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Using Watson’s and the recursive equations satisfied by matrix elements of local operators in 

two-dimensional integrable models, we compute the form factors of the elementary field 4(x) 

and the stress-energy tensor T,,,(x) of sinh-Gordon theory. Form factors of operators with 

higher spin or with different asymptotic behaviour can easily be deduced from them. The value 

of the correlation functions are saturated by the form factors with lowest number of particle 

terms. This is illustrated by an application of the form factors of the trace of T,,,(x) to the sum 

rule of the c-theorem. 

1. Introduction 

Recent investigations on two-dimensional quantum field theories have estab- 

lished the exact integrability for a variety of physically interesting models with 

massive excitations. A rather simple characterization of such theories may be given 

in terms of their scattering data, i.e. their properties on mass-shell. In fact, the 

existence of an infinite number of commuting conserved charges implies that the 

scattering processes which occur in these theories preserve the number of particles 

and the set of their asymptotic momenta [l]. The computation of the exact 

factorized S-matrix may be performed by combining the standard requirements of 

unitarity and crossing symmetry together with the symmetry properties of the 

model [l-7]. In many cases, the conjectured S-matrix may be supported by 

perturbative checks [1,6-S]. 

The knowledge of the exact S-matrix can then be used to compute off-shell 

quantities, like correlation functions of elementary or composite fields of the 

integrable models under investigation. This can be achieved by considering the 

form factors of local fields, which are matrix elements of operators between 
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asymptoticstates.Generalpropertiesof unitarity, analyticity andlocality lead to a
systemof functional equationsfor thesematrix elementswhich permit in many
cases their explicit determination[10—171.The correlation functions are then
written in termsof an infinite sumover the multi-particle form factors.

In this paperwe investigateoneof the simplest integrablelagrangiansystem,
namely the sinh—Gordontheory. Many propertiesof this model are well estab-
lished, the exact S-matrix for instancewas obtained in ref. [6], whereasthe
quantizationof this theory has beenstudiedin ref. [18]. Our objective is to derive
expressionsfor the form factors of the elementaryfield 4(x) and the energy—
momentumtensor T~,(x),which are the most representativeoperatorsof the odd

andevensectorof the ~2 symmetryof this model.
The paper is organizedas follows: in sect. 2 we discussgeneralpropertiesof

form factors for integrablemodels,i.e. their analytic structure,Watson’sand the
recursiveequationswhich they satisfy. in sect. 3 we recall the basicpropertiesof
the sinh—Gordontheory. Sect.4 is devotedto the explicit computationof form
factors for this theory. In sect. 5 we investigatethe naturalgradingintroducedin
the spaceof the form factorsby the arbitrarinessinherentWatson’sequationsand,
in particular,we show how form factors of operatorswith higher spin can be
obtainedfrom the onesfor 4(x) and T~(x).In sect. 6 we makeuseof the form
factorsof the stress-energytensorin order to illustrate thec-theorem.In sect.7 we
presentour conclusions.

2. General properties of form factors

Essential input for the computationof form factors is the knowledgeof the
scatteringmatrix S. For two-dimensionalintegrablesystemsthe expressionof the
S-matrix is particularly simple and may be obtainedexplicitly for severalsystems
[1—7].Since the dynamicsis governedby an infinite numberof higherconservation
laws, the scatteringprocessesfor integrablemodels are purely elastic and the
generaln-particleS-matrix definedby

~ ~ (2.1)

factorizesinto n(n — 1)/2 two-particle S-matrices[1]

S~©(p1,p2,.. .,p~) = flS~(p~,p1). (2.2)
i <j

It is convenientto useinsteadof the momentathe rapidities ~ definedby

= m1 cosh 13k, p~= m1 sinh /3.. (2.3)
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By Lorentz invariance,the scatteringamplitudeswill be functions of the rapidity
differences~ = f3~— f3~.The two particle S-matrix satisfies the usual axioms of
unitarityandcrossingsymmetry

5(13)=S~~(f3~~)STt(f3..)

S,~(f3,~)=511(iIT—13,1). (2.4)

Possiblebound stateswill occur as simple or higherodd poles in the S-matrix for
purely imaginaryvaluesof /3 in the physical strip 0 < Im /3 <ir.

Once the S-matrix is known, it is possibleto analyzetheoff-shell quantumfield
theoryby consideringthe form-factorswhich arematrix elementsof local opera-
tors 5?(x) betweenthe asymptoticstates.Pioneeringwork on this subjecthasbeen
carriedout by the authorsof ref. [101andmorerecentlyadvanceshavebeenmade
by Smirnov and Kirillov [11—131.In order to provide a self-consistentaccountof
the paper,we recall someessentialpropertiesof the form factors,stayingcloseto
the notationsof ref. [11].

2.1. ZAMOLODCHIKOV ALGEBRA

At the heartof the constructionof the form factors lies the assumptionthat
thereexistsa set of vertexoperators,of creationandannihilationtype, i.e. fr~(/31),

l/~(/3,),which providea generalizationof the bosonicandfermionicalgebras.Here
the a, denotesome quantum numberindicating the different types of particles
presentin the theory. Theseoperatorsare assumedto obeythe following non-
abelian,associativealgebra,involving the S-matrix

J/~(/3,)J/~(f31)~ (2.5)

fr~(i3,)fr~.(/33)= Sjj(f3jj)Va
t(f3j)V~:,t(/3j), (2.6)

Va(I3j)Vc~t(I3j)= Sij(Pji)l/~.(/3j)Vc~(/3i)+ 2ITöaa8(fijj). (2.7)

Each commutationof theseoperatoris thus interpretedas a scatteringprocess.
The Poincarégroup generatedby the Lorentz transformation L(�) and the
translation1~,is expectedto act on theseoperatorsin the following way:

ULVa(13)Ujt = V~(/3+ e), (2.8)

UTVa(/3)U~1= el’~(/3). (2.9)

Clearly, the explicit form of thesevertexoperatorsdependscrucially on the nature
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of the theoryunderconsiderationanda realizationof sucha constructionremains
hitherto an openchallengefor most theories.

