a nonlinear σ -model or Gross–Neveu model, exhibit asymptotic freedom,
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a phenomenon initially observed in non-Abelian gauge theories. From this point of view
the two-dimensional integrable quantum field theories are in a sense a laboratory for the
investigations of those properties of quantum field theories, which cannot be described via
perturbation theory. One may hope that some of these properties, at least qualitatively, could
be extended to the higher dimensions too.

The Bethe ansatz method [4], was first introduced by Bethe to solve the isotropic
Heisenberg model. Yang [5] and Sutherland [6] generalized the technique of the Bethe
ansatz for those cases where the underlying symmetry group is larger than SU(2). This
method is now called the nested Bethe ansatz. A great impulse in the theory of integrable
models was given by Faddeev and collaborators [7] with the development of the algebraic
Bethe ansatz method. Another modification of the Bethe ansatz is the off-shell Bethe ansatz,
which was originally formulated in [8] to calculate the correlation function in WZNW models
(see also [9, 10]). This version of the Bethe ansatz paves the way to an analysis of off-shell
quantities and opens up the intriguing possibility of merging the Bethe ansatz and the form
factor approach.

The exact determination of form factors, which are matrix elements of local operators,
was formulated in the 1970s [11]. This approach was developed further and studied in the
context of several explicit models by Smirnov [12] . Subsequently, [13] the techniques of the
off-shell Bethe ansatz were used to determine the form factors for the sine-Gordon model.
There, however, the underlying group structure is simple and there was no need to use a
nested version of the off-shell Bethe ansatz. Recently, the form factor program has received
renewed interest in different areas, such as condensed matter physics [14–16] and atomic
physics [17]. In particular, applications to Mott insulators and carbon nanotubes [14, 18]
doped two-leg ladders [19] and in the field of Bose–Einstein condensates of ultracold atomic
and molecular gases [17, 20] have been discussed. In addition, form factors have also been
employed to compute corrections to the entanglement, an essential property in the field of
quantum computation [21].

In the present paper we will focus on the determination of the form factors for an SU(N)

invariant S-matrix. We have to apply the nested off-shell Bethe ansatz to get the vectorial
part of the form factors. This solves the missing link of Smirnov’s [12] formula for the
SU(N) form factors, where the vectors were given by an ‘indirect definition’ characterized
by necessary properties but not provided explicitly. The procedure is similar as for the scaling
Z(N) ising and affine A(N − 1) Toda models [22, 23] because the bound-state structures
of these models are similar. However, the algebraic structure of the form factors for the
SU(N) model is more complicated, because the S-matrix possesses backward scattering.
Therefore, we have to develop a nontrivial algebraic nested off-shell Bethe ansatz. We note
that SU(N) form factors were also calculated in [12, 24, 25] using other techniques, also see
the related paper [26, 27]. We believe that our integral representation may shed some light,
for a better understanding, on the correlation functions of SU(N) invariant models, which are
also interesting for applications [28].

The paper is organized as follows: In section 2, we recall some known formulae
and derive some simple results, which will be used in the following. In section 3, we
construct the general form factor formula. In section 4, we discuss form factors of some
operators such as the energy–momentum tensor, the Dirac field and the SU(N) current. A
summary of our results can be found in section 5. In appendix A we present some basic
properties of the SU(N) bound state S-matrix. In appendix B we provide the proofs of the
main theorem, and in appendix C we prove the lemma dedicated to the higher level Bethe
ansatz.
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2. General setting

2.1. The SU(N)S-matrix

The general solutions of the Yang–Baxter equations, unitarity and crossing relations for a
U(N) invariant S-matrix have been obtained in [29]. The S-matrix for the scattering of two
particles of rank 1 (belonging to the vector representation of SU(N)) can be written as

S
δγ

αβ (θ) = δαγ δβδb(θ) + δαδδβγ c(θ). (1)

The amplitudes which we use in the following are given by

a(θ) = b(θ) + c(θ) = −�
(
1 − θ

2π i

)
�

(
1 − 1

N
+ θ

2π i

)
�

(
1 + θ

2π i

)
�

(
1 − 1

N
− θ

2π i

) (2)

and

c(θ) = − iη

θ
b(θ), η = 2π/N.

The amplitude a(θ) is the highest weight S-matrix eigenvalue for the two-particle scattering.
It will be essential for the Bethe ansatz below.

The S-matrix eigenvalue b(θ) − c(θ) has a pole at θ = iη, which means that there exist
bound states of r fundamental particles α1 + · · · + αr → (ρ1 · · · ρr) (with ρ1 < · · · < ρr )
which transform as the anti-symmetric SU(N) tensor representation of rank r(0 < r < N).
The masses of the bound states satisfy mr = mN−r which suggests Swieca’s [30, 31] picture
that the anti-particle of a particle of rank r is to be identified with the particle of rank N − r

(also see [22, 23]).
The general bound state S-matrix formula [32, 33] for the scattering of a bound state with

another particle can be used to calculate iteratively the scattering of a particle of rank N − 1
with a particle of rank 1 (for details, see appendix A and [34]). The result is

S
γ (σ)

(ρ)α (θ) = (−1)N−1
(
δ

(σ)

(ρ) δ
γ
α b(π i − θ) + Cγ (σ )C(ρ)αc(π i − θ)

)
, (3)

where (σ ) = (σ1 · · · σN−1) and (ρ) = (ρ1 · · · ρN−1) denote the bound states. We have
introduced the charge conjugation matrices

C(α1···αN−1)αN
= Cα1(α2···αN ) = εα1···αN

Cα1(α2···αN ) = C(α1···αN−1)αN = (−1)N−1εα1α2···αN
(4)

with εα1···αN
and εα1α2···αN being total anti-symmetric and ε1···N = ε1···N = 1. The charge

conjugation matrices satisfy

Cα(ρ)C(ρ)β = δβ
α , Cα(ρ)A

α
βCβ(ρ) = (−1)N−1 tr A. (5)

Formula (3) may be interpreted as an unusual (because of the sign (−1)N−1) crossing relation:

S
γ (σ)

(ρ)α (θ) = (−1)N−1C(ρ)δS
δγ

αβ (π i − θ)Cβ(σ)

supporting Swieca’s picture that the anti-particle of a particle of rank 1 is to be identified with
the bound state of rank N − 1.

In order to simplify the formulae, we extract the factor a(θ) from the S-matrix (1).

S
δγ

αβ (θ) = a(θ)S̃
δγ

αβ(θ),

such that

S̃
δγ

αβ(θ) = δγ
α δδ

β b̃(θ) + δδ
αδ

γ

β c̃(θ)

b̃(θ) = θ

θ − iη
, c̃(θ) = −iη

θ − iη
.

(6)
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2.2. Generalized form factors

For a state of n particles of kind αi with rapidities θi and a local operator O(x) we define the
form factor functions FO

α1···αn
(θ1, . . . , θn), or using a short-hand notation FO

α (θ), by

〈0|O(x)|θ1, . . . , θn〉in
α = e−ix(p1+···+pn)FO

α (θ), for θ1 > · · · > θn, (7)

where α = (α1, . . . , αn) and θ = (θ1, . . . , θn). For all other arrangements of the rapidities
the functions FO

α (θ) are given by analytic continuation. Note that the physical value of the
form factor, i.e. the left-hand side of (7), is given for ordered rapidities as indicated above and
the statistics of the particles. FO

α (θ) are considered as the components of a co-vector-valued
function FO

1···n(θ) ∈ V1···n = (V 1···n)†. The general form factor can be written as [11]

FO
1···n(θ) = KO

1···n(θ)
∏

1�i<j�n

F (θij ) (8)

where F(θ) is the minimal form factor function (9) and the K-function KO
1···n(θ) is given

below. It satisfies the form factor equations (i)–(v) (see below and [11–13, 23, 33]). For
bosons and fermions they follow from general LSZ assumptions and ‘maximal analyticity’
[13]. For anyons there are additional statistics factors [23, 35, 36]. As we will discuss in
section 3, the statistics factors are modified due to the unusual crossing relation of the S-matrix
(see [31]). We will also provide a constructive and systematic way of how to solve the form
factor equations (i)–(v) for the co-vector-valued function FO

1···n for the SU(N)S-matrix.

