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Abstract

The intrinsic 4-point coupling, defined in terms of a truncated 4-point function at zero momentum,
provides a well-established measure for the interaction strength of a QFT. We show that this coupling
can be computed non-perturbatively and to high accuracy from the form factors of an (integrable)
QFT. The technique is illustrated and tested with the Ising model, the XY-model and the O(3)
nonlinear sigma-model. The results are compared to those from high precision lattice simulations.
0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The intrinsic couplingr, also sometimes called ‘physical’ or ‘renormalized’ coupling,
is a quantity of great interest in a Quantum Field theory (QFT), especially for scalar fields.
In some cases, such as t#é theories, its vanishing implies actually that the theory is
trivial in the sense that the higher correlation functions of the scalar field can be written as
sums of products of two point functions, as in a free theory [1]. On the other hand, a non-
vanishinggr is not sufficient to assure the non-triviality of a theory; it only assures that a
certain four point vertex function does not vanish identically, but does not exclude that it
vanishes on shell.

Aside from that,gr is certainly a renormalization group invariant and a characteristic
physical quantity of a field theory. In particular it can be used to check the equivalence
or non-equivalence of different definitions of theories; this will be our main theme in this
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paper.gr is proportional to the connected — sometimes called truncated — four point
function at zero momentum, divided by the square of the zero momentum two point func-
tion and appropriate powers of the mass gap to make it dimensionless; details will be given
in the body of the paper.

We are dealing in this article with two main approaches to the construction of a QFT.
The first one starts from a suitably regularized functional integral and then removes the
regularization in a controlled way. This is a rather general procedure usable for a wide
variety of models; it has been successfully employed to construct QFTs in 2 and 3
dimensions obeying all the required axioms (see for instance [2]). Here we will make
use of a euclidean spacetime lattice as a regulator. Removal of the regularization, i.e.,
taking the continuum limit in a lattice theory requires the existence of a second order
phase transition point at which the characteristic length (correlation length) of the model
diverges. This approach raises the problem of ‘universality’, i.e., the question whether
different regularizations yield the same QFT after the regulator has been removed.

The other approach studied here is applicable to a large class of so-called integrable
models. It is not based on a Lagrangian, rather the dynamics is specified in terms of
a postulated exact ‘bootstrap’ S-matrix, supposed to enjoy a factorization property that
allows to express all S-matrix elements in terms of the two-particle S-matrix [3]. In
physical terms this property is linked to the existence of an infinite number of conservation
laws and the absence of particle production. The postulated S-matrices are then used to set
up a system of recursive functional equations for the form factors; solving this system one
can in principle compute exactly all the form factors, in other words continue the S-matrix
off the mass shell [4—6]. Once the form factors are known, one can express the correlation
functions of the basic fields as well as other (composite) operators by inserting complete
sets of scattering states between them. This gives the correlation functions as — hopefully
rapidly converging — infinite series of convolution products of form factors. In particular
in this way one can express the intrinsic coupling in terms of the form factors.

In both approaches, in principle one has to verify in the end that the axioms of a QFT
hold. In the lattice approach with a reflection positive action, such as the standard nearest
neighbor action, essentially the only nontrivial question besides the existence of a critical
point concerns the restoration of euclidean (Poincaré) invariance in the continuum limit. In
the form factor approach it is less obvious whether the axioms hold, in particular for the
form factor expansion of multi-point correlation functions. There exists, however, a formal
proof (disregarding convergence aspects) of locality [6] and it is hoped, of course, that the
other field theoretic axioms will hold as well, because the construction is to a large extent
inspired by them. It is also not clear from first principles — though in practice there are
very natural guesses —, which field in one construction should be identified with which
form factor sequence in the other. In any case, even assuming that all the axioms hold in
both constructions and that one has correctly identified the fields, it is a nontrivial question
whether the two approaches define the same theory, and in particular whether they give the
same value fopg.

In the lattice approach the intrinsic coupling of the two-dimensiora)@odels we are
discussing here has been widely studied, both by Monte Carlo simulations [7-9] and by
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various expansions in a small parameter [10-13]. For a more precise comparison with the
form factor approach, we also carried out our own high precision Monte Carlo simulations
which are reported in this paper.

In the form factor approach the series fgy, being a low energy quantity, is expected to
converge very rapidly. Our results give every indication that these hopes are fully justified,
though the actual computations turn out to be surprisingly intricate. In the present study
we want to develop this computational framework, outline the computations and compare
their results, where possible, to those obtained numerically from the lattice approach by
the different methods mentioned above.

Remarkably in all the examples considered the first non-trivial term in the series, which
contains only one and two particle intermediate states, appears to give about 98% of the
full answer (!). Moreover for this dominant contribution a general model-independent ex-
pression in terms of the 1- and 3-particle form factors and the derivative of the S-matrix
can be obtained.

In this paper we discuss three models which can be viewed as ih)@@flinear sigma-
models forn = 1, 2, 3. Though formally members of the @)(series of nonlinear sigma-
models, the physics of these systems, their form factor description, and not the least our
motivation to study them is very different: the= 1 case is just the massive continuum
limit of the Ising model. Here the spin form factors are very simple and we were able to
push the computation of the series up to all terms with a total particle number (summed
over the three intermediate states) of less or equal 8. The extremely rapid decay of the
terms is manifest and we use the observed pattern as a guideline for the other systems. The
final result amounts to a determination @ with an estimated precision of better than
0.001%.

Then = 2 case is better known as the XY-model. Here we rely on a bootstrap description
of the model, to which we hope to return in more detail elsewhere [14]. Not all the form
factors are known explicitly, but the specific version of the 3-particle spin form factor
needed for the dominant contribution can be found by elementary techniques. We compare
this leading order result with that obtained by lattice techniques and find reasonable
agreement, which can be taken as support for the proposed bootstrap description.

Finally then = 3 model is the first with a nonabelian symmetry group. The evaluation
of gr here is in part motivated by the controversy about the absence or presence of a
Kosterlitz—Thouless type phase transition; see [9] for a more thorough discussion.

Let us remark that the form factor bootstrap has also been applied to the computation of
gr in the sinh-Gordon model; in this model the intrinsic coupling is especially interesting
because of its relevance to the issue of “triviality” versus “weak-strong-duality”. For details
see the accompanying paper [15].

The article is organized as follows. In the next section we describe the form factor
construction of Green’s functions in terms of form factors generally and derive the formula
for the dominant contribution to the coupling. Further we prepare the ground for the
computation of the subleading terms in the specific models. We then give a few generalities
about the Monte Carlo simulations, and move on to discuss the three models as outlined
above one by one in more detail, comparing the results of the form factor construction to
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those obtained by the the lattice definition of the models; for the latter the valggsané
estimated by high temperature expansions as well as Monte Carlo simulations.