2.2. PHYSICAL STATES

We canusethe vertexoperatorsintroducedin subsect.2.1 in order to definea
spaceof physicalstates.For this aim, let usconsiderthe vacuum 10) which is the
stateannihilatedby the operator J’~(/3),

fr~(/3)0) = 0 = KO V~t(/3). (2.10)

The Hubertspaceis thendefinedby a successiveactionof l~(/3)on 0), i.e.

V~(f3~))V~(I3~)... V~(/3~)0). (2.11)

From eq.(2.7), the one-particlestatesare normalizedas

Kl~’~(I3~)I I’~(I3~))= 2i~~~a,aj~(/3jj). (2.12)

The algebraof the vertexoperatorsimplies that the vectors(2.11) arenot linearly
independentand in order to obtain a basis of linearly independentstateswe
require some additional restrictions. In ref. [1] the following prescriptionwas
proposed:Selectas a basisfor the in-statesthosewhich are orderedwith decreas-
ing rapidities,

/3t>...>I3n,

and as a basis for the out-statesthosewith increasingrapidities,

These conditionsselect a set of linearly independentvectorswhich serve as a
unique basis.

2.3. FORM FACTORS

If not explicitly mentioned,in the following we will considermatrix elements
between in-statesand out-statesof hermitian local scalaroperators t9(x) of a
theorywith only one self-conjugateparticle,

outK~’(I3m+t)(/3n)I)I~’(/3i).V(/3m))jn (2.13)

Matrix elementsof higherspin operatorswill bediscussedlateron. We canalways
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0(0) /32

Fig. 1. Form factorsof theoperator s~(O).

shift the matrix elements(2.13) to the origin by meansof a translation on the
operator~‘(x), i.e. UT~(x)U~t= ~~7(x+ y) andby usingeq.(2.9),

n m
exp I ~ p~(f3

1)— Ep,~(13,)x’~
i==m+I i~t

><out<1~(/3m+i).(Pn)I~(0)Ii”(/3t)..~(Pm))in. (2.14)

It is convenientto introducethe following functions,calledform factors(fig. 1):

‘~‘(/3~,/32’.”,/3n) = (0 ~‘(0, 0) f3~,f~2’~~•’/~n)’fl’ (2.15)

which are the matrix elementsof an operatorat the origin betweenan n-particle
in-stateand the vacuum~. For local scalaroperators~9(x), relativistic invariance
implies that the form factorsF~are functionsof thedifferenceof the rapidities f3~

F~(f3~,/~2,.• . ,f3~)=1~(/3t2,/
3t3’• . . , ~ i <j. (2.16)

Crossingsymmetry also implies that the most general matrix element(2.14) is
obtainedby an analyticcontinuationof (2.15), andequals

~z+m(/31,/32,...,/3m,/3m+tT,~.,/3n)~z+m(/3ij,h1T/3sr,/3k1),

(2.17)

~
Except for the poles correspondingto the one-particlebound states in all

subchannels,we expect the form factors F~to be analytic inside the strip 0 <

Im /3k, <2ir.

* Hereand in thefollowing we usea more simplified notation for thephysicalstates ... k~(f3~)...)

I .. . /3,,...~. In most caseswe will alsosuppressthe superscript~s’and only use it when considering
form factorsrelatedto different local operators.
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2.4. WATSON’S EQUATIONS

The form factors of a hermitian local scalar operator ~ satisfy a set of
equations,known as Watson’sequations[9],which for integrablesystemsassumea
particularly simple form

F~(f3t-i-2ITi,...,/3,,~,/3,,)=F,,(/32,...,/3,,,/3i)

= i~2’ -131)F,,(/31,.. .,/3~). (2.18)

The first equation is simply a consequenceof (2.5), i.e. as a result of the
commutationof two operatorswe get a scatteringprocess.Concerningthe second
equation,it stateswhich is the discontinuity on the cuts

13~,= 2ITi. In the case
n = 2, eqs.(2.18) reduceto

F
2(13) =F2(—/3)S2(f3),

F2(iIT—13) =F2(iii-+/3). (2.19)

Smirnov [11,131has shown that eqs. (2.18), togetherwith eqs. (2.25) and (2.27)
which will be discussedin subject 2.5, can be regardedas a systemof axiomswhich
definesthe whole local operatorcontentof the theory.

Thegeneralsolution of Watson’sequationscan alwaysbebrought into the form

[10]

F,,(/31,...,/3,,)=K,,(/3t 13n)111~min(Pij), (2.20)
i<j

where Fmjn(f3) hasthepropertiesthat it satisfies(2.19), is analytic in 0 < Im /3 <IT,

hasno zerosin 0 < Im /3 <IT, andconvergesto a constantvaluefor largevaluesof

/3. Theserequirementsuniquely determinethis function, up to a normalization.
The remaining factors K,, then satisfy Watson’s equationswith ~2 = 1, which
implies that they are completelysymmetric,2ITi-periodic functionsof the /3.. They
mustcontainall the physical polesexpectedin theform factor underconsideration
and must satisfy a correct asymptotic behaviour for large value of f~~•Both
requirementsdependon the natureof the theoryandon the operator~9.

Postponingthediscussionon the pole structureof F,, to the next section,let us
notice that one condition on the asymptoticbehaviour of the form factors is
dictated by relativistic invariance. In fact, a simultaneousshift in the rapidity
variablesresults in

F,~(/31+A,/32+fl /3,,+A)=F,~(p1,/32,...,/3,,). (2.21)
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For form factors of an operator S’(x) of spin s, the previousequationgeneralizes

to

F,,~(/31+A, /32+fl,...,/3,,+A)=e~
1~(/3t,132,...,/3,,). (2.22)

Secondly, in order to have a power-law boundedultraviolet behaviourof the
two-point function of the operator~x) (which is the casewe will consider),we
haveto requirethat theform factorsbehaveasymptoticallyat mostas exp(kf3,) in
the limit /3, —~ ~, with k being a constantindependentof i. This meansthat,once
we extractfrom K,, the denominatorwhich gives rise to the poles,the remaining
part has to be a symmetric function of the variablesx, e0’, with a finite number
of terms,i.e. a symmetricpolynomial in the x.. It is convenientto introducea basis
in this functional space given by the elementary symmetric polynomials

., x,,) which aregeneratedby [25]

fl(x+x~) = kO x
2,...,x,,). (2.23)

Conventionallythe o-~”~with k > n and with n <0 are zero. The explicit expres-
sions for the othercasesare

= 1,

°t12~”~n’

(2.24)

The ~n) are homogeneouspolynomialsin x, of total degreek andof degreeone
in eachvariable.