Minimal form factor. The solutions of Watson’s and the crossing equations (i) and (ii) for two
particles with no poles in the physical strip 0 � lm θ � π and at most a simple zero at θ = 0
are the minimal form factors. In particular, those for highest weight states are essential for the
construction of the off-shell Bethe ansatz. One easily finds the minimal solution of

F(θ) = a(θ)F (−θ) = F(2π i − θ)

using (2) as

F(θ) = c exp
∫ ∞

0

dt

t sinh2 t
e

t
N sinh t (1 − 1/N)(1 − cosh t (1 − θ/(iπ))). (9)

It belongs to the highest weight vector w = (2, 0, . . . , 0) of the two-particle state. We define
the corresponding ‘Jost function’ as for the Z(N) models [22, 23] by the equation

N−2∏
k=0

φ(θ + kiη)

N−1∏
k=0

F(θ + kiη) = 1, η = 2π/N, (10)

which is typical for models where the bound state of N − 1 particles is the anti-particle [23].
The solution is

φ(θ) = �(θ/(2π i))�(1 − 1/N − θ/(2π i)), (11)

and satisfies the relations

φ(θ) = φ(−θ)a(−θ) = φ((N − 1)iη − θ)

= 1

−b(θ)
φ(2π i − θ) = a(θ − 2π i)

−b(θ)
φ(θ − 2π i). (12)

Equations (10) and (11) also determine the normalization constant c in (9) (for details see
appendix A and [34]).
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2.3. Nested ‘off-shell’ Bethe ansatz for SU(N)

We consider a state with n particles and define as usual in the context of the algebraic Bethe
ansatz [7, 37] the monodromy matrix

T̃1···n,0(θ, θ0) = S̃10(θ10) · · · S̃n0(θn0). (13)

It is a matrix acting in the tensor product of the ‘quantum space’ V 1···n = V 1 ⊗ · · · ⊗ V n and
the ‘auxiliary space’ V 0. All vector spaces V i are isomorphic to a space V whose basis vectors
label all kinds of particles. Here we consider V ∼= C

N as the space of the vector representation
of SU(N). The Yang–Baxter algebra relation for the S-matrix yields

T̃1···n,a(θ, θa)T̃1···n,b(θ, θb)S̃ab(θa − θb) = S̃ab(θa − θb)T̃1···n,b(θ, θb)T̃1···n,a(θ, θa),

which implies the basic algebraic properties of the sub-matrices A,B,C,D with respect to
the auxiliary space defined by

T̃1···n,0(θ, z) ≡
(

Ã1···n(θ, z) B̃1···n,β(θ, z)

C̃
β

1···n(θ, z) D̃
β ′
1···n,β(θ, z)

)
, (14)

where 2 � β, β ′ � N .
An ‘off-shell’ Bethe ansatz for a co-vector-valued function Kα(θ) is given by the multiple

contour integral

Kα(θ) = 1

m!

∫
Cθ

dz1

R
· · ·

∫
Cθ

dzm

R
h̃(θ, z)p(θ, z)̃α(θ, z) (15)

with the scalar functions

h̃(θ, z) =
n∏

i=1

m∏
j=1

φ̃(θi − zj )
∏

1�i<j�m

τ(zi − zj ) (16)

τ(z) = 1

φ(θ)φ(−θ)
, φ̃(θ) = φ(θ)a(θ) = φ(−θ), (17)

where the function φ(θ) is defined by equation (10) with solution (11). Below we will use
the co-vector-valued function Kα(θ) to construct form factors for operators O(x). The scalar
p-function p(θ, z) which is in general a simple function of eθi and ezj (see below) will depend
on the specific operator O(x). It turns out that by means of the integral representation,
we transform the complicated form factor equations (22)–(26) (which are in general matrix
equations) to simple equations for the p-function (see section 3). The integration contour Cθ

(see figure 1) can be characterized as follows: there is a finite number of complex numbers
ai(θ), bj (θ) such that the positions of all poles of the integrand in (15) are of the form

(1) ai(θ) + 2π ik, k ∈ N, (2) bj (θ) − 2π il, l ∈ N,

then Cθ runs from −∞ to +∞ such that all poles (1) are above and all poles (2) are below the
contour (this is usually not a straight line). This contour is just the same as that used for the
definition of Meijer’s G-function. The constant R is defined by R = ∮

θ
dzφ̃(θ − z) where the

integration contour is a small circle around z = θ as part of Cθ . The K-function is in general
a linear combination of the fundamental building blocks [22, 23, 38] given by (15)–(17). We
consider here cases where the sum consists only of one term.

Nesting. If in (14) the range of β’s is nontrivial, i.e. if N > 2, the Bethe ansatz co-vectors are
of the form

̃α(θ, z) = Lβ(z)�̃
β

α(θ, z) (18)
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θn 2πi

•
θn − 2πi 1

N

• θn

• θn + 2πi(1 − 1
N

)

. . .

θ2 2πi

•
θ2 − 2πi 1

N

• θ2

• θ2 + 2πi(1 − 1
N

)

• θ1 − 2πi

•
θ1 − 2πi 1

N

• θ1

• θ1 + 2πi(1 − 1
N

)

Figure 1. The integration contour Cθ . The bullets refer to poles of the integrand in (15).

where summation over all β = (β1, . . . , βm) with βi > 1 is assumed. The basic Bethe ansatz

co-vectors �̃
β

1···n ∈ (V 1···n)† are defined as

�̃
β

1···n(θ, z) = �1···nC̃
βm

1···n(θ, zm) · · · C̃β1
1···n(θ, z1). (19)

Here the ‘pseudo-vacuum’ is the highest weight co-vector (with weight vector w =
(n, 0, . . . , 0))

�1···n = e(1) ⊗ · · · ⊗ e(1)

where the unit vectors e(α)(α = 1, . . . , N) correspond to the particle of type α which belongs
to the vector representation of SU(N). The pseudo-vacuum vector satisfies

�1···nB̃
β

1···n(θ, z) = 0,

�1···nÃ1···n(θ, z) = �1···n, (20)

�1···nD̃
β ′
1···n,β(θ, z) = δ

β ′
β

n∏
i=1

b̃(θi − z)�1···n.

The amplitudes of the scattering matrices are given by equations (1) and (2). The technique of
the ‘nested Bethe ansatz’ means that one makes for the coefficients Lβ(z) in (18) the analogous
construction (15)–(17) as for Kα(θ) where now the indices β take only the values 2 � βi � N .
This nesting is repeated until the space of the coefficients becomes one dimensional. It is
well known (see [39]) that the ‘off-shell’ Bethe ansatz states are highest weight states if they
satisfy a matrix difference equation which is here the form factor equation (ii) (see below).
The SU(N) weights are

w = (n0 − n1, n1 − n2, . . . , nN−2 − nN−1, nN−1) (21)

where n0 = n, n1 = m, . . . are the numbers of variables in the various levels of the nesting.