2. Construction of Green functions in terms of form factors

In this section we will consider a general massive QFT described in terms of its
generalized form factor sequences by which we mean matrix elements of local operators
between physical states. We will restrict our attention to the case-o2 dimensions
(although the extension to arbitrard/is often straightforward). The application of the
representation to the integrable models where the form factors are explicitly known will be
the subject of the next chapter.

2.1. Generalities

Ouir first goal is to construct the euclidean correlation functions (Schwinger functions)
from the generalized form factors. The Schwinger functions are convenient because
they have simpler properties than the Wightman functions and also because it facilitates
the comparison with lattice results later. For pointse R2, k = 1,..., L, we denote
by (xx1, xx2) their components and by, = (—ixg2, xx1) @ Wick rotated version. For
definiteness we will consider here correlation functions:adcalar fields®“(x), a =
1, ..., n (the generalization to other types of fields is straightforward). Then

S (g, xp) = (@ () - D (),

S (xq, .o, xp) = WU (1xq, ..., 1xp), forxip>--->xpo. (2.1)

The first equation is the usual operator interpretation of the Schwinger functions. The sec-
ond equation (2.1) then indicates the relation of the Schwinger function to the correspond-
ing Wightman function for pointsézy, ..., zr) = (tx1, ..., wxr) in the “primitive tube” of
analyticity.! Outside the primitive tube the Schwinger functions can in principle likewise
be obtained from the Wightman functions by analytic continuation and are then found to
be completely symmetric in all variables. In a form factor expansion however the primitive
domain is preferred in that only there the convergence of the momentum space integrals is
manifest through exponential damping factors (cf. below). We thus mimic the effect of the
analytic continuation by performing the symmetrization by hand

A1
Sul aL(-xlv"'a-xL): Z S@)“- SL(-xsla"'a-xSL)a

SESL
S?.)l"'“L(xl, s X)) =0, xp) WA (1xg, L 1x ), (2.2)
where & (x1,...,x1) IS a generalized step function that vanishes unbass> --- >

xr2 holds and the sum is over all elements of the permutation g&uprhe functions
Sg "k (x1,...,x1) are expected to have a convergent expansion in terms of form factors

1 We use the signaturer, —) for (complexified) Minkowski space in which casg, . ..., z1,) is in the primitive
tube if —Im(zx —zx1 1) e VT, k=1,..., L — 1, whereV is the forward light cone.
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in the interior of their support region (as well as for certain points on the boundary). The
cases of interest here ate= 2 andL = 4. Formally inserting a resolution of the identity
in terms of asymptotic multi-particle statés=) ", |m)(m| one obtains

Sz)laz(X]_, x2) = O (x1, x2) Ze—(h—m)zEﬂ el X1=x2)1Pm

m

X (0|@“(0)|m) (m|P“2(0)|0), (2.3)
and

ajanazas
So (x1, x2, X3, x4)
= O(x1, X2, X3, X4) Z e~ (W1—x2)2Ek ,i(x1—x2)1 P
k,lm
x o~ (¥2=x3)2E ,i(x2=x3)1P ,—(x3=X2)2Em ,i(x3—X4)1 P

x (01 (0) k) (k|22 (0)[1) (| @3 (0)|m) (m|P*(0)|0). (2.4)

The stategm) are assumed to be improper eigenstates of the momentum opRByasnd
En, P denote the eigenvalues &, P, on |m), respectively. To write down an explicit
parameterization of the complete set of sta@esrequires of course the full knowledge of
the spectrum of stable particles. This is a basic input assumption for the integrable models
dealt with in the next section. Here for simplicity of notation we will consider the case
where there is only one multiplet of stable particle states of MAsAn explicit parame-
terization will then be given in Section 2.3.

We introduce their (dimensionless) Fourier transfoimigy

2m)28P (ky + -+ + k)M 2 ETDVAAL (k)

= / dPxy---dPxy S?_)lmaL (x1, ..., xp)e kvt Fkixe) (2.5)

taking into account the translation invariance $f. The Fourier transform of the full
Schwinger function is then obtained by symmetrization

Sarar ey k) = (27-[)25(2) (kp+---+ kL)M*Z(Lfl)
X Z Y dstast (kSla ey kSL)a (26)
seSy,

whereon rotational invariance gets restored. The desired representation of the two and four
point functions in terms of form factors is given by

VA (fy, ko) = Y Vi ke, ko),

m
VA2 (kg ka, kg ka) = Y Vg2 (ka, ka, k3, ka), (2.7)
k.lm

where

§(Pp + k11)

V92 (k1 ko) = 2 M2
(k1 k2) =21 Ey — ki

(01@“(0)|m) (m|2“2(0)|0),
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Vi ia03%4 k1, ko, k3, k4)
2)3 3( Py +k11) 8(P + ki1 +k21) 8(Py — ka1
Ey —iki2 E;—ikiz—iko2 Ey+ikaz
x (0]@1(0) |k) (k|@“2(0)|1) (L|@“3(0)|m) (m|®4(0)]0), (2.8)

=2rM

with the understanding that the sum of the momentaanishes. Further we denote by
Vi (k1, k2) and V2123 k1, ko, k3, k4) the quantities (2.8) with the integrations over
the rapidities performed, the measure being inherited from Eq. (2.25) below.

The key assumption of the form factor approach in this context is that the matrix
elements in (2.8) can be computed exactly via solutions of a recursive system of functional
equations, the so-called form factor equations or Smirnov axioms. Symbolically

LD Om) <> Ffpara @1 eee o l]01, .., O) = Fip 4 (@]0). (2.9)

The rhs, for which we shall often use the indicated shorthand notation, is called a
generalized form factor, the special case with eitherO orm = 0 are the form factors
proper. The form factors are meromorphic functions in the rapidities, while the generalized
form factors are distributions. The form factors can be computed, at least in principle, as
solutions of the before mentioned system of functional equations. The generalized form
factors can then be obtained from them by means of an explicit, though cumbersome,
combinatorial formula. We shall later just state the special cases of this formula required.
A discussion of the general formula can, e.g., be found in the appendix of [16].

Implicit in the products of matrix elements in (2.8) of course are appropriate index
contractions. For definiteness let us note them explicitly

(01 (0)|m) (m|®°(0)|0) «—> 12°(8),
(010 (0)|K) (k| P (0)|1) (1| @€ (0)|m) (m| D9 (0)|0) «— 182 (w]E10), (2.10)

m

where

18 ©) =" F40) Fhr (07),
A

I @lE10) = Y Fh(@) Fhr g 1€) Fyro(€710) Fer(07). (2.11)
A,B,C
HereAT = (a,...,a1), o' = (wx, ..., 1), etc. The construction is such thel’ (9) is a
completely symmetric function il = (61, . .., 6,,). Similarly 138%%w|£|6) is symmetric
in each of the sets of variables= (w1, ..., w), € = (&1, ...,&) andd = (01, ..., 0,),
individually.