2.5. POLE STRUCTUREAND RESIDUE EQUATIONS FOR THE FORM FACTORS

The pole structureof the form factors inducesa set of recursiveequationsfor
the F,, which are of fundamentalimportancefor their explicit determination.As
functionsof the rapidity differences~ the form factors F,, possesstwo kinds of
simplepoles.

The first kind of singularities(which do not dependon whetheror not the
model possessesbound states)arises from kinematicalpoles locatedat 13,~= iIT.

They are related to the one-particlepole in a subchannelof three-particlestates
which, in turn, correspondsto a crossing processof the elastic S-matrix. The
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Fig. 2. Kinematicalrecursiveequationfor theform factorF,,.

correspondingresiduesarecomputedby the LSZ reduction[12,13]andgive rise to
a recursiveequationbetweenthe n-particle andthe (n + 2)-particle form factors

(fig. 2)

_ilim(f~-p)F~±2(~+iIT,/3, f3~ /32’...’/3,,)

(2.25)

The secondtype of polesin the F,, only arisewhenboundstatesarepresentin
the model. Thesepolesare locatedat the valuesof in the physicalstrip which
correspondto the resonanceangles.Let /3,~= iu,~be oneof suchpolesassociated
to the boundstateAk in the channelA, x A3. For the S-matrix we have(fig. 3)

—i lim (/3 — iu~)S~1(p)= (Tk)2 (2.26)
13- iu~,

where T’,~is the three-particlevertexon mass-shell.The correspondingresiduefor
the F~is given by [12,131

—ilimEF,,+t(/3+i~k+e/2,/3—ii~k—E/2,/3l,...,/3fl_l)

~ (2.27)

Fig. 3. Bound-statepolein scatteringamplitude.
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Fig. 4. Bound-staterecursiveequationfor the form factor F,,.

where ile,,b (IT — Uab). This equationestablishesa recursivestructurebetweenthe
(n + 1)- and n-particleform factors(fig. 4).

2.6. CORRELATION FUNCTIONSFROM FORM FACTORS

Once the form factors of a theory areknown, the correlationfunctionsof local
operatorscan be written as an infinite seriesover multi-particle intermediate
states.For instance,the two-point function of an operatort~(x)in real euclidean
spaceis given by

~ d/3~...df3~f ,,~(0I~(x)I/3 ,f3,,)~,,1~(/31,...,/3,,H9(0)I0)
n=O n!(2IT)

~ df3 df3
= ~ f~L’ ,,“ IF,,(f31.../3,,)I

2exp —mrEcosh f3~ , (2.28)

n !(2’rr) 1=1

where r denotesthe radial distance,i.e. r = ~ All integralsareconvergent

andoneexpectsa convergentseriesas well. Similar expressionscanbe derivedfor
multi-point correlators.

3. The sinh—Gordon theory

In this paper the model we are concernedwith is the sinh—Gordon theory,
definedby the action

m2
5~’=f d2x ‘(f3~)2 - —ycosh gçb(x) . (3.1)

It is the simplestexampleof an affine Toda field theories[19], possessinga
symmetry4 —‘ — 4. By an analyticcontinuationin g, i.e. g —* ig, it canformally be
mappedto the sine—Gordonmodel.
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Therearenumerousalternativeviewpointsfor the sinh—Gordonmodel.First, it
can be regardedeitheras a perturbationof the free masslessconformal actionby
meansof the relevantoperator* cosh g4(x). Alternatively, it canbe considered
as a perturbationof the conformalLiouville action

~= f d~x[~(3~)2— A e~] (3.2)

by meansof the relevantoperatore or as a conformal affine A
1 Todatheory [201

in which the conformal symmetryis brokenby settingthe free field to zero.
Furthermore,it is interestingto notice that the sinh—Gordonmodel can be

mappedinto a Coulomb gas systemwith an integerset of charges.To illustrate
this, let usconsiderthe (euclidean)partition function of the model

Z(m, g) =f~e~. (3.3)

Using the identity

m
2

exp —---~-coshg4(x) = ~ ——~- exp(gn(x)q5(x)), (3.4)
g n(x)=—oo g

where I,,(a) denotesthe Besselfunction of integerorder n, the functional integral
in (3.3) becomesgaussianand canbe performedexplicitly. HenceZ(m, g) can be

castin the following form:

Z(m, g) =Z(0) E ‘fl(X)(

2)ex~[2j dx dyn(x)~(x_y)n(y)I,
n(x)=—~ g

(3.5)

where Z(0) is the partition function of a massless free theory and z.~(x — y) is the

two-dimensionalmasslesspropagator.The model is therefore equivalent to a
Coulomb gas systemwith integer chargesand with weight functions for the
configurationsgiven by the .1,,.

In a perturbative approach to the quantum field theory defined by the action
(3.1), the only ultraviolet divergences which occur in any order in g come from
tadpole graphs and can be removed by a normal ordering prescription with respect
to an arbitrary massscaleM. All otherFeynmangraphsare convergentandgive

* Although the anomalousdimensionof this operator (computedwith respectto the free conformal

point), is negative, zl = — g
2/8~r,theresulting theoryis unitary.This is dueto theexistenceof non a

nonzerovacuumexpectationvaluesof someof the fields ~- in the theory. A detailed discussionof
this point canbe found in ref. [151.
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rise to finite wave function and massrenormalisation.The coupling constant g
doesnot renormalise.