3. SU (N ) form factors

In this section we perform the form factor program for the general SU(N) S-matrix. For
this purpose, we perform the nested Bethe ansatz method with N − 1 levels combined with
the off-shell Bethe ansatz. Applications of the results to the SU(N) chiral Gross–Neveu
model [40] will be investigated in a separate article [34]. We consider operators O(x) with
charge QO where QO is the smallest number n of fundamental (rank 1) particles such that

6
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〈0|O(x)|θ1, . . . , θn〉in is non-vanishing. For example, for the energy–momentum tensor and
the SU(N) current QT = QJ = 0 and for the fundamental field Qψ = 1.

SU(N) form factor equations. The co-vector-valued auxiliary function FO
1···n(θ) is

meromorphic in all variables θ1, . . . , θn and satisfies the following relations.

(i) The Watson’s equations describe the symmetry property under the permutation of both,
the variables θi, θj and the spaces i, j = i + 1 at the same time,

FO
···ij ···(· · · , θi, θj , . . .) = FO

···ji···(· · · , θj , θi, . . .)Sij (θij ) (22)

for all possible arrangements of θ ’s.
(ii) The crossing relation implies a periodicity property under the cyclic permutation of the

rapidity variables and spaces:
out,1̄〈θ1|O(0)|θ2, . . . , θn〉in,conn.

2···n = FO
1...n(θ1 + iπ, θ2, . . . , θn)σ̇1C1̄1

= FO
2...n1(θ2, . . . , θn, θ1 − iπ)C11̄ (23)

where σ̇O
α takes into account the statistics of the particle α with respect to O. The charge

conjugation matrix C1̄1 is defined by (4).
(iii) There are poles determined by one-particle states in each sub-channel given by a subset

of particles of the state in (7). In particular, the function FO
α (θ) has a pole at θ12 = iπ

such that

Res
θ12=iπ

FO
1···n(θ1, . . . , θn) = 2iC12F

O
3···n(θ3, . . . , θn)(1 − σ̇2S2n · · · S23). (24)

(iv) If there are also bound states in the model the function FO
α (θ) has additional poles. If, for

instance, particles 1 and 2 form a bound state (12), there is a pole at θ12 = iη, (0 < η < π)

such that

Res
θ12=iη

FO
12···n(θ1, θ2, . . . , θn) = FO

(12)···n(θ(12), . . . , θn)
√

2�
(12)
12 (25)

where the bound-state intertwiner �
(12)
12 and the values of θ1, θ2, θ(12) and η are given in

[32, 33].
(v) Naturally, since we are dealing with relativistic quantum field theories we finally have

FO
1···n(θ1, . . . , θn) = esµFO

1···n(θ1 + µ, . . . , θn + µ), (26)

if the local operator transforms under Lorentz transformations as O → esµO where s is
the ‘spin’ of O.

Here σ̇1 = ρσO
1 is a phase factor, where σO

1 is the statistics factor of the operator O(x)

with respect to particle 1, and ρ is a sign factor due to the unusual crossing relation of the
S-matrix which is determined as follows. The statistics factors in (ii) and (iii) are not arbitrary,
consistency implies that both are the same, and

σ̇O
1 σ̇O

1̄ = (σ̇O
1 )N = (−1)(N−1)QO

with the solution

σO
1 = eiπ(1−1/N)QO

(27)

ρ = (−1)(N−1)+(1−1/N)(n−QO) = ±1 (28)

where QO = nmodN is the charge of the operator O(x). This solution and the decomposition
of σ̇O

1 = ρσO
1 are of course not unique; the choice proposed is consistent with [31] and the

usual relation of spin and statistics (for all examples discussed below).

7
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3.1. The form factor formula and SU(N) weights

In order to obtain a recursion relation where only form factors for the fundamental particles of
type α (which transform as the SU(N) vector representation) are involved, we have to apply
iteratively the bound-state relation (iv) to get the (N − 1) bound state which is to be identified
with the anti-particle. Using then the annihilation residue equation (iii), we obtain with (5)

Res
θN−1N=iη

· · · Res
θ12=iη

FO
123···n(θ1, . . . , θn)

= 2i
√

2
N−2

�ε1···NFO
N+1···n(θN+1, . . . , θn)(1 − σ̇O

N SNn · · · SNN+1) (29)

where � is a constant (see (A.5) in appendix A).

The properties of the K-function: We proposed above the n-particle form factors of an operator
O(x) as given by formula (8). In this expression, the K-function KO

1···n(θ) contains the entire
pole structure and its properties are determined by the form factor equations (i)–(iii) which
read in terms of the K-function as

K···ij ···(· · · , θi, θj , . . .) = K···ji···(· · · , θj , θi, . . .)S̃ij (θij ) (30)

Kα1α2...αn
(θ1 + iπ, θ2, . . . , θn)σ̇α1(−1)N−1 = Kα2...αnα1(θ2, . . . , θn, θ1 − iπ) (31)

Res
θN−1N=iη

· · · Res
θ12=iη

K1···N(θ) = c0

n∏
i=N+1

N∏
j=2

φ̃(θij )ε1···N

×KN+1···n(θN+1, . . . , θn)(1 − σ̇NSNn · · · SNN+1) (32)

with the constant

c0 = 2i
√

2
N−2

�

N−1∏
j=1

F−(N−j)(j iη). (33)

For the second equation (31), relation (5) for the charge conjugation matrices has been used
and the third equation (32) follows from (10) and (29).

We propose the K-function Kα(θ) as the integral representation (15) with (16) and (17).
The Bethe ansatz co-vector ̃α(θ, z) is of the forms (18) and (19), and for the function Lβ(z)

one makes again an analogous ansatz as for the K-function (15) where the indices run over
sets with one element less. For the SU(N) case, we have to iterate this N − 2 times.

The higher level Bethe ansatz. We define for l = 1, . . . , N −2, with the short notation m = nl

and k = nl+1:

L
(l)
β (z) = 1

k!

∫
Cz

du1

R
· · ·

∫
Cz

duk

R
h̃(z, u)p(l)(z, u)̃

(l)
β (z, u) (34)

h̃(z, u) =
m∏

i=1

k∏
j=1

φ̃(zi − uj )
∏

1�i<j�k

τ (ui − uj )

̃
(l)
β (z, u) = L(l+1)

γ (u)�̃
(l−1)γ

β (z, u) (35)

where z = z1, . . . , zm, u = u1, . . . , uk, β = β1, . . . , βm, γ = γ1, . . . , γk . The indices assume
the values βi = l + 1, . . . , N, γi = l + 2, . . . , N . By this procedure, one obtains the nested
Bethe ansatz4.
4 In [39] the nested off-shell Bethe ansatz was formulated in terms of ‘Jackson-type integrals’ instead of contour
integrals.
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In order that the form factor FO(θ) given by (8), (15)–(19) and (34) satisfies the form
factor equations (i)–(iii), the higher level L-functions L

(l)
β (z) have to satisfy

(i)(l) Watson’s equations

L
(l)
···ij ···(· · · , zi, zj , . . .) = L

(l)
···ji···(· · · , zj , zi, . . .)S̃ij (zij ), (36)

(ii)(l) the crossing relation

L
(l)
β1,β2,...,βm

(z1 + 2π i, z2, . . . , zm) = L
(l)
β2,...,βm,β1

(z2, . . . , zm, z1) (37)

and
(iii)(l) the function L

(l)
β (z) has to possess simple poles at z12, . . . , zN−l−1,N−l = iη and it has

to factorize in the neighborhood of these poles as

L
(l)
β (z) ≈ cl

m∏
i=N−l+1

N−l∏
j=2

φ̃(zij )S̃
N ···l+1
β̂

(ẑ)L
(l)

β̌
(ž) (38)

where we have used the short notations
β̂ = (β1, . . . , βN−l ), β̌ = (βN−l+1, . . . , βm)

ẑ = (z1, . . . , zN−l ), ž = (zN−l+1, . . . , zm).
(39)

The S-matrix S̃N ···l+1
β̂

(ẑ) describes the total scattering of the N − l particles with rapidities ẑ for

the initial and the final configurations of quantum numbers β̂ and (N, . . . , l + 1), respectively.