2.2. The intrinsic coupling

As surveyed in the introduction the intrinsic coupling is defined in terms of the zero
momentum limit of a connected 4-point function. We may assume that the Schwinger
functions of the scalar fields with an odd number of arguments vanish; then the connected
L = 2,4 Schwinger functions of interest here are
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5492 (Jey,, ko) = S92 (kq, kp),
$1424394 (ky, kp, k3, ka) = §1923% (ky, ko, k3, ka) — S22 (ky, k2) S 3% (ks, ka)
— 544 (ky, kg)S 24 (k, ka)
— S (ky, kg) S22 (k, k3). (2.12)

Making explicit the overall delta-functions arising from translational invariance we
introduce the Green functions by

Sk, ... kp) = @m)28@ (ky + -+ kp) G U (ky, . ke, (2.13)

where the constraint; + --- + k. = 0 in the arguments of5%1 4L will always be
understood.

In the following we will now assume that the theory i/ invariant and thus for the
2-point function we can write

G192 (k, —k) = 812G (k). (2.14)
The intrinsic coupling is then defined by
M? 1
_ - Gaabb 0,0,0,0), 2.15
gr GOP w2 Zb ( ) (2.15)

where we leave the choice of positive const&htor later.
Performing the symmetrization (2.2) and the Fourier transform one recovers the familiar
expression foiG (k) in terms of the spectral density

r 1
G(k)Zb/dHP(H)ms (2.16)

where

1
p) =3 0(1 = \JEL = PR)AT End(Pu) = 3 (019" (0)|m) (m|9*(0)[0). (2.17)

m

In order to compute 41929344 (k1 ko, k3, k4) the symmetrized sum (2.6), (2.7) has to be
performed. For reasons that will become clear immediately we first single out the partial
sum with/ = 0. Taking into account th&4 permutations one finds

(2m)%8@ (ks + ka2 + ks + k)M ™Y~ Y~ Vg 23 (ks 1, ks2, ks, ksa)

k.m se€Sy
_ §“1a2(k1, k2)§a3a4(/€3, ka) + §a1a3 (k1, k3)§“2“4(k2, ka)
+ S99 (k1 k) S92 (kp, k3) + (277)28 @ (kq + ko + k3 + ka)M ~®
« Z 91052053058 (k 1 ko ko3, Kea). (2.18)

SES4

Here

20192030 (kq,, ko, k3, ka) = —% 8(k11+ k1) M® 54192594 H (k1 k2) G (k). (2.19)
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with

12 + k2, + kaokoo 1

WKW+ kD) [z 2]

In obtaining (2.18) we defined the second denominator in (2.8) fer0 with theie
prescription as+i (k12 + k22 +i¢e). Here and later the distributional identity
1
x+ie

will be heavily used, wher® is the Principal Value prescription.

One observes that the first three terms in (2.18) are precisely the ones removed by the
definition of the connected 4-point function. Remarkably there is a remainde®, them,
which is present even in the free theory. Typically the spectral densities are decreasing or
bounded by a constant as— oco. The functionsG (k4) and H (k1, k2) are then regular at
ki = 0. Inserting finally (2.18) into (2.6), (2.7) one obtains for the Green function (2.13)

(2.20)

H(ky, ko) = / di p ()
0

1
=P—-—ind(x),
X

MBGalazasaA (k1, k2, k3, ka)

a a
— Z Z Vﬁmz $3054 (1 kg2, ks, kga)
k,17#0,m s€S4

+ ) Q4120308 (ko ko, kg3, ksa). (2.21)
SES,

On general grounds one expects the vertex function to be real analytic. In particular there
must also be terms involving the delta function in thg, above which cancel those of the
£2-term (we will demonstrate this explicitly in the computationabs in Appendix A).

Thus, provided the coupling is well-defined (finite) at all, the result will be independent
of the way the zero momentum limit is taken. It is therefore desirable to find a convenient
limiting procedure that simplifies the computation. To this end we first observe that in (2.8)
thek;; andk ;> components enter asymmetrically. In particular as long as the intermediate
state is not the vacuum (i.€ # 0 in the second formula, and recalling that we are assuming
that none of the operators involved has a non-zero vacuum expectation value) one can put
kj2=0, j =1,2,3,4. We now compute the 4-point vertex function at zero momentum
through the limiting procedure:

G1929394(0,0,0,0) = lim G*9293% (kq, ko, k3, k. , 2.22
( ) Jim, (k1, k2, k3, ka) b= she; ) (2.22)

Wherer“I!:1 shk; =0, and the limit is taken such that
kil # k], fori# j, and|k; — k| # |kx — k| for distinct pairs (2.23)

In view of (2.19) it is clear that the limit prescription in (2.22), which we will use in the
following, has just been designed such that ¢héerm does not have to be considered in
computation of the coupling.

Before embarking on further computations let us comment on a few structural issues. On
physical grounds one expects the intrinsic coupling to be both finite (in a theory with a mass
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gap) and positive (fa\ > 0) when the interaction is repulsive. Mathematically however it

is a quite challenging problem to actually prove this, whatever non-perturbative definition
of the theory one adopts. In the context of constructive (lattice) QFT such results seem to
be available only for a single phaslg‘ theory (see, e.g., [2] for a survey). In the present
context we wish to define the theory strictly terms of its form factors. Mathematically
speaking one should then try to prove in particular that the right-hand side of (2.21) defines
a real analytic function. For the dominant low particle contributions we demonstrate in
Appendix A explicitly that all non-analytic (e.g., distributional) terms indeed cancel out.
We have not attempted to prove this in general, nor can we estimate the rate of convergence
of the sums in (2.21) on general grounds. In all the examples considered later however the
series appears to be rapidly convergent; the terms are alternating in sign and decrease in
magnitude very quickly with increasing particle numbers.