An essentialfeatureof the sinh—Gordontheory is its integrability, which in the
classicalcasecanbe establishedby meansof the inversescatteringmethod[23]. In
order to obtain the expressionsof the(classical)conservedcurrents,let us consider
the euclideanversion of the model in termsof the complexcoordinatesz and 2,

z = (x°+ ix’), 2 = (x°— ix’), (3.6)

and define a field ~(z, 2, �) which satisfiesthe following (Bäcklund)equations:

= E sinh(~ -~))~

~-(~-~)=— sinh(~+~)). (3.7)

Given that cb(z, 2) is a solutionof the equationof motion originatedby (3.1), eqs.
(3.7) define a new solution4(z, 2, E) andimply as well the following conservation
laws:

(3.8)

~(z, 2, E) canbe expressedin termsof a powerseriesin E,

~(z, 2, �) = ~ ~~(~)(z,2)E”, (3.9)
n=0

with the fields 4~”kz,2) calculated by using eqs. (3.7). Placing (3.9) into (3.8) and
matchingequalpower in e, oneobtainsan infinite set of conservationlaws

(3.10)

The correspondingchargesd~are given by

~ =~[T,.+,dz + e5,d2]. (3.11)

The integer-valuedindex s which labels the integralsof motion is the spin of the

operators.Non-trivial conservationlawsareobtainedfor oddvaluesof s,

s= 1,3,5,7,... (3.12)

In analogyto the sine—Gordontheory [22], an infinite set of conservedcharges~
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with spin s given in (3.12) also existsfor thequantizedversionof the sinh—Gordon
theory. They are diagonalised by the asymptotic states with eigenvalues given by

~5IP,,...,/3~)=x5E e~’I/3,p> (3.13)

where x.~is the normalization constant of the charge &~.The existence of these
higher integrals of motion precludes the possibility of production processes and
hence guarantees that the n-particle scattering amplitudes are purely elastic and
factorized into n(n — 1)/2 two-particle S-matrices. The exact expression for the
sinh—Gordon theory is given by [6]

tanh ~(/3— iITB/2)
S(/3 B) = (3.14)

tanh ~(f3+IITB/2)’

where B is the following function of the coupling constantg:

2g

2

B(g) = 8IT+g2~ (3.15)

This formula has been checked against perturbationtheory in ref. [6] (more
recentlyto higherordersin ref. [8]) andcanalso be obtainedby analyticcontinua-
tion of the S-matrix of the first breatherof the sine—Gordontheory [1]. For real
valuesof g the S-matrix hasno polesin the physical sheetandhencethereareno

bound states, whereas two zeros are present at the crossing symmetric positions

(iITB/2

13~iIT(2B)/2 (3.16)

The absenceof boundstatesin the sinh—Gordonmodel is also supportedby the
generalfusing rule of affine Todafield theories[24].

An interestingfeatureof the S-matrix is its invarianceunderthe map [7]

B—’2—B, (3.17)

i.e. underthe strong—weakcoupling constantduality

8IT

g—’-——. (3.18)

This duality is a property shared by the unperturbed conformal Liouville theory
(3.2) [211 and it is quite remarkablethat it survives evenwhen the conformal
symmetryis broken.
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4. Form factors for the sinh—Gordon theory

The ~2 symmetryof the model is realized by a map ci, whose effect on the
elementary field of the theory is o~(4)= —~. We assumethat it has the same
effect on the vertex operator, that is u(V(f3)) = — V(f3) together with
o-(V(/3,)V(/32))= u(V(f3,))o-(V(f32)).According to this symmetrywe can label the

operatorsby their Z2 parity.
For operatorswhich are ~2-odd the only possiblenon-zero form factors are

those involving an odd number of particles, i.e.

F~(p1,...,/32,,)=0 for ci(~)=—~. (4.1)

This implies in particularthat ~ cannotacquirea non-zerovacuum expectation
value. On the otherhand,for 7L2-even operatorsthe only possiblenon-zeroform
factorsare thoseinvolving an evennumberof particles, i.e.

~ for ci(c4’)=c~. (4.2)

The vacuumexpectationvalue of ~2-even operatorscan in principle be different
from zero.

The simplest representativeof the odd sectoris given by the (renormalised)
field q~i(x)itself. It createsa one-particlestate form the vacuum.Our normaliza-
tion is fixed to be (see subsect.4.3)

1
F,

4(/3) = (UI 4(0) I f3)~~= —~. (4.3)

For the even sector, an importantoperatoris given by the energy—momentum
tensor

T~(x)= :a,43~j—g~,,~°(x): (4.4)

where :: denotesthe usual normal ordering prescription with respect to an
arbitrary mass scale M. Its trace T~’(x)= �I(x) is a spinlessoperator whose
normalizationis fixed in terms of its two-particleform factor

F~(/3
12= ilr) =~~~(13,I ~(0) I /32)’n = 2ITm

2, (4.5)

where m is the physical mass.
In the following we shall compute the form factors of the operators 4(x) and

e(x). This will be sufficient to characterize the basic properties of the model since
form factorsfor otheroperatorscanin generalbe obtainedfrom simplearguments
once/~and F,~areknown.For instance,suppposewe want to computethe form
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factors of the operator cvi’ = :sinh g4:. They canbe easily computed in terms of the
form factor for ~. In fact, using eq. (2.14) we have

(0I0~3~(z,2) I /3, .•~/3m)’n = — ~ Ee13’~e~Ed’~’F,~(p,,...,p,,).(4.6)

Employing the equation of motion and choosing z = 5 = 0, together with the
identities

~ e~’= ~ x,,. .., x,,), ~ e~’= ~ (4.7)

we derivethe relation

g~ au,o~,,...,F,,4. (4.8)

The proportionality constant can be fixed by the quantum equation of motion. It
will turn out to be [4 sin(ITB/2)/Fmjn(iIT)]’72. In sect. 6 we also describe how form
factorsof operatorswith higherspin arisefrom the knowledgeof F,~or F,~1’.