Theorem 1. We make the following assumptions:

(1) the p-function p(θ, z) satisfies the equations

(i′) pnm(θ, z) is symmetric under θi ↔ θj and zi ↔ zj

(ii′1) pnm(θ, z) = σ̇ (−1)N−1+mpnm(θ1 + 2π i, θ2, . . . , z)

(ii′2) pnm(θ, z) = (−1)npnm(θ, z1 + 2π i, z2, . . .)

(iii′1) pnm(θ, ẑž) = νpn−Nm−N+1(θ̌ , ž)

(iii′2) pnm(θ, ẑž) = (−1)m+N−1σ̇ νpn−Nm−N+1(θ̌ , ž)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(40)

where in (iii′1)ẑ = (θ2, . . . , θN) and in (iii′2)ẑ = (θ1, . . . , θN−1) with θ12 = · · · = θN−1N =
iη. In (iii′) the short notations (39) and θ̌ = (θN+1, . . . , θn) are used;

(2) the higher level function L
(1)
β (z) satisfies (i)(1)–(iii)(1) of (36)–(38) and

(3) the normalization constant ν satisfies

ν = 2i
√

2
N−2

�

(N − 1)!(iη)N−1

N−1∏
l=1

(−1)nl+l (φ̃(liη)F (liη))l−N (41)

then the co-vector-valued function Fα(θ) given by the ansatz (8) and the integral
representation (15) satisfies the form factor equations (i)–(iii) in the form of (30)–(32).

The proof of this theorem can be found in appendix B.

Lemma 2. The higher level function L
(l)
β (z) satisfies (i)(l)–(iii)(l), if the higher level p-function

in the integral representation (34) satisfies

(i′)(l) p(l)(z, u) is symmetric under zi ↔ zj

(ii′)(l)
{

p
(l)
mk(z, u) = (−1)kp

(l)
mk(z

′, u)

= (−1)mp
(l)
mk(z, u

′)

(iii′)(l) p
(l)
mk(z, z2, . . . zN−l , ǔ)|z12=···=zzN−l−1,N−l

=iη = p
(l)

m̌ǩ
(ž, ǔ)

(42)

9
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with m̌ = m − N + l, ǩ = m − N + l − 1 and m = nl, k = nl+1. We use the short notation
z′ = z1 + 2π i, z2, . . . , zm and u′ = u1 + 2π i, u2, . . . , uk . In (iii′)(l), the short notations (39)
and ǔ = (uN−l , . . . , uk) are used.

The constants satisfy the recursion relation

cl = cl+1(−1)nl+1−N+l+1
N−l−1∏

j=1

φ̃(j iη) (43)

with the solution

c1 = φ̃N−2(iη)φ̃N−3(2iη) · · · φ̃((N − 2)iη)

N−2∏
l=1

(−1)nl+1−N+l+1 (44)

if cN−1 = 1.

This lemma is proved in appendix C.
A compact form for full form factors. We may write the above results as

Kα(θ) = 1

n!

∫
dzh̃(θ, z)p(θ, z)̃α(θ, z), (45)

h̃(θ, z) = h̃(θ, z(1)) · · · h̃(z(N−2), z(N−1)), (46)

̃α(θ, z) = �̃β(N−1) (z(N−2), z(N−1)) · · · �̃β(1)

α (θ, z(1)), (47)

with the short notations∫
dz =

∫
dz(1) · · ·

∫
dz(N−1);

∫
dz(l) =

∫
C

z(l−1)

dz
(l)
1

R
· · ·

∫
C

z(l−1)

dz(l)
nl

R

n! = n1! · · · nN−1!; z = z(1), . . . , z(N−1); z(l) = z
(l)
1 , . . . , z(l)

nl
.

The function h̃(θ, z) is given by (16) and (17).

The p-function and SU(N) weights. In general the function p(θ, z) depends on the rapidities

θ and all integration variables z(l)l = 1, . . . , N − 1. In order that the form factor FO(θ) given
by (8) and (45) satisfies the form factor equations (i)–(iii), the p-function pO(θ, z) in (45)
which depends on the explicit nature of the local operator O(x) is assumed to satisfy

(i′) p(θ, z) is symmetric under θi ↔ θj and z
(l)
i ↔ z

(l)
j

(ii′1) p(θ, z) = σ̇ (−1)n1+N−1p(θ1 + 2π i, θ2, . . . , z)

(ii′2) p(θ, z) = (−1)w
O
l +wO

l+1p(θ, . . . , z
(l)
i + 2π i, . . .), l = 1, . . . , N − 1

(iii′1) p(θ, ẑ(1)ž(1), . . .) = νp(θ̌, ž(1), . . .)

(iii′2) p(θ, ẑ(1)ž(1), . . .) = (−1)n1+N−1σ̇ νp(θ̌ , ž(1), . . .)

(iii′3) p(θ, . . . , z(l), ẑ(l+1)ž(l+1), . . .) = p(θ, . . . , z(l), ž(l+1), . . .)

(v′) p(θ, z) = esµp(θ + µ, z + µ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(48)

where in (iii′1): ẑ
(1) = (θ2, . . . , θN) in (iii′2): ẑ(1) = (θ1, . . . , θN−1) and in (iii′3): ẑ(l+1) =

(z
(l)
2 , . . . z

(l)
N−l ), furthermore in (iii′1) and (iii′2): θ12 = · · · = θN−1N = iη and in (iii′3): z

(l)
12 =

· · · = z(l)
zN−l−1,N−l

= iη. Here we have also included the equation (v′) which implies the behavior
of the form factor under Lorentz transformations (v) of (26). The sign factor (ii′2) follows from
(40) and (42) as (−1)nl−1−nl+1 . This sign does not depend on the specific state of FO

α but only

10
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on the weights of the operator O(x). This can be seen as follows. We assume that the operator
O(x) transforms under SU(N) as a highest weight representation with highest weight vector

wO = (
wO

1 , . . . , wO
N

)
. (49)

Then the SU(N) invariance implies that the weight vector of the form factor Fα(θ) as a
co-vector is of the form

w = wO + L(1, . . . , 1), (L = 0, 1, . . .), (50)

because w = (1, . . . , 1) correspond to the vacuum sector. Then, because of (21),

(−1)nl−1−nl+1 = (−1)wl+wl+1 = (−1)w
O
l +wO

l+1+2L = (−1)w
O
l +wO

l+1 .

Similarly, also the phase factor in (ii′) and (iii′) of (48) σ̇ (−1)n1+N−1 with σ̇ = ρσ and

ρ(−1)n1+N−1 = (−1)(1−1/N)(n0−QO)+n1 (51)

does not depend on the specific state of FO
α but only on the weights of the operator (see (28)).

4. Examples

To illustrate our general results, we present some simple examples of solutions of equations
(48) for the p-functions. Details of the following calculations will be published elsewhere
[34].