2.3. State parameterization

Here we assume that the single particle spectrum consists only of(anvector
multiplet of massM. The one particle statejs:, ) are thus specified by an internal
“isospin” labela and the rapidityr (i.e., the spatial momentum of the stateis= M sha).
The states are normalized according to

(a,alb, B) = 4r8upd (e — B). (2.24)

The condensed notation for the sum over states now becomes

> Im){m| <— 10)(0]

Om—1
d91 d6’2 d@; i
+Z > / / 2 1015 -5 am, O)"
m=1az,..., am_~o —0
x Maq, 01: .. .5 am, 9m|. (2.25)
Itis often convenient (for a fixed:) to perform the change of variables
. Z,’ e

Mj:9]—9]+]_, J:l,,m—l, EI <Z 69) (226)

since in terms of these variables the total energy and momentum of the states take on a
simpler form:

(Ep, Pp) <— (Michej, Mish@,-)

j=1 j=1
= (M @w)cha, M™ u)sha), (2.27)
where the eigenvalue¥,, = Eé — Pé of the mass operator are given by
1/2
M(m)(u) :M|:m+220h(ui +"'+Mjl)] . (2.28)
i<j
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Correspondinglythe integration measures in (2.25) above are replaced by

Om—1

4o [ do @, [ &l [ da
/ 1 2.. N A f a (2.29)
4 (4ryn=1 | 4x

—00 0 —0o0

For later reference we also display the inverse transformation

9./:Mj+"'+um—1+l/lm+Aa j:l,...,m

I

1 1 + m_ e Uj Um—1

whereu,, := = In( Z’_ll ) (2.30)
2 14+ 2’7;1 euj+~~~+um,1

2.4. The two point function

The spectral function (2.17) appearing in the representation of the two point function
can be written as a sum of contributions of fixed particle number

pwy= > p" (), (2.31)

O<m odd

where only odd numbers of particles contribute due to our assumption that thedields
are parity odd. We normalize the fields' by

(012“(0)|b, &) = &, (2.32)
rendering the 1-particle contribution to the spectral density simply
PP () =8(u— M. (2.33)

Them > 3-particle contribution to the spin spectral function (2.17) is given by

(47-[)mfl m > .
0
with
I (u) - Z Z | al a"l ’ Tt em) 2 (2-35)
a ai,...,

which equalg/t1(9) under the integral. The functioR* featuring here corresponds to the
matrix element ofb¢ between vacuum and am-particle in-state as in (2.9)

a1 “Am (917-'-79m):(O|®a(o)|als91;-'-;amsem>inv 9m < <61- (236)
The inverse 2-point function has a low momentum expansion of the form
G(k) ™t = ZR [ ME+ K%+ 0 (kY] (2.37)
with
y2 Vs
M3 =M?*2 Zr= "2 (2.38)

827 _6_25



624 J. Balog et al. / Nuclear Physics B 583 [FS] (2000) 614-670

wherey,, 87 are spectral moments:

o0 oo

d d
V2=M2/M—l;p(u), 82=M4fu—ljp(u)- (2.39)
0 0

2.5. The intrinsic coupling revisited

In (2.15) we left open the choice of the normalization constériecause for different
models different choices are convenient. In analytical and numerical lattice computations
(at fixed cutoff) it is often easier to compute the second moment misénstead of
the (exponential) spectral mass (in lattice units). For ease of comparison with these
techniques we thus choodé = MF%/MZ, i.e., we define the intrinsic coupling by

M3 1
G(0)2 n2

grR= > G*%0,0,0,0). (2.40)
a,b

Using Q(n) symmetry it follows
G@1a2a3as (0,0,0,0) = M76V4(8a1a28a3a4 4 §9193502a4 4 5(11&430203), (2_41)

and hence we can write (2.40) as

_n+2 Va
no y82

gR= (2.42)

These spectral moments have, corresponding to the decomposition (2.31), an expansion
in contributions arising from states with a fixed (odd) number of particles

y2=1+ Z V2:m» S2=1+ Z 82,m- (2.43)
3>m odd 3>m odd

Similarly, corresponding to the sum in (2.21) we have

ya= Y Yaxim Ya;Kim = Ya;mlk, (2.44)
k,[>0,m

where the sum goes over odd integers: and positive even integetsTo avoid writing
many Q) indices we will use

1 .
Vaskim = 3 Lim, o D ki (k1. K2, K53, K5a). (2.45)
SES,
where
_ 1111
Uklm(Kl, K2, K3, K4) - Vk|m (k]_, k27 k3s k4) |kj:(M shi;,0)’ (246)

and the symbol Lim above means taking the limit — O with the «; satisfying
Zj shk; = 0 and the constraints in Eq. (2.23).
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3. The nonlinear O() sigma-models

As outlined in the introduction the form factor bootstrap (FFB) construction of an
integrable quantum field theory starts from postulates of the on shell properties of the
theory. By integrable here itis meant that the theory has an infinite set of conserved charges
which entail that there is no particle production. This property usually is characteristic
of non-relativistic quantum mechanics, remarkably here it holds for relativistic quantum
field theories (QFTs) (assuming that the FFB approach does indeed define a QFT). In
4 dimensions absence of particle production implies that the theory is free but in two
dimensions this is not so. In addition to the absence of particle production, one postulates
the spectrum of stable particle states and their 2-particle S-matrix which has to satisfy the
so-called Yang—Baxter (or factorization) equation (A.5).

In principle one could proceed without reference to a Lagrangian, but often contact
to a Lagrangian description is desirable. Thus typically postulates of specific S-matrices
are motivated by studies of associated Lagrangian QFTs. Unfortunately in most cases one
cannot solve the QFTs to the extent necessary to really derive the candidate S-matrix, rather
one has patches of partial information. This is in particular the case for@her©nlinear
sigma-models formally described by a set of spin fieldsa = 1,...,n > 2, with the
constraintz? = 1 and Lagrangian density (aﬂo)z. There is a wealth of information on
these models which will be recalled when we study the various cases in the following
sections, and for an overview we refer the reader to our previous paper [9]. In particular
the spectrum of stable particles is thought to consist of @) @ector multiplet of mass/
without further bound states (i.e., of the form of the spectrum considered in Section 2.3).
The S-matrix element (for > 2) has the decomposition

Sab;ed (0) = 01(0) 8apdea + 02(8) 8acdpa + 03(0) Saabpe, (3.1)

where the center of mass energy is givenfay= 2M chd /2.

Classically the theories have an infinite set of local and non-local conserved charges.
One can argue that there are no anomalies which obstruct the existence of such charges
in the quantum theory. In the case of the non-local charges for3 the construction
of Luscher [17] is closely connected to the usual perturbative renormalizability and the
(perturbative) asymptotic freedom of the model. Knowledge of the action of the non-
local charges on the asymptotic states then restricts the S-matrix to the form postulated
by Zamolodchikov and Zamolodchikov [3] far> 3

o= =210 52(0)
A= =6 m—20—21i
2. 52O
020) = (n =20 X (3.2)
o s®
03(0) = —2mi - ot

i.e., the invariant amplitudes are all given in terms of one amplitude which we have chosen
here to be the invariant amplitudg(d) in the symmetric traceless (“isospin 2”) channel.
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The amplitude;(9) is off-hand determined only up to so-called CDD factors, which were
initially [3] fixed by selecting the solution with the minimal number of poles and zeros in
the physical strip. This solution fap(0) is given by

o0
d N
s2(9)=—exp{2i / —wsin(ew)Kn(w)} (3.3)
w
0
with
- e T@ +e—2na)/(n—2)
=" (3.