4.1. MINIMAL TWO-PARTICLE FORM FACTOR

An essentialstepfor the computationof the form factors is the determination
of Fmjn(13), introducedin (2.20). It satisfies the equations

Fmin(13) =Fmin(~l3)S
2(l3),

Fmin(~IT~I3)=Fmin(IIT+13). (4.9)

As shown in ref. [10], the easiestway to computeFmin(/3) (up to a normalization
./Y) is to exploit an integral representationof the S-matrix,

S(13)=exP[f__f(x)sinh~j. (4.10)

Then a solution of (4.27)is givenby

c.sd~ sin2(x/~/2IT)
Fmin(13) =A

t exp f —f(x) ~h (4.11)

where

/3~iIT—/3. (4.12)
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For the sinh—Gordontheorywe have

Fmin(/3, B)

oodx sinh(xB/4) sinh(~x(1—B/2)) sinh(x/2) 2 xf3
=4t exp 8f — 2 sin — (4.13)

o x sinhx 2IT

Wechoose our normalization to be

ocdx sinh(xB/4) sinh(~x(1 —B/2)) sinh(x/2)
.iV=exp _4f -._ 2 . (4.14)

0 x stnhx

The analytic structure of Fmin(/3, B) can be easily read from its infinite-product
representationin termsof F-functions,

Fmin(/3, B)

~ F(k + + I~/2IT)F(k+ ~ + ~B + i~/2IT)F(k + 1— *B + i~/2IT) 2

k=0 F(k + + i13/2IT)F(k + — ~B + i13/2IT)T(k + 1 + ~B + if~/2IT)

(4.15)

F1 F~ i-i- ~F

- / .

/

t 7
0 ~tFL~!.~ ~I I ~Ij /Ii - H - ~.

Fig. 5. Graphsof I Fmjn(13, B)/..4 2 asfunctionof /3 for different valuesof B(g).
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Fmin(13, B) has a simple zero at the threshold /3 = 0 since 5(0)= — 1 and its
asymptoticbehaviouris given by

IimFmjn(/3, B) = 1. (4.16)

It satisfies the functional equation

sinh /3
Fmjn(~IT+/3,B)Fmin(13, B) = sinh 1~+ sinh(iITB/2)

whichwe will use in subsect4.2 in order to find a convenientform for the recursive
equations of the form factors.

A useful expressionfor the numerical evaluation of Fmin(13, B) is given by

Fmin(13,B)

2 2 2 k±t
f3/2IT f3/2IT f3/2IT

1+ 1+ 1+
N-I k+-~ k+~—~B k+1+~B

k-P ~/
2IT 2 ~/2IT 2 /3~/2IT 2

1+ 1+ 1+
k+~ k+~+~B k+1—~B

xB

c*dx sinh stnh(~x(1 —B/2)) sinh(x/2)
Xexp8f— 2

o x stnh x

x/
x(N+ 1—N e2x) e~2~sin2 — . (4.18)

2IT

The rateof convergenceof the integralmay be improvedsubstantiallyby increas-
ing the valueof N. Graphsof Fmj~(/3,B) aredrawn in fig. 5.

4.2. PARAMETRIZATION OF THE n-PARTICLE FORM FACTORS

Since the sinh—Gordon theory has no bound states, the only poleswhich appear
in any form factor F,,(f3,, . . . , /3,,) are thoseoccurringin every three-body channel.
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Additionalpoles in the n-body intermediatechannelare excludedby the elasticity
of the scatteringtheory. Using the identity

2 ~ 2 I I 1(p1+p2+p3) —m=8,n cosh -5/312cosh-~/313cosh~ (4.19)

all possiblethree-particlepolesare takeninto accountby the following parameter-
ization of the function:

Q,(f3
K,,(f3,,..., = fjcosh ~ (4.20)

I <j

where Q~is free of any singularity. The second equation in (2.18) implies that Q,’

is 2IT1-periodic (anti-periodic) when n is an odd (even) integer. Hence, with a
redefinition of Q,’, into Q,,, the general parameterizationof the form factor
I~,(/3,,..., /3,,) is chosento be

/3,,) =H,,Q,,(x x,,)fl Fmin(/3ij) (4.21)
i<j xi+xi

where x, = e
0’ and H,, is a normalizationconstant.The denominatorin (4.21)may

he written more concisely as det ~ where the entries of the (n — I) x (n — 1)-matrix
aregiven by ~ = o-~’2

1(x,,.. ., x,,).
The functions Q,,(x, x,,) aresymmetric polynomials in the variablesx1. As

consequenceof eq. (2.21), for form factors of spinlessoperatorsthe total degree
should be n(n — 1)/2 in order to match the total degreeof the denominatorin
(4.21). Form factors of higher spin operatorswill be consideredin sect. 6. The

order of the degreeof Q,, in eachvariable x is fixed by the natureand by the
asymptoticbehaviourof the operator5F which is considered.

Employing now the parameterization(4.21), togetherwith the identity (4.17),
the recursiveequations(2.25) takeon the form

x, x1,...,x,,)=xD,,(x, x,, x2,...,x,,)Q,,(x,, x2,...,x,,),

(4.22)

where we have introduced the function

= 4 sin(~B/2)(ñ [(x+~x~)(x -co’x~)j - fl [(x_wxi)(x+w’x~)])

(4.23)
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with w = exp(iITB/2).The normalizationconstantsfor the form factorsof odd and
evenoperatorsareconvenientlychosento be

4 sin(1l-B/2)
H,,,~1=H1

Fmin(1IT, B)

4 sin(~B/2) “‘

H2,,=H2 . , (4.24)
Fmjn(1IT, B)

where H, and H2 are the initial conditions, fixed by the natureof the operator.
Using the generatingfunction (2.23) of the symmetricpolynomials,the function D,,

can be expressedas

D,, = E (—1)’ sin((k — 1) ~ )x2~~_t cr/’~u~”. (4.25)
2 sln(ITB/2) /k—U 2

As functionof B, D,, is invariantunder B —s —B. The non-zerotermsenteringthe
sum(4.25) are those involving the ratios

sin(nITB/2)

sin(ITB/2)

n being an odd number. This means that D,, may only contain powers of
cos

2(ITB/2).