4.1. The energy–momentum tensor

The local operator O(x) = T ρσ (x) (where ρ, σ = ± denote the light cone components) has
charge QT = 0, is bosonic, transforms as a scalar under SU(N), and has the weight vector of
(49) wT = (0, . . . , 0). The p-function (as for the sine-Gordon model in [33])

pT ρσ

(θ, z) = NT ρσ

n

n∑
i=1

eρθi

m∑
i=1

eσzi .

solves (48) with

charge QT = 0
weight vector wT = (0, . . . , 0)

statistics factor σT = 1
spin sT = 2

if NT ρσ

n

/
NT ρσ

n−N = ν. The sign factor (51) here is ρ(−1)n1+N−1 = 1.
For the n = N particle form factor, there are nl = N − l integrations in the lth level of

the off-shell Bethe ansatz because (see (21) and (50))

w = (n − n1, n1 − n2, . . . , nN−2 − nN−1, nN−1) = (1, 1, . . . , 1, 1).

We calculate the form factor of the particle α and the bound state (β) = (β1, . . . , βN−1) of
N − 1 particles. In each level, all integrations up to one may be performed iteratively using
the bound-state relation (iv) (similar as in the proof of theorem 1). The result for the form
factor of the particle α and the bound state (β) is written as

FT ρσ

α(β)(θ1, θ2) = KT ρσ

α(β)(θ1, θ2)G(θ12)

KT ρσ

α(β)(θ1, θ2) = NT ρσ

N (eρθ1 + eρθ2)

∫
Cθ

dz

R
φ̃(θ1 − z) eσzL(θ2 − z)εδγ S̃δ1

αε(θ1 − z)S̃
ε(γ )

(β)1(θ2 − z)

(52)

11
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where the summation is over γ and δ > 1 and G(θ) is the minimal form factor function of
two particles of ranks r = 1 and r = N − 1. The functions G(θ) and L(θ) are given by

G(iπ − θ)F (θ)φ(θ) = 1,

L(θ) = �
(

1
2 + θ/(2π i)

)
�

(− 1
2 + 1/N − θ/(2π i)

)
.

The remaining integral in (52) may be performed (similar as in [33]) with the result5

〈0|T ρσ (0)|θ1, θ2〉in
αβ) = 4M2εαβ e

1
2 (ρ+σ)(θ1+θ2+iπ)

sinh 1
2 (θ12 − iπ)

θ12 − iπ
G(θ12).

Similar as in [33] one can prove the eigenvalue equation(∫
dxT ±0(x) −

n∑
i=1

p±
i

)
|θ1, . . . , θn〉in

α = 0

for arbitrary states.

4.2. The fields ψ(±)
α (x)

Because the Bethe ansatz yields highest weight states, we obtain the matrix elements of the
spinor field ψ(x) = ψ

(+)
1 (x), where we consider here the + component of the spinor. The

weight vector is wψ = (1, 0, . . . , 0) and the charge is Qψ = 1. The p-function for the local
operator ψ(x) is (also see [13])

pψ(θ, z) = Nψ
n exp

1

2

(
(1 − 1/N)

n∑
i=1

θi −
m∑

i=1

zi

)
.

It solves (48) with

charge Qψ = 1
weight vector wψ = (1, . . . , 0)

statistics factor σψ = eiπ(1−1/N)

spin sψ = 1
2 (1 − 1/N)

if N
ψ
n

/
N

ψ

n−N = ν. The last two formulae are consistent with the proposal of Swieca et al
[30, 31] that the statistics of the fundamental particles in the chiral SU(N) Gross–Neveu
model should be σ = exp(2π is), where s = 1

2

(
1 − 1

N

)
is the spin (also see (27)). The sign

factor (51) here again is ρ(−1)n1+N−1 = 1.
The 1-particle form factor is, for example,

〈0|ψ(0)|θ〉α = δα1 e
1
2 (1−1/N)θ .

For the n = N + 1 particle form factor, there are again nl = N − l integrations in the lth
level of the off-shell Bethe ansatz and the SU(N) weights are w = (2, 1, . . . , 1, 1). Similar
as above, one obtains the 2-particle and 1-bound state form factor

F
ψ

αβ(γ )(θ1, θ2, θ3) = K
ψ

αβ(γ )(θ1, θ2, θ3)F (θ12)G(θ13)G(θ23),

K
ψ

αβ(γ ) = Nψ e
1
2 (1−1/N)

∑
θi

∫
Cθ

dz

R
φ̃(θ1 − z)φ̃(θ2 − z)L(θ3 − z) e− 1

2 z

× εδγ S̃δ1
α1ε

(θ1 − z)S̃ε1
α2ζ

(θ2 − z)S̃
ζ(γ )

(β)1(θ3 − z).

We were not able to perform this integration. In [34] we will discuss the 1/N expansion of this
exact form factor and compare the result with the 1/N expansion for the chiral Gross–Neveu
model.
5 In [41, 39] this result has been obtained using Jackson-type integrals.
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4.3. The current J
µ

α(ρ)(x)

The SU(N) current transforms as the adjoint representation with highest weights wJ =
(2, 1, . . . , 1, 0) and has charge QJ = 0. Again, because the Bethe ansatz yields highest
weight states we obtain the matrix elements of the highest weight component

J
µ

α(ρ) = δα1ε(ρ)NJµ, (ρ) = (ρ1, . . . , ρN−1)

J µ = εµν∂νϕ

with the pseudo-potential ϕ(x). The p-function for the operator ϕ(x)

pϕ(θ, z, u) = Nϕ
n

(
n∑

i=1

exp θi

)−1

exp
1

2

(
n0∑

i=1

θi −
n1∑

i=1

z
(1)
i −

nN−1∑
i=1

z
(N−1)
i

)

solves (48) with

charge Qϕ = 0
weight vector wϕ = (2, 1, . . . , 1, 0)

statistics factor σϕ = 1
spin sϕ = 0, sJ = 1

if N
ϕ
n

/
N

ϕ

n−N = ν. The sign factor (51) is here ρ(−1)n1+N−1 = −1.
We calculate the form factor of the particle α and the bound state (λ) = (λ1, . . . , λN−1)

of N − 1 particles with the weight vector w = (2, 1, . . . , 1, 0). In each level the integrations
may be performed iteratively using the bound-state relation (iv), similar as above; however,
here no integration remains. The result is

F
ϕ

α(λ)(θ, ω) = K
ϕ

α(λ)(θ, ω)G(θ − ω)

K
ϕ

α(λ)(θ, ω) = N
ϕ

2 δα1ε(λ)N

e
1
2 (θ+ω)

eθ + eω
.

The current form factor therefore is

F
J±

β(ρ)

α(λ) (θ, ω) = 〈0|J±
β(ρ)(0)|θ, ω〉in

α(λ) = ±N2δ
β
α δ

(ρ)

(λ) (e
±θ + e±ω)

e
1
2 (θ+ω)

eθ + eω
G(θ − ω)

= δβ
α δ

(ρ)

(λ) v̄(ω)γ ±u(θ)G(θ − ω)/G(iπ)

as expected.