The proposed identification of (3.2)—(3.4) with the S-matrix of the)Xfigma-model
passes several non trivial tests. First, the leading terms of its fasggansion coincide

with those obtained in leading orders of a field theoretical largemputation. Second, in

the determination of the exadt /A ratio a consistency condition arises when matching the
results of a perturbative computation against that obtained via the thermodynamic Bethe
ansatz [41]. This consistency condition is also sensitive to the CDD factor; the minimal
bootstrap solution (3.2)—(3.4) passes the test.

We note that the above formulae have a smaoth 2 limit. A study of the possible
relation of the so defined FFB O(2) model to the continuum limit of the lattice XY-model
(from the massive phase) will be the topic of a future publication [14].

Further we remark that the S-matrix for the case 1 (Ising model) can also be written
in the form (3.1) by setting

01(0) =02(0) =0,  o030)=-1, n=1 (3.5)

The representation (3.1) is of course redundant in this case, but it does allow us in
the following to discuss alk > 1 simultaneously. For example in all cases we have an
expansion at low energies of the form

Sabred (0) = —84a8pe + 10 Dap:ca + O(0), (3.6)

in sharp contrast to a weak perturbation of a free field theory.

Having all the on-shell information covers all the physical information on the theory one
observes from scattering of the stable particles, but off shell information is being explored
if the system is probed by external sources weakly coupled to local operators with given
quantum numbers.

3.1. Derivation of the leading term in the FF expansiory pf

For the leading 1-2-1 particle contributiongq a general model-independent expression
can be given in terms of the derivative the S-matrix and the 3-particle form factor. For
notational reasons we restrict attention here to tiw@) @odels considered later in more
detail. The extension to a general integrable QFT without bound states is described in
Appendix A. For the @z) models the formula reads
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3 do;(0)
do

va121="41

j=1

o0
1 1 64
b [ad o fwsiw - @37)
8w chtu u
6=0 0
Here f.(6) is a particular version of the 3-particle form fact&i; ,(61, 62, 63) of the

local field @“, supposed to correspond to the renormalized spin &iglih a Lagrangian
construction. Explicitly

fo(0) :=Fi. (i7,0,—0). (3.8)
In order to derive (3.7) consider first more generally thel, 1) contribution in (2.21)
with / > 2. Using (2.8) and switching to the explicit notation introduced in Section 2.3 one
can perform the integrals over the rapidities of theparticles. Then one decomposes

the rapidity measure for the intermediaté particle contribution according to (2.26).
Using (2.29) theA integration can be performed and by means of (2.30) one arrives at

vyi(k1, K2, K3, k4)
o 1 1 [ do 58061,...,0, K1 k2)
2 Ch2K10h2K4 ) (4m)! lj:]_Cth

Ij1(—«k1|0|ka)

! / ¢ L M kalbid (3.9)
= —K K4), .
8cricPrs ) Am) L cr2 A, MO2 HE T

where I1(—«1/01k4) := I}i*(—«1/0|ks) is a product of generalized form factors as
in (2.10), (2.11). Explicitly the correspondence to the matrix elements is

Lua(—kalflca) = Y (L —k1| @ (0)|ba. 613 ... by, O)"
by,....b;
x Mby, 015 . ..5 by, 6| PH(O)|L, ka). (3.10)

In the first expression we introduced the notation

1
801,....0) =34 (Z sha,), (3.11)
j=1

in the second ond\, is defined by

shA, = (shiq + shky). (3.12)

M

MO (u)
As remarked before the generalized form factors can be expressed in terms of form factors
of the same operator and delta distributions by an explicit combinatorial formula. We shall
usually just display the specific version needed. A discussion of the general formula can be
found in the appendix of [16]. For the generalized form factor entering (3.10) the formula
reads

(a1, —k1| @ (0)|ba, 61; b2, 02)™|,
= f-zlzblbz(—lcl +im —ig, 01,02) + 4w 841b,0a,,0 (k1 + 01)
+ 4 Sb1b2;a2a1 (91 - 92)8(1(1 + 92) (313)

Substituting this in Eq. (3.9) we obtain
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o0

1 1
= - . d
2 64 chP k1 ChP ks : / *1 chas(chay + chap)

—00

X }'fxy (im —Kk1—ie, o, &z)fixy (im—rkg—ie, —a1, —a2)
8
+
chig(chis + chiy)
8
+
chiz(chky + chiz)

1 . .
Finlim — k1 —ie, ka,k3)

fllll(in —Kk4— 1€, K1,K2) (. (3.14)

Here we used the simplifications discussed above and the real analyticity property (3.16€)
below. Moreover, we changed the integration variable from the difference of the two
rapidities to one of the rapidities{). The other rapidity &) is then the solution of the
transcendental equation

shay + shaz + shiy + shko =0 (3.15)

and is an analytic function af;. There are no contributions from terms involving delta-
functions such as8(k1 + x4) appearing inf121 since we are taking the limit (2.22) where
these delta-functions vanish. (These terms are however crucial to cancel corresponding
singularities in the? term; cf. Appendix A.)

The form factors appearing in (3.14) obey a system of functional equations which allow
one to further simplify the expression. Let us recall these equations in the form relevant to
the three-particle form factdFjbc(a, B, y) inthe Qn) model.

fjbc(m B:V) = She;yx (B — J/)fjxy((x, v, B), (3.16a)
Flpelet, B y) = Flap (v + 27i, e, B), (3.16b)
Fipelct, B.y) =Fpola + 1, B+ 21,y + 1), (3.16¢)
Fape@t, B y) = Fpy (=7, =B, —), (3.164)
[Fotpe(ets B, T = Fllpo (=, —B*, =), (3.16€)

Here the S-matrix appearing in the exchange axiom (3.16a) is thg ®matrix (3.1).
(3.16d) and (3.16e) express the parity invariance and real analyticity property of the
form factors, respectively. The homogeneous axioms (3.16) are supplemented by the
inhomogeneous residue equation

im (= B —im) Fopo (@, B, ¥) = 2i{8abdea — Speaa (B — 1) }- (3.17)

a—B+im
We now take advantage of the analytic properties of the form factors and change the
integration contour in (3.14) from the real axis to a cuévehich is arbitrary except that
it has to stay within the ‘physical strip’ @ Ima1 < /2. Along this contour we can put
¢ = 0 and also the limit; — 0 can safely be taken. The integrated part of (3.14) then
simplifies to

1 do
U&:—12&1/—Ch2afb(a)fb(—a), (3.18)
c
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where we introduced the shorthands

Fibd@) = Flpelim, o, —a0),

ihe(@) = 8pe fi(e) (O sum) (3.19)
Of course, one has to take into account the contribution of those singular points of the
integrand that get crossed when deforming the contour of integration. There are two such
singular points:

a1 =ka+ie and ar=—k1—ie, (3.20)
which never coincide if (2.23) holds.