4.3. LSZ FORMULA FORFORM FACTORS

The aim of this section is to show that the symmetric polynomials Q
2,, ±

enteringthe form factorsof the elementaryfield ~(x) canbe factorizedas

x2,~,)=ci’~~P2,,+,(x1,...,x2,,÷,) n>0, (4.26)

whereasthe analogouspolynomials enteringthe form factors of the trace of the
stress-energytensorcanbe written as

Q2,,(x, . . . , x7,,) = ci~
2”ci~”2,P

7,,(x, x2,,) n > 1. (4.27)

P,,(x,,. . ., x,,) is a symmetric polynomial of total degree n(n — 3)/2 andof degree
n — 3 in eachvariable x,. Using the following property of the elementary symmet-
ric polynomials

x,,)=o~”~(x,,x2

(4.28)
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the recursive equations (4.22)can then be written in termsof the P,, as

n±t
(—) P,,+2(—x, x, x, x,,) = —D,,(x, x,, x2,...,x,,)P,,(x1,x2 x,,).

(4.29)

In order to show the factorization (4.26) for Fr,, ~,, it is useful to recall the LSZ

formula for the form factorsof a local operator~l~(x),

F,,([3,, 1~2,•

1 “ “ ~—m
2

= — lim fl ‘__. G”~ q = — p~,p
1, p2,. . . , p,, , (4.30)

p~,n

2i=l I i=t

where

(2IT)2~2(q+ ~p
1)G~~(q, p,, p~,..

=f~dx1 dy exp{-1p1x1] exp[-iqy](0IT(~(y)~(x1)~(x2)...~(x,,))0).

(4.31)

The utility of these equations is threefold. First, they mayallow us to fix the initial
condition of the recursive equations (2.25). Second,they permit us to study the
asymptoticbehaviourof the form factors,with a correspondingrestrictionon the
space of solutions. Finally, they provide a tool to check our result through
perturbationtheory.

= +

~__

Fig. 6. Lowest termsin the perturbativeexpressionof the form factors of the elementaryfield ~(0).
G~

2~~’1is theGreenfunctionwith 2n + 1 externallegs.
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When c1~’(x) is the field ~(x) itself, the application of eq. (4.30) for n = 1 gives

1 p2—m2
= (UI ~1~(°)I /3),,, = -~=r- lim 2 G2(p), (4.32)

V2p-.m ~

which providesthe initial condition

1
F~1’(/3)= ~. (4.33)

It is now easyto establish that the form factors ~ of the elementaryfield çb(x)
areproportionalto ~ t) The reasonis that from any Feynmandiagramwhich
entersFr,, ~, we canfactorizethe propagator

2 2 (4.34)q —m ~

that, written in terms of the variables x, becomes proportional to ~ I)

i
(2n±t)

1 °2n+1

q2 — m2 q— — ~p,,p~=m2 = ~ ~~2n+ ~ 1) — (4.35)

The presenceof thepropagator(4.34)in front of any form factor of theelementary
field ~(x) also implies that ~ behavesasymptoticallyas

F
2,,~,(/3,,132,...,/32,,±,) —‘0 as f3~—~+~, ~ fixed. (4.36)

In fact, the propagator(4.34) goes to zero in this limit whereasthe remaining
expressionof the FeynmangraphsenteringF2,, ~, is a perturbativeserieswhich
startsfrom the treelevel vertexdiagramshownin fig. 6, which is a constant.Other
tree-levelcontributionsat the lowest-orderandhigher-ordercorrectionsareeither
finite or they vanishin the limit (4.36). In fact, by dimensionalanalysisthey must
haveexternalmomentain the denominatorin order to compensatethe increasing
powerof the massin the coupling constants.

In orderto provethe factorization(4.27) for the form factors F~of the traceof
the stress-energytensor, let us consider the conservationlaws satisfiedby this

operator

ä~T(z,2) +/32@(z, 2) =0, 32T(z, 2) +32e(z, 2) =0, (4.37)

where T (~)is the componentof the stress-energytensorwhich in the conformal
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limit becomesholomorphic(anti-holomorphic).Usingeq. (2.14), the identities (4.7)
togetherwith (4.37),we obtain

~ ~ (4.38)

~ ~ (4.39)

Since F2
1,, Fr,, and F~ are expected to havethe same analytic structure,we

concludethat F
2~,(/31,... ‘ /3~n~is proportionalto the productci~

2n)ci~,~i2,for n > 2.

4.4. SOLUTIONS OF THE RECURSIVE EQUATIONS

Let us summarizethe analysis carried out in the previoussections.The form
factors F

2
4,~,(n> 0) of the elementaryfield ~(x) aregiven by

F~,±,(/3,,...‘132,,+,)

1 4 sin(ITB/2) “ F - (/3)
= . ci’~”P

2,,+i(x,,...,x2,,+,) ~ ‘~“~ ‘~ (4.40)
y2 Fm,,,(IIT,B) ~ x,+x3

and the normalizationof the field is fixed by

(4.41)

The form factors F~,,(n>1) of the traceof the stress-energytensore(x) aregiven

by

/32,,)

22ITm 4 sln(ITB/2) F - (/3--
= . . o~

2”>ci~’2,P
2,,(x1,. .. , x2,,) [1 mm , (4.42)

Fmin(IIT) Fmin(1IT) ~ x, +x~

where the normalization is fixed by the matrix element of e(0) betweenthe
two-particlestateand thevacuum

F~(/3,2)= 2ITm2~~t2) (4.43)

Fmin( lIT)

Notice that eq.(4.42) for n = 0 leadsto the expectationvalueof @ on the vacuum

ITm
2(0 I ~9(0) 0) = 2 sin(ITB/2) (4.44)
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Using the recursive equations (4.29) and the transformationproperty of the
elementary symmetric polynomials (4.28), the explicit expressionsfor the first
polynomials P,,(x,,.. ., x,,) are given by *

P3(x1,...,x3)= 1

P4(x ,x4) =u2,

P6(x,,. .. , x6) = — c~(u4ff5+ u,ci2ci6) —

P7(x,,...,x7) =u2o-3u4o-5—c~(ci4o~+u1o2o~o6+o~cr3u7)+c~o-2o-5u7

~ (4.45)

where c, = 2 cos(ITB/2) and c2 = I — c~.Expressionof the higher P,, are easily

computedby an iterative use of eqs. (4.22). For practical application the first
representativesof F,, are sufficient to computewith a highdegreeof accuracythe
correlationfunctions of the fields. In fact, the n-particle term appearingin the
correlation function of the fields (2.28) behavesas e~~(mm)and for quite large
valuesof mr the correlatoris dominatedby the lowest number of particle terms.