5. Summary

In this paper we have obtained the form factors for an SU(N) invariant S-matrix. Since the
S-matrix also describes backward scattering, the algebraic structure of the form factors was
more intricate compared to the Z(N) case [23]. We had to combine the nesting procedure with
the techniques of the off-shell Bethe ansatz to capture the vectorial nature of the form factors.
The solution was obtained explicitly in terms of multiple contour integrals. We exemplified
our general solution for several operators, such as the energy–momentum tensor, the fields
and the current. We believe that our new integral representation may shed some light for a
better comprehension of complicated objects, such as the correlation functions for the SU(N)

invariant Gross–Neveu model.
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Appendix A. The SU (N ) bound-state S-matrix

The eigenvalue S−(θ) has a pole at θ = iη = 2π i/N which means that there exist bound states
of r fundamental particles α1 + · · · + αr → (ρ1 · · · ρr)(with ρ1 < · · · < ρr ) which transform
as the anti-symmetric SU(N) tensor representation of rank r(0 < r < N). The masses of
the bound states satisfy mr = mN−r which suggests Swieca’s [30, 31, 42] picture that the
anti-particle of a particle of rank r is to be identified with the particle of rank N − r (also see
[22, 23]).

The general bound-state S-matrix formula [32, 33] for the scattering of a bound state with
another particle reads as

S
γ ′(ρ ′σ ′)
(ρσ )γ (θ(12)3)�

(ρσ)
αβ = �

(ρ ′σ ′)
α′β ′ S

γ ′α′
αγ ′′ (θ13)S

γ ′′β ′
βγ (θ23)|θ12=iη (A.1)

where θ(12) is the bound-state rapidity and η is the bound-state fusion angle. The bound-state
fusion intertwiner �

(ρσ)
αβ is defined by

i Res
θ=iη

S
β ′α′
αβ (θ) =

∑
ρ<σ

�
β ′α′
(ρσ )�

(ρσ)
αβ . (A.2)

With a convenient choice of an undetermined phase factor, one obtains

�
(ρσ)
αβ = �

βα

(ρσ) = i
√

ia(iη)iη
(
δρ
αδσ

β − δσ
α δ

ρ
β

)
. (A.3)

Iterating the general bound-state formula N −1 times, one obtains for the scattering of a bound
state (ρ) = (ρ1ρ2 · · · ρN−1) with another particle δ:

S
δ′(σ )

(ρ)δ (θ)�(ρ)
α = �

(σ)
α′ S

δ′α′
1

α1δ1
(θ + iπ − iη) · · · SδN−2α

′
N−1

αN−1δ
(θ − iπ + iη)

with the total bound-state fusion intertwiner

�(ρ)
α = �(ρ1ρ2···ρN−1)

α1α2···αN−1
= �

(ρ1ρ2···ρN−1)

(ρ1ρ2···ρN−2)αN−1
· · ·�(ρ1ρ2ρ3)

(ρ1ρ2)α3
�(ρ1ρ2)

α1α2
.

Taking special cases for the external particles, we obtain

S
N(1,2···,N−1)

(1,2···,N−1)N (θ) = b(θ + iπ − iη) · · · b(θ − iπ + iη) = (−1)N−1a(π i − θ)

S
N−1(1,2···,N−1)

(1,2···,N−1)N−1 (θ) = b(θ + iπ − iη) · · · a(θ − iπ + iη) = (−1)N−1b(π i − θ)

S
N(1,2···,N−1)

(2,3···,N)1 (θ) = (−1)Nb(θ + iπ − iη) · · · c(θ − iπ + iη) = c(π i − θ).

These results may be interpreted as an unusual crossing relation:

C(β)β�
(β)

β (S(θ1) · · · S(θN−1))
δ′β
αδ = C(β)βS

δ′(β)

(α)δ (θ)�(α)
α (A.4)

= (−1)N−1C(α)γ �(α)
α S

γ δ′
δβ (iπ − θ)

with θj = θ + iπ − j iη and the charge conjugation matrix C(β)β defined by (4). The total
bound-state fusion intertwiner satisfies

C(β1···βN−1)γ �(β1···βN−1)
α1···αN−1

= εα1···αN−1γ �, � = i

√
1

2π
N�N(1 − 1/N). (A.5)
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We consider the total N-particle S-matrix (consisting of N(N − 1)/2 factors) in terms of S̃:

S̃12···N = (S̃12S̃13 · · · S̃1N)(S̃23 · · · S̃2N) · · · S̃N−1N (A.6)

in the limit θjj+1 → iη(j = 1, . . . N − 1). It behaves as

S̃βN ···β2β1
α1α2···αN

≈ (N − 1)!
iη

θ12 − iη
· · · iη

θN−1N − iη
εβ1···βN εα1···αN

. (A.7)

The algebraic structure of this relation follows because one can use the Yang–Baxter equations
to shift in (A.6) any factor S̃ii+1 ∼ (1−P)ii+1 to the right or the left. Therefore, the expression
is totally anti-symmetric with respect to αi and βi . The factor follows from (6).

The normalization constant c in (9) is calculated from (11) and (10) as

c = �−2(1−1/N)

(
1

2
− 1

2N

)
exp

(
−

∫ ∞

0
e

1
N

t

(
sinh

(
1 − 1

N

)
t

t sinh2 t
−

(
1 − 1

N

)
t sinh t

)
dt

)
> 0.

Appendix B. Proof of theorem 1

Proof. Property (i) in the form of (30) follows directly from (i′) of (40), the Yang–Baxter
equations and the action of the S-matrix on the pseudo-ground state �

�···ji···C̃···ji···(· · · θj , θi · · ·)S̃ij (θij ) = �···ji···S̃ij (θij )C̃···ij ···(· · · θi, θj · · ·)
= �···ij ···C̃···ij ···(· · ·θi, θj · · ·)

because S̃11
11(θ) = S11

11(θ)/a(θ) = 1 and F(θ) = F(−θ)a(θ).
Using (i) and (5) the property (ii) in the form of (31) may be rewritten as a matrix

difference equation [39, 41, 43]:

K1···n(θ)Q1···n(θ, i) = (−1)N−1K1···n(θ ′)σ̇1 (B.1)

where θ ′ = (θ1, . . . , θi + 2π i, . . . , θn) and σ̇ is a statistics factor. The matrix Q(θ, i) is the
trace with respect to the auxiliary space

Q1···n(θ, i) = tr0T̃Q,1···n,0(θ, i) (B.2)

of a modified monodromy matrix

T̃Q,1···n,0(θ, i) = S̃10(θ1 − θ ′
i ) · · · Pi0 · · · S̃n0(θn − θi)

where P = S̃(0) is the permutation matrix. In (B.2) we use the rule that the rapidity of a line
changes by 2π i if the line bends by 360◦ in the positive sense. Because of (i) it is sufficient to
proof the matrix difference equation (B.1) for i = 1, i.e. for Q(θ) = Q(θ, 1).