Applying Cauchy’s theorem one can evaluate the contribution from the first singular
point using the residue axiom (3.17). This gives

1
- 16cht K1 ch? k4Chas(cha + chap)

) {Fiaim — k1 —ie, a1, @) — Fiqq(im — k1 —ie, @2, 1)},
where in the second term we also used the exchange axiom (3.16a). After taking the limit
¢ — 0, which is possible if (2.23) holds, the contribution of the first singular point becomes
1
16t k1 ChP iy chis(chks + chiy)
X {]—‘1111(1'7-[ — K1, K3, K4) — fllll(iﬂ — K1, K4, /<3)},

The contribution of the second singularity is similar:
1
16cH K1 ch? k4 Chio(chky + chko)

x {Fia(im — ka, k2, k1) — Fipa(im — ka, k1, K2)}.
Putting together the contribution of the singular points and the last two terms of (3.14) the
non-integrated contribution can be written as
oD - 1
217 gor? K1 ChP kg chis(chks + chiy)

1 . 1 .
X {Flll(lﬂ — K1, k3, k4) + flll(lﬂ — K1, K4, KS)},

where= indicates equality after the symmetrization over the elements of the permutation
groupSa has been carried out.

We now use the Smirnov axioms (3.16) and (3.17) to simplify the non-integrated part in
the (symmetrizedy; — O limit. It is convenient to first introduce the reduced form factor

G, B, y) by

Fpda. B.y) = T3, B, y)Gpet. B. V). (3.21)
Here and in the following we set
Ty@w....08) = [] T®-0). (3.22)

1<i<j<N
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whereT is basically the tanh-functioff (9) := tanh/2. Note T (6) has a simple pole

atf =im, T(ir —0) = -T(imr +60) = —-2/60 + O(H), and a simple zero @ = 0. The
advantage of the representation (3.21) is that the singularities are carried by the tanh factors
and the reduced form factﬁlgbC is analytic everywhere in the physical strip. In particular,

for smalle, B andy it can be expanded as

Gl +a, B, y) = Jh o+ (@ —Y)Ket+ (B—y) Lo+, (3.23)

where the dots stand for terms higher ordewj8 andy. We can compute the constant
tensors appearing in the expansion (3.23) using the form factors equations. From the
residue axiom (3.17) we can immediately fix

Tipe=1(8abdea + Bacdpa),  Kipet Lape= Dbe:ad- (3.24)

To determine the expansion coefficients individually we employ the exchange rela-
tion (3.16a) and find

Kgb(;: Dbc;ad - Dbc;dav LgbC: Dbc;da' (325)
Using the expansion (3.23), for smalthe non-integrated contribution becomes
1 K3 — K.
D = = - 2i + (k3 — ka) D + O (2 3.26
121 4(/<1+/c3)(/<1+;c4){ (k3 — K4) (k*)}, (3.26)
where
3
. do;(0)
DZDlLll:_lZT (3-27)
j=1 6=0
This can be simplified by noting that upon averaging over the permutations
1 1
- =0, (3.28)
K1+ kK4 K1+ K3
and similarly
1
ke . S . s Lk Lo (3.29)
K1+ kK4 K1+ K3 K1+ K4 K1+ K3 2
After this simplification we have for the non-integrated contribution
1
vigy=—5 D, (3.30)

2
and hence the non-integrated part of the leading contribution to the four-point coupling
eventually becomes

Vi1 =—4D. (3.31)
For the Ising model the S-matrix is constant and thereﬁéﬂaﬂz Oforn=1.Forn>2

we use (3.3) and find

o0
4 ~
Vil == +8 [ doRyo) (3.32)
0
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The integrated part (3.18) (which is in this form rather useful for numerical evaluation) can
be written in an alternative form using the the residue axiom which implies

4 4i
fabe® = ~3 Tihet O(1) = — 5 (Gapded +dacdpa) + O(D). (3.33)

Using this we can explicitly subtract the singular part in (3.18) and shift the contour back
to the real axis. Noting also that the integrand is an even functiarveg arrive at

o

1 1 64

a2 [y —u)— =1 3.34

Va.121 87'[/ M{Chzu So() fo(—u) uz} ( )
0

The extension of the formula (3.7) to general integrable models without bound states is

described in Appendix A.

3.2. The three particle form factor

Only the special three-particle form factﬁjbc(e) in (3.19) is necessary to compute the
leading contribution (3.7) t@r. It turns out to obey an autonomous system of functional
equations (in a single variable) that derives from the form factor equations satisfied by
]-'gbc(a, B, v). Solving it allows one to computg,(0) — and hence to evaluate (3.7) —in
situations where the general form factors are not known.

We begin by noting that the functionﬁjbc(e) are real analytic, i.e.[fadbc(e)]* =
f;’bc(—e*), in the physical strip 6 Im6 < &, with simple poles ah = 0 and6 =
i /2. Moreover, using (3.16b,d) one can easily deduce that it is symmetric in its last two
indices,

b8 = facp(®)- (3.35)
Using (3.16a) one obtains

Fibe(0) = Sbe:yx (20) fio(—0), (3.36)
and finally combining (3.16a—d) results in

FibliT = 0) = Scaryx(0)Syp:z1(20) Sy (0) fib, (i +0). (3.37)

These are the consequences of the homogeneous form factor axioms; they are supple-
mented by the residue equations

Resf5ho(0) = —4i (Sapded + Sacdba), (3.38)
Resfaalb(;(%) =i {Sbc&zd - Sca;bd<i7ﬂ> } (3.39)

In view of Eg. (3.35) we can parameterifeas
FE0) = k(©)8aadpe +1(O)[8acdba + apded]- (3.40)

Then the contributior;y‘,f,”l)21 is given by
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o0

1
Voo = o / due { [k )k (=) + 2k )l (—u) + 2k (—u)l (1)
0
+ 4wl (—u)] /chPu — 64/u?}. (3.41)

In terms of the two functionk(@) andl(0) Eq. (3.36) can be written as

k(0) = [52(260) +no1(20) [k(=6) + 201.(20) 1(~6),

1(0) = s52(20) 1(—0), (3.42)
while (3.37) becomes

k(im —0) = [A11(0)k(im +0) + A12(0) (i + 0)]a(8)s2(6)%52(26),

(i — 6) = [A20(@)k (i +0) + A2(O)1 (i + 0)]a(8)s2(0)52(26). (3.43)

Here
(n—2)0+2in
(imr —0)(im —20)[(n—2)0 —in][(n —2)0 —2ix]?’

a(0) = (3.44)

and

A11(0) = (0 — im)[2(n — 20% + (n — 2)(n — HO?%in + (n + 0n? — 2in?],
A12(0) = —4(n — 2)iwO O — im)(0 + i7),
A21(0) = —2(n — 4)in30,

A22(0) = A11(—0). (3.45)
The matrixA(9) satisfies
1
—1_ 4 _ _
AO) L= A(=0)a®)a(—0), detd(9) = T (3.46)