This conclusion is also confirmed by an application of the c-theoremwhich is
discussedin sect. 6. Nevertheless,it is interestingto notice that closedexpressions
for P,, canbe found for particularvaluesof the coupling constant,as we demon-
stratein the next subsections.

4.4.1. The self-dualpoint. The self-dualpoint in the coupling constantmanifold
hasthe specialvalue

(4.46)

The two zerosof the S-matrix mergetogetherand the function D,,(x, x,, x2,...,
x,,) acquiresthe particularly simple form

D,,(x, x,, x2,...,x,,)

kIT “ ITT
= ~ (_1)k+lsin~.____x~mci~~m)~ (—1)

1cos—~—x”’o~/~~. (4.47)
k—U 2 /—0

* Theupperindexof the elementarysymmetricpolynomialsenteringP,, is equal to n andwe suppress

it, in order to simplify the notation.
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In this casethe generalsolution of the recursiveequations(4.29) is given by

.P,(x1, x2,...,x,,) = det d(x1, x2 xj, (4.48)

whered is an (n — 3) X (n — 3) matrix whoseentriesare

.~1(x1,x2 x,,) =if~11+icos2{(i_J)~], (4.49)

i.e.

ci2 0 o~, 0

0 (73 0 (77

1 0 ti~ 0 (4.50)

I) ~ 0 o~

This can be provedby exploiting the propertiesof determinants,i.e. their invari-
anceunder linear combinationsof the rows andthe columns.Let usconsiderthe
(n — 1) x (n — 1) matrix associated to P,~2(—x,x, x1 x,,),

~= ~ —x
2u~7~i)cos2[(/_J)~], (4.51)

where eq.(4.28) was used.Adding successivelyx2 times the row (i + 2) to row i
(startingwith i = I), we obtain for the entriesof the matrix -V

.c~I.= ~ -x4ci~7~/3) cos2[(i_j)~]. (4.52)

Adding now x4 times of the ith column to column (i H- 2) (startingwith i = 1). we
obtain the following matrix:

0 0

~(n—3)X(,,—3)

= 0 (4.53)

* . * ‘~n—2)(,,—2) 0

* . . . * 0

where the entriesin the lower right cornerare given by

k~
= E ( —

1)k cos~x”~ I(7~~l)
k —(I

n lIT
l)(,,— I) = E ( — 1)~1sin~x”~uf’~.2 -
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Developing the determinant of this matrix with respect to the last two columnsand
taking into account eqs. (4.47) and (4.48), we obtain the right-hand side of eq.
(4.29), q.e.d.

4.4.2. The “inverse Yang—Lee” point. A closed solution of the recursive equations
(4.29) is also obtainedfor

B(2V~)=-~. (4.54)

The reasonis that, for this particularvalue of the coupling constantthe S-matrix
of the sinh—Gordon theory coincides with the inverseof the S-matrix 5yL(/3) of
the Yang—Leemodel [4] or, equivalently,

S(/3, -~)=SyL(/3). (4.55)

Since therecursiveequations(4.29)are invariantunderB — —B (seesubsect.4.2),

a solution is providedby thesamecombinationof symmetricpolynomialsfound for
the Yang—Leemodel [13, 15], i.e.

P~,(x
1,x2,...,x,,) = det L~(x,,x2,...,x,,) (4.56)

with the following entriesof the (n — 3) x (n — 3) matrix .~:

1~3j—2i+l (4.57)

The proof is similar to the one of subsect. 44.1 and exploits the invariance of a
determinant under linear combinations of the rows and the columns. In this case
the function D,, is mostconvenientlyexpressed as determinant of a 2 x 2 matrix

lIT “ lIT

~ (—1)’ cos—x”~o-f”~ ~ cos—x’o-f’~

D =det 1 ~ . (4.58)

— i)~ sin~x!’~cif”)) (~sin~x~1~(n))

Let us considerthe (n — 1) x (n — 1) matrix enteringthe expressionP,,~2(—x, x,
x1,..., x,,), i.e.

= ~3j—2i+l Xif31_2~_1. (4.59)

By adding successivelythe ith row to row (i — 1) (starting with i = (n — 1)), we
obtain

— — 2(n—i)
if — ~3j—2i+1 X ~3j—2n+1~
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Then by adding successivelyx6 times the ith column to column (i + 2), starting
with i = 1, the entriesfor the matrix ~ read

= ~3j—2i—6/±

1X — ~ (4.60)
/ — 0

Subtracting x
6 timesof the row (i + 3) from row i (starting with i = 1) we finally

obtain the matrix

0 0
~(n—3)X(n—3)

~(n-l)X(n-1) = 0 0 (461)
* * ~-~n—2)(n—2) ~n—2)(n—l)

* * ~n—1yn—2) ~n—lXn—l)

where the entriesof the (2 x 2) matrix is the lower right corner are still given by
eq. (4.60). It is easyto prove that the determinantof this (2 X 2) matrix in the
lower right corner is equal to (4.58). Therefore,with the definition (4.56), the
determinantof .H~” l)x(,,— ‘~gives rise the right-handside of eq. (4.29), q.e.d.

5. Form factors for descendantoperators

In this sectionwe investigatethe effect of the Lorentz transformationon the

spaceof solutionsfor all form factorsdenotedby 3~.This problemhasbeenfirstly
addressed by Cardy and Mussardo[16] for the spaceof descendantoperatorsof
the Ising model.