In the following, we will suppress the indices 1 · · · n. The Yang–Baxter relations (14)
imply the typical commutation rules for the matrices Ã, C̃, D̃ defined in (14):

C̃β(θ, z)Ã(θ, θ) = 1

b̃(θ − z)
Ã(θ, θ)C̃β(θ, z) − c̃(θ − z)

b̃(θ − z)
Ã(θ, z)C̃β(θ, θ) (B.3)

C̃β(θ, z)D̃γ ′
γ (θ, θ) = 1

b̃(z − θ)
S̃

γ ′β
β ′γ ′′(z − θ)D̃γ ′′

γ (θ, θ)C̃β ′
(θ, z)

− c̃(z − θ)

b̃(z − θ)
D̃β

γ (θ, z)C̃γ ′
(θ, θ)

where β, β ′, γ, γ ′, γ ′′ ∈ {2, . . . , N}. In addition, there are the Zapletal commutation rules
[39, 41, 43] where the matrices AQ,CQ,DQ defined by

T̃Q(θ) =
(

ÃQ(θ) B̃
β

Q(θ)

C̃
β

Q(θ) D̃Q
β ′
β (θ)

)
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are also involved [43]:

C̃β(θ, z)ÃQ(θ) = 1

b̃(θ ′
1 − z)

ÃQ(θ)C̃β(θ ′, z) − c̃(θ ′
1 − z)

b̃(θ ′
1 − z)

Ã(θ, z)C̃
β

Q(θ) (B.4)

C̃β(θ, z)D̃Q
γ ′
γ (θ) = 1

b̃(z − θ ′
1)

S̃
γ ′β
β ′γ ′′(z − θ ′

1)D̃Q
γ ′′
γ (θ)C̃β ′

(θ ′, z)

− c̃(z − θ1)

b̃(z − θ1)
D̃β

γ (θ, z)C̃
γ ′
Q (θ). (B.5)

Note that we assign to the auxiliary space of T̃Q(θ) corresponding to the horizontal line the
spectral parameter θ1 on the right-hand side and θ ′

1 = θ1 + 2π i on the left-hand side.
We are now going to prove (B.1) in the form

K(θ)Q(θ) = K(θ)

⎛
⎝ÃQ(θ) +

N∑
β=2

D̃Q
β

β(θ)

⎞
⎠ = σ̇ (−1)N−1K(θ ′) (B.6)

where K(θ) is a co-vector-valued function as given by (15) and the Bethe ansatz state (18)
and (19). Using a short notation, we write

K(θ) =
∫
Cθ

dz h̃(θ, z)p(θ, z)̃(θ, z)

(with
∫
Cθ

dz = Nn

m!

∫
Cθ

dz1
R

· · · ∫Cθ

dzm

R
). To analyze the left-hand side of (B.6), we proceed as

follows: we apply the trace of T̃Q to the co-vector ̃(θ, z).
In the contribution from ÃQ(θ) which means γ ′ = γ = 1, one may use Yang–Baxter

relations to observe that only the amplitudes S̃11
11(θ1−zj ) = 1 appear in the S-matrices S̃(θ1−zj )

which are constituents of the C-operators. Therefore we may shift all zj -integration contours
Cθ to Cθ ′ without changing the values of the integrals, because there are no singularities inside
Cθ ∪ −Cθ ′ (cf figure 1).

We now proceed as usual in the algebraic Bethe ansatz and push ÃQ(θ) and D̃Q(θ)

through all the C-operators using the commutation rules (B.4) and (B.5) and obtain

C̃βm(θ, zm) · · · C̃β1(θ, z1)ÃQ(θ) =
m∏

j=1

1

b̃(θ ′
1 − zj )

ÃQ(θ)

× C̃βm(θ ′, zm) · · · C̃β1(θ ′, z1) +
∑

uwA,

C̃βm(θ, zm) · · · C̃β1(θ, z1)D̃Q
β ′
β (θ) =

m∏
j=1

1

b̃(zj − θ ′
1)

T̃
(1)

β ′β ′′
β ′β(z, θ ′

1)D̃Q
β ′′
β (θ)

× C̃β ′
m(θ, zm) · · · C̃β ′

1(θ, z1) +
∑

uwD.

The ‘wanted terms’ written out explicitly originate from the first term in the commutation rules
(B.4); all other contributions yield the so-called ‘unwanted terms’. The next level monodromy
matrix is

T̃ (1)β
′β

β ′β(z, θ) = (S̃10(z1 − θ) · · · S̃m0(zm − θ))
β ′β
β ′β

where β’s and also the internal summation indices take the values 2, . . . , N . If we insert these
equations into the representation (15) of K(θ), we first find that the wanted contribution from
ÃQ already gives the result we are looking for. Secondly, the wanted contribution from D̃Q

applied to � gives zero. Thirdly, the unwanted contributions from ÃQ and D̃Q cancel after
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integration over zj . These three facts follow from the ‘shift relations’ of the φ-function (12)
and of the higher level L-function (ii)(1) of (37).

The proof of (iii) is similar to that for the Z(N) model in [23]. We use the short-hand
notations

θ = (θ1, . . . , θn), θ̂ = (θ1, . . . , θN), θ̌ = (θN+1, . . . , θn),

α = (α1, . . . , αn), α̂ = (α1, . . . , αN), α̌ = (αN+1, . . . , αn),

z = (z1, . . . , zm), ẑ = (z1, . . . , zN−1), ž = (zN, . . . , zm),

β = (β1, . . . , βm), β̂ = (β1, . . . , βN−1), β̌ = (βN, . . . , βm).

We prove the form factor equation in the form of (32):

Res
θN−1N=iη

· · · Res
θ12=iη

KO
1···N(θ) = c0

n∏
i=N+1

N∏
j=2

φ̃(θij )ε1···N

×KO
N+1···n(θN+1, . . . , θn)(1 − σ̇O

N SNn · · · SNN+1) (B.7)

for the K-function. The residues of K1···n(θ) consist of three terms

ResθN−1N=iη · · · Resθ12=iηK1···n(θ) = R
(1)
1···n + R

(2)
1···n + R

(3)
1···n

because N − 1 of the z integration contours will be ‘pinched’ at three points. Again due to
symmetry it is sufficient to determine the contribution from the z1, . . . , zN−1-integrations and
multiply the result by m · · · (m − N + 2). The pinching points are

(1) z1 = θ2, . . . , zN−1 = θN ,
(2) z1 = θ1, . . . , zN−1 = θN−1,
(3) z1 = θ2 − iη, . . . , zN−1 = θN − iη.

The contribution of (1) is given by N − 1 integrations along small circles around
z1 = θ2, z2 = θ3, . . . , zN−1 = θN (see figure 1). The S-matrices S̃(θ2 −z1), . . . , S̃(θN −zN−1)

yield the permutation operator S̃(0) = P. Therefore for θ12, . . . , θN−2N−1, θN−1N → iη and
z1 = θ2, z2 = θ3, . . . , zN−1 = θN

�̃
β

α(θ, z) → (�C̃βm(θ, zm) · · · C̃βN (θ, zN)C̃βN−1(θ, θN) · · · C̃β1(θ, θ2))α

=
m∏

j=N

b̃(θ1 − zj )(S̃1N · · · S̃12)
β̂,1
α̂ (�C̃βm(θ̌ , zm) · · · C̃βN (θ̌ , zN))α̌. (B.8)

It has been used that due to the SU(N) ice rule, only the amplitude b(·) (because all
β > 1) contributes to the S-matrices S(θ1 − zj )(j � N) and a(·) to the S-matrices
S(θ2 − zj ), . . . , S(θN − zj )(j � N), S(θi − z1), . . . , S(θi − zN−2)(i � N) after having
applied Yang–Baxter relations. One observes that the product of S-matrices in (38) together
with that in (B.8) yields the total N − 1 particle S-matrix:

S̃N ···2
β̂

(ẑ)(S̃1N · · · S̃12)
β̂,1
α̂ = S̃N ···21

α̂ (θ̂ )

for which the residue formula (A.7) applies

Res
θ12=iη

· · · Res
θN−1N=iη

S̃N ···21
α1···αN

= (N − 1)!(iη)N−1ε1···Nεα1···αN
.

We combine (B.8) with the function Lβ(z) with the property (38) for (l = 1) and the scalar

functions h̃ and p and after having performed the remaining zj -integrations we obtain
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R
(1)
1···n = c0

n∏
i=N+1

N∏
j=2

φ̃(θij )ε1···N(θ̂)KN+1···n(θ̌)

c0 = c1ν(N − 1)!(iη)N−1(−1)m−N+1
N−1∏
j=1

φ̃(j iη).