The functional equations (3.42), (3.43) still contain the transcendental fungtién It
can be eliminated by the following standard procedure. We introduce the functiomas
the unique solution of

u(0) = 52(0) u(—6), (3.47)
u(in —0) = —u(in +6), (3.48)

subject to the normalization condition

uimr —0) = % +O0®). (3.49)
Using the results of Appendix D one can immediately write down the solution

u®) = —% T() e, (3.50)
where in (D.3) of course the kern&l, (w) defined in (3.4) has to be used. Introducing

Y(0) = j—;u(in —Oulir +0)u(29), wuo=u'(0)= —% A0 (3.51)
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we parameterize, ! as
k(@)=Y@®)K(@®) and [(0)=Y(@O)L(®). (3.52)

Rewriting then the functional equations (3.42), (3.43) in term& @nd L, the new system
involves only rational coefficient functions. Explicitly they read

-1

K(©®)= —
[(n—2)0 —in)(im — 20)
x {[(n —2)0 + ix)(in + 20)K (=6) + 4inOL(—6)),
L(©®) = L(-6), (3.53)

and

K(@im —0)=[A110)K (i +0) + A12(0) L7 +6)]a(®),
L(im —0) =[A21(0)K (im +0) + A22(0) L(im + 0)]a(0), (3.54)

respectively. The first equation of (3.53) can be used to elimih&¢ in favor of K (9)
via
L) = i{[in —(n—2)0](ir —20)K (0)
4inh
—[im + (n — 2)0](im + 20)K (—6)}, (3.55)

and (3.55) also solves the second equation of (3.53). Inserting (3.55) into (3.54) results in
a single linear functional equation féf(6). The normalization of the solution is fixed by
the residue equations (3.39).

We expect that this procedure can be used to compui®) and hence the leading
contribution to the coupling for all @) models. For the O(2) model we demonstrate this
in Section 6.

3.3. Subleading contributions

In order to achieve higher accuracy and to obtain some clue on the rate of convergence of
the series (2.44) we will compute some of the subleading terms as well. It turns out that the
1-2-1 term indeed gives the numerically most important contribution to the coupling. But
based on the computation of the subleading terms the numerical result can also be endowed
with anintrinsic error estimate. Our results indicate that the next important contributions
to the coupling arél, 2, 3) + (3,2,1) and (1, 4, 1). Its explicit evaluation is deferred to
Appendices C and B. The difficulty in the evaluation lies in the rapidly varying nature of the
integrands, which have in the multidimensional phase space many zeros and (integrable)
singularities. To deal with these we have either decomposed the integrand into appropriate
parts or avoided the singularities by shifting some contours of integration into the complex
plane.

The (1,4, 1) contribution is thel = 4 case of Eqg. (3.9) and will be evaluated in
Appendix B. Here we prepare the ground for the evaluation of(the, 3) + (3,2, 1)
terms. More generally let us examine ttie 2, m) + (m, 2, 1) contribution and to this end
return to (2.8). Performing the internal rapidity integrations one obtains
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v12m (K1, K2, K3, K4)
_ 7 1 [ dérdér (81,62, k1, k2)
chliy m! ) (4m)2 chél + ché,

d"0 561, ... 0m, —ka)
Tom (— 6). 3.56
(4 )m Z’}LlCh@j 12m (—k1]62, £1(0) ( )

Next one spells ouli 2, := {311 by inserting the formula expressing the generalized form
factors in terms of ordinary form factors. Taking advantage of the S-matrix exchange
relations many of terms contribute equally upon integration and one ends up with four
terms

I I i v
Vian = Vi, + iz, + Vi, + Vi, (357)
with
8(B1. B2, k1, K2)
Vi (€1 2. K3, 10) 16(47r)'”m'b2b: 12/ e+ che, chp1+chp,
; 3(051,.- s Om, —K4) :
/d" - Fipopy(—K1+im_, B1. B2)
1Ch05,

X szblalaz ay (/32 +im_ /31 +im_, a1, .. ot,,,).?’:ala2 ay (@1, o), (3.58)
an - 3(B1, B2, k1, k2)
Vyom (K1, K2, K3, K4) 8(dn ) 1(m DI Z Z / 2L e chpy1 + chp,

by,bp az,..
/dm 1 8(ﬂ15a25" s O, —K )
chBy+ Y 7" ,che;
xfblzaz ay (B2 +im_,az, ... ot,,,).?’:blla2 ay (BL 02, som), (3.59)

aiy 1 8(B1, B2, k1, k2)
Vizn (K1 K2, K3 K8) ™ J 2 — 2)'Z Z / B chpy + chpz

by,bp as,..
— 8(“35"'5“"15’(3)
x [ d" 2
/ chBy+chpa+ > /" sche;

flblbz( k1+im—, B1, B2)

Fipyp, (=K1 +im_, B1. B2)

X fj‘:g U (a35 .. am)fblbza?, A (ﬂl’ ﬂ27 asg, ..., )*7 (3'60)
% m (a1, ..., oy, —Ka)
v K1, k2, K3, K d"o
12m (K1, K2, K3, K4) ~ 16(47.[);11 16(47)"—Lm W / S cha;
X flllalaz...um (—k2+im_,—Kk1+im_,ay,.. am)]:alaz ay (L o),

(3.61)
wherern_ stands forr — ¢. All integrals range from-oo to +oco.

Further details of the computation of the 1-2-3 contribution are given in Appendix C.
Note that for the numerical evaluation of thet+ / + m = 6 contributions we need the
analytic expressions for the 5-particle form factor of the spin operator. Unfortunately these
are at present only known far= 1 andn = 3. For the Ising model all the form factors are
explicitly known and in this case we have also computedthe + m = 8 contributions.

After a preparatory next section where we discuss the definition and measurement of the
intrinsic coupling in the lattice regularization, we will discuss the casesl, 2, 3 in turn.
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4. Lattice computations ofgg

In the subsequent sections we will compare the results of the form factor bootstrap
couplinggr with those obtained from the lattice theory. As noted earlier, in the framework
of the lattice regularization there are two methods to compgite the O¢) models: high
temperature (= strong coupling) expansions and Monte Carlo simulations. Both approaches
usually take the standard lattice action on a square lattice

S:—ﬁZa(x)~a(x+/l), (4.1)

X

as the starting point, whetg(x) - o (x) = >, 0% (x)o“(x) = 1.
The lattice definition ogr(B) is as in Eq. (2.40)

1 1 aabb
- - = § 4.2
s £3G2(0)2 n? 4= G (4.2)

where all quantities are defined analogously to the continuum theory

1 .
Galk) == DY et o (0)a(0), (4.3)
G2 = " [0 (x1) 0™ (x2) 0" (x3)0“(0))
X1,X2,X3
— [(e™ (x1)0%(x2))(0*3 (x3)0*(0)) + 2 permg}, (4.4)

andé» is the second moment correlation length

12 1 a a
&= 4622(0)’ re=u Z ;x% ()" ) 2

The coupling from the lattice regularization is defined as the continuum limit
r= lim gr(p), 4.6
gr=lm gr(p (4.6)

whereg is a critical point where the correlation length diverges (in lattice units).