The spaceof the form factors .~‘ canbe decomposedas

(5.1)

meaning that F,~’e31m~if t~ has spin s. On the rapidity variables a Lorentz
transformation is realized by /3, —s /3, + E, i.e. x, — e’x

1. Since the elementary

symmetric polynomialsare homogeneousfunctions of x,, undera Lorentz trans-
formation they transformas

(5.2)

Hence, given a form factor F,,” of an operator ~“ with spin s which satisfies

Watson’s equations,a new function in ~ which still satisfiesWatson’sequa-
tions canbe definedby

~ (5.3)
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provided that I;~is composedout of elementarysymmetricpolynomials.Additional
constraintson the .J~are imposedby their invarianceunderthe kinematicresidue
equation

I,’,~2(—x,x, x1,...,x,,) =I,,s(x1,...,x,,). (5.4)

A basis in the spaceof solutionsof eq. (5.4) is given by symmetricpolynomials I,~
satisfyingthe recursionrelations[16]

= i,~±’+ ~ + ~ + ... ~ (5.5)

where s is equalto the spin of the conservedcharges(3.12).A closedexpressionof

1,~,hasbeenobtainedin ref. [171

~ =(—1)’~ det ~Y (5.6)

where the entriesof the(sXs)matrix ~f for j=1 sand i=2,...,s are

~lj = ~2j—1’ ~j = ~2j—2i+2’ (5.7)

i.e.

°i (73 °5 °7 °2s—l

~ °2 °4 °6

02s—2

0 1 ~2 (74 ... ~2s-4 (5.8)

0 0 1 ~2 0~2s_2

The determinantof ~Ywill alwaysbe of order 2s — 1 as required.
As was first noticed in ref. [4], eqs. (5.3) naturally provides a grading in the

spaceof matrix elementsof localoperatorsin anintegrablemassivefield theory. In
fact, givenan invariantpolynomial I,-, eq.(5.3) definesform factorsof an operator

~‘ which, borrowingthe terminologyof conformalfield theories[26], is natural to
call descendantoperator of the spinlessfield c~’.In particular,choosing~ to be the
traceof the stress-energytensor,the form factorsdefinedby eq. (5.82) are related
to the matrix elementsof the higherconservedcurrents,as can be easily seenby
eq. (3.13) and by the fact that the symmetric polynomials which appear as
eigenvaluesof the conservedcharges~,

sk—x!+x
2+...+xfl, (5.9)

can be expressedin termsof the invariantpolynomialsJ,,5~Indeedtheysatisfy the
recursiverelation

—

5k—1~1+ 5k—2~2 — .. . +( — ~k_ 1~1k1 + ( — l)kk = 0, (5.10)
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that, togetherwith eq. (5.5), permits to expressSk in terms of the invariant
polynomials I,~.

6. Form factors and c-theorem

As mentionedin sect. 3, the sinh—Gordonmodel can be regardedasdeforma-
tion of the free masslesstheorywith centralchargec = 1. This fixed point governs
the ultraviolet behaviourof themodel whereasthe infraredbehaviourcorresponds
to a massivefield theorywith centralchargec = 0. Going from the short to large
distances,the variation of the central charge is dictated by the c-theoremof
Zamolodchikov[27].An integralversionof this theoremhasbeenderivedby Cardy
[28] and related to the spectralrepresentationof the two-point function of the
traceof the stress-energytensorin refs. [29,30],i.e.

= f d~c,(~), (6.1)

where c1(~c)is given by

61
c,(,u) = —5—-TIm G(p

2= _~2),
IT /-~--

G(p2) = fd2x e~~(UI ~9(x)e(0) Io)~
0~,,. (6.2)

Insertinga completeset of in-stateinto (6.2), we canexpressthe function c,(~r)in
termsof the form factors F2t~,,

12 ~ 1 d/3,...df32 2

c,(~r) = ~ (2n)! (2TT)2n F~(/3,

sinh ~i)~(Em cosh /3~—~). (6.3)

For the sinh—Gordontheoryzic = 1 and it is interesting to studythe convergence
of this seriesincreasingthe numberof intermediateparticles.For the two-particle
contribution,we havethe following expression:

3 ~ d/3
= 2F~,,(iIT) cosh

4 ~ I Fmin(2/3) I 2~ (6.4)

The numerical results for different values of the coupling constant g2/4IT are
listed in table 1. It is evidentthat the sumrule is saturatedby thetwo-particleform
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TABLE 1
The first two-particle termenteringthesum ruleof the c-theorem.

B g
2/4~r

0.9999995

-~ 0.9999878
-~ 0.9989538
-~ 0.9931954

0.9897087
0.9863354

1 0.9815944
0.9808312
0.9789824

1 2 0.9774634

factor also for largevaluesof the coupling constant.Hence, the expansionin the
number of intermediateparticles results in a fast convergent series, as it is
confirmedby the computationof the next termsinvolving theform factor with four
and six particles.

7. Conclusions

The computationof theGreenfunctionsis a centralproblemin a quantumfield

theory. For integrablemodels,a promising approachto this questionis given by
the bootstrapprinciple appliedto the computationof the matrix elementsof local
operators. In this paper we have investigated the form factors of the most
representativefields of the ~2 sectorsof the sinh—Gordonmodel, i.e. the field
43(x) and the trace of the stress-energytensor e(x). The simplicity of the
sinh—Gordon model permits clarification of the basic properties of the local
operatorsand their matrix elementsin a QFT, without being maskedby algebraic
complexitiesdue to the structureof the bound states.Comparedto the usual
methodof computingcorrelationfunctionsin termsof a perturbativeseriesin the
coupling constant,the form factor approachis extremely advantageousfor two
reasons.Firstly, the coupling constantdependenceof the correlationfunctionsis
encoded(to all ordersin g) into the expressionof Fmjn(13, B), eq. (4.13), andinto
the solutionsof the recursiveequations(2.25) for the pre-factorsK,, enteringthe
form factors, eq. (2.20). Secondly,evenfor not large values of the distances,the
resulting expressionsof the correlation functions as an infinite seriesover the
multi-particle form factorsareactuallydominatedby the lowest numberof particle
termsand thereforepresenta very fast rate of convergence.
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