We have used equations (12), (17), relation (iii’) of (40) for the p-function, relation (41) for
the constant ν and the recursion relation (43) for the constants cl with solution (C.2).

The remaining contribution to (B.7) is due to R2 and R3:

R
(2)
1···n + R

(3)
1···n = −c0

n∏
i=N+1

N∏
j=2

φ̃(θij )ε1···NKN+1···n(θ̌)σ̇NSNn · · · SNN+1.

It is convenient to shift the particle with momentum θN to the right by applying S-matrices
and write the claim as

(
R

(2)
1···n + R

(3)
1···n

)
SN+1N · · · SnN + c0

n∏
i=N+1

N∏
j=2

φ̃(θij )ε1···NKN+1···n(θ̌)σ̇N = 0 (B.9)

where the components of this co-vector are now denoted by vα1···αN−1N+1···αnαN
. Note that

because of (i) (see (30)),

K1···n(θ)SN+1N · · · SnN =
n∏

i=N+1

a(θiN )K1···N−1N+1···nN(θ1, . . . , θN−1, θN+1, . . . , θn, θN).

Because the Bethe ansatz states are of highest weight (see [36]), it is sufficient to prove
(B.9) only for αN = 1. The contribution of R

(2)
1···n is given by the z1, . . . , zN−1-integrations

along the small circles around z1 = θ1, . . . , zN−1 = θN−1 (again see figure 1). Now
S̃(θ1 − z1)1, . . . , S̃(θN−1 − zN−1) yield permutation operators P, and the co-vector part of
this contribution for αN = 1 is

(�C̃βm(θ, zm) · · · C̃βN−1(θ, θN−1) · · · C̃β1(θ, θ1)PN(1))α1···αN−1N+1···αnαN

= δβ1
α1

· · · δβN−1
αN−1

(
�C̃βm(θ̌ , zm) · · · C̃βN (θ̌ , zN)

)
α̌
δ1
αN

(B.10)

where PN(1) projects onto the components with αN = 1. We have used the fact that
because of the SU(N) ice rule, the amplitude a(·) only contributes to the S-matrices
S(θ1 − zj ), S(θ2 − zj ), S(θN − zj ), S(θi − z1) after having applied the Yang–Baxter relations.
We use φ̃(θ) = −b̃(θ + 2π i)φ̃(θ + 2π i) to replace for i = 1, . . . , N − 1 and β �= 1

φ̃(θNi) = S̃11
11(θNi)φ̃(θNi) = −S̃

β1
1β(θNi + 2π i)φ̃(θNi + 2π i)

therefore using again (A.7)

Res
θN−1N=iη

· · · Res
θ12=iη

φ̃(θN1) · · · φ̃(θNN−1)S̃
N ···2
α1···αN−1

(θ1, . . . , θN−1)

= − φ̃(iη) · · · φ̃((N − 1)iη)(N − 1)!(iη)N−1εα1···αN−11.

We combine (B.10) with the function Lβ(z) with the property (38) (for l = 1) and the scalar

functions h̃ and p and after having performed the remaining zj -integrations, we obtain

R
(2)
1···nSN+1N · · · SnNPN(1) = −c0σ̇

n∏
i=N+1

N∏
j=2

φ̃(θij )ε1···NKN+1···n(θ̌)PN(1). (B.11)

Again we have used equations (12), (17), relation (iii’) of (40) for the p-function, relation (41)
for the constant ν and the recursion relation (43) for the constants cl with solution (C.2).
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The contribution of pinching (3) is given by the z1, . . . , zN−1-integrations along the
small circles around z1 = θ2 − iη, . . . , zN−2 = θN−1 − iη, zN−1 = θN − iη, (again see

figure 1). In C̃
βN−1
α̃ (θ, zN−1) the S-matrix S̃

β ′
N−1α

′′
N

α′
N 1 (θN −zN−1) yields �

β ′
N−1α

′′
N

(ρσ) �
(ρσ)

α′
N 1 by applying

ReszN−1=θN −iη. (For αN = 1 this vanishes because �
(ρσ)
αβ is anti-symmetric with respect to α, β,

the SU(N) ice rule also implies that α′
N = 1.) Therefore (B.9) is proved for αN = 1 and also

because the left-hand side belongs to the highest weight state in general. �

Appendix C. Proof of lemma 2

Proof. We set nl = m, nl+1 = k. For the higher level functions L
(l)
β (z), one may verify

equations (i)(l) and (ii)(l) quite analogously to the corresponding ones for the main theorem.
We prove (iii)(l) by induction and assume

L(l+1)
γ (u) ≈ cl+1S̃

N ···l+2
γ̂ (û)

k∏
i=N−l

N−l−1∏
j=2

φ̃(uij )L
(l+1)
γ̌ (ǔ) (C.1)

for u12, . . . , uN−l−2,N−2 → iη. In the integral representation (34) of L
(l)
β (z), there are

pinchings at u1 = z2, . . . , uN−l−1 = zN−l if z12, . . . , zN−l−1,N−l → iη. Therefore in ̃
(l)
β (z, u)

the S-matrices S̃(z2 − u1), . . . , S̃(zN−l − uN−l−1) yield the permutation operator P, and we
have to consider

�̃
(l)γ

β (z, u) = (
�(l)C̃(l)γk (z, uk) · · · C̃(l)γN−l−1(z, zN−l ) · · · C̃(l)γ1(z, z2)

)
β

= (
S̃1N−l (z1N−l ) · · · S̃12(z12)

)γ1···γN−l−1l+1
β1···βN−l

k∏
j=N−l

b̃(z1 − uj )�̃
(l)γ̌

β̌
(ž, ǔ)

where β̌ = (βN−l+1, . . . , βm), ž = (zN−l+1, . . . , zm), ǔ = (uN−l , . . . , uk). We may write for
û = (u1, . . . , uN−l−1) = (z2, . . . , zN−l )

S̃N ···l+2
γ̂ (û)

(
S̃1N−l (z1N−l ) · · · S̃12(z12)

)γ1···γN−l−1l+1
β1···βN−l

= S̃N ···l+1
β̂

(ẑ)

with the notation ẑ = (z1, . . . , zN−l ). Therefore using the assumption (C.1) we obtain when
z12, . . . , zN−l−1,N−l → iη

L
(l)
β (z) ≈ 1

ǩ!

∮
z2

du1

R
· · ·

∮
zN−l

duN−l−1

R

∫
Cz

duN−l

R
· · ·

∫
Cz

duk

R
h̃(z, u)

×L(l+1)
γ (u)�̃

(l)γ

β (z, u) = clS̃
N ···l+1
β̂

(ẑ)

m∏
i=N−l+1

N−l∏
j=2

φ̃(zij )L
(l)

β̌
(ž)

where ǩ = k − N + l + 1. The following formulae have been used:

b̃(z1 − uj )

N−l∏
i=3

φ̃(uj − zi)

N−l∏
i=1

φ̃(zi − uj )

N−l∏
i=2

τ(zi − uj ) = −1,

relation (iii′)(l) of (42) for the p-function and the recursion relation

cl = cl+1(−1)nl+1−N+l+1
N−l−1∏

j=1

φ̃(j iη).
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The solution of this recursion relation with cN−1 = 1 is

c1 = φ̃N−2(iη)φ̃N−3(2iη) · · · φ̃((N − 2)iη)

N−2∏
l=1

(−1)nl+1−N+l+1. (C.2)

�
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