Butera and Comi [12] have produced long high temperature serie& @), i,
and G4 in the On) model with standard action, and Pelissetto and Vicari [13] have
reanalyzed these series to compute estimates for the intrinsic cogplfogn < 4. Similar
computations have been performed previously by Campostrini et al. [11].

Our Monte Carlo simulations were of course done on a finite lattice, more precisely a
square lattice of sizé (points) in each direction and periodic boundary conditions, both
with the standard action (4.1) and the fixed point action of Ref. [18]. The infinite volume
lattice couplinggr(B) is then obtained as the limit

gr(B) = lim gr(B. L), 4.7)

of a finite volume couplingr(8, L) which is proportional to Binder’s cumulant. :
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L 2
gr(B, L) = (W) ur,

2 (Z»?)
=1+--—=, 4.8
ur + " (22)2 (4.8)
where ¥4 = 3" o%(x). In this definition£€%(g8, L) is an effective correlation length
which converges to the second moment correlation leagth the limit L — oo. In our

computations we used the particular definition (as, e.g., in Ref. [7]):

., 1[G
R T K2R (4-9)

whereko = (27/L, 0).
In our analysis of the Monte Carlo data we shall make the working assumption that one
is allowed to replace the limiting procedure jmg,lim;_. . by

gr= lim gr(x), z:=L/t*"(B, L),
7—>00

g = li L). 4.1

8r(2) o im oeg®RB D) (4.10)

That is we attempt to first take the continuum limit at fixed physical volume and afterwards

take the physical volume to infinity. The— oo limit of gr(z) is expected to be reached

exponentially; for example in the leading orde¢mnlexpansion [10]

8r(2) = gr(00) (1 — c/zexXp(—2) + -+ ). (4.11)

The situation may however be slightly more complicated due to our particular definition of
£€. Indeed in the continuum limit at fixed physical volume we exp@gt0)/ G2 (ko) —
G(0)/G (k) wherek ~ Ko = (2t MRr/z,0) and the continuum expressions are in finite
physical volume. On the other hand for the continuum two point function defined in infinite
volume

1 1 21\ ?
c2l00/0w0 ~1]~ 1= (%) 02-0] (4.12)

In our simulations the values ofrZ2z are ~ 1, i.e., not so small; nevertheless at such

values the correction factor on the rhs of (4.12) only deviates from 1 by the ordér 10

This deviation is much smaller than the statistical accuracy of our simulations, and hence

we ignore these additional effects in our analyses of the lattice data.

5. The Ising model

The particular field theory we are considering in this section is that obtained from
the Ising model in zero external fieddfor 0 < 7 — T, — 0. The spin—spin correlation

2 One can obtain an infinite number of field theories from the Ising model in the presence of an external field
H by taking the limitH — 0, T — Tc with h = H/|T — Tc|*™/8 fixed.



J. Balog et al. / Nuclear Physics B 583 [FS] (2000) 614-670 637

functions in the scaling limit are known exactly from the work of Wu et al. [19], and from
this knowledge Sato, Miwa and Jimbo [20] found that the S-matrix operator was given by

S=(-pNN-D/Z, (5.1)

whereN is the particle number operator. An energy independent phase is not observable
in a scattering experiment; the non-trivial S-matrix (5.1) reflects the fact that the off-shell
spin—spin correlation functions are not that of a free field. The continuum limit of the Ising
model is also described by a free Majorana field, but this is non-local with respect to the
spin field; for a more detailed discussion we refer the reader to the lectures of McCoy [21].

5.1. Form factor determination

The generalized form factors are given by [22]
61, ., o () Ot -, ON)"
P
= (2i)(N-D/2 T(16; — 6, —_—
(2i) [T 7@e-e) I TG 8

1<i<j<m 1<r<m<s<

x ]_[ T(16x — 61), (5.2)
m<k<I<N
with N an odd (positive) integer. We evaluate the dominant contribution to the coupling
using Eq. (3.7). The non-integrated part (3.31) vanishes. For the integral (3.34) we need
f1(0), which is readily obtained from (5.2),

f1(0) = —2i T(20)/ T?(6). (5.3)

Thus the dominant contribution te is

o0

1 T2(2u) 16 5 47

o= — [ du| ——=2 | =220 5.4

Y4121 ZN/M[T“(u)chzu MZ} 5" & (5.4)
0

Numerically this gives/s.121 = —4.9934274411) or gr ~ 14.98 in the leading approxi-
mation.

The simplicity of the form factors (5.2) also makes the Ising model a good testing ground
for the computation of the subleading contributions, to which we turn now. The evaluation
of the spectral moments (2.39), (2.43) is straightforward./res 3,5, 7 the results are
given in Table 1.

Table 1 suggests that the series (2.43) converge extremely rapidly and we would estimate

y2=1+8.152591) x 1074, §2=1+1.094(1) x 10°°, (5.5)

where the estimated errors come both from the numerical integration and from estimating
the contributions of the higher particle terms. To get some check on this we may consider
the ratiosz/y» for which from the leading terms (5.5) we g&t/y> = 0.999 196 33611).

This is in excellent agreement with the resédyy> = 0.999 196 33 of Campostrini et
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Table 1
m-particle contributions tg», 8> in the Ising model

m Y2:m 82;m

3 8.1446256566L) x 104 1.094(1) x 10°°

5 7.96(1) x 107 2.22(1) x 10710

7 7.8(1) x 10710 4.6(1) x 1071
Table 2

k-1-m-particles contributions tgy in the Ising model

k,l,m YA kim
1,21 —4.9934274411)
1,23 0.04631Q1)
1,41 —0.0026531)
3,23 0.00028843)
1,4,3 —0.000042@5)
1,2,5 0.000025622)
1,6,1 —0.000004Q1)

al. [23], which they obtained by numerical evaluation of the exact formula for the 2-point
function® of Wu et al. [19].

The evaluation of/4 is more involved. In order to gain insight into the rate of decay of
the higher particle contributions as well as their sign pattern we pushed the computation up
tok+1+m < 8. Thek+1+m = 8 contributions in particular turned out to be a formidable
computation despite the deceptive simplicity of the form factors. The computation is based
on the formulae (3.9), (3.56) and similar ones far, 2, m), with m odd, and for(1, /, 3),
with [ even. To give the reader a chance to follow the computations we have collected some
intermediate results in Appendices B, C. The final results for the contributions bfltive
intermediate states with+ [ + m < 8 to y4 are summarized in Table 2.

The rapid decay of the terms is manifest. Increagingl + m by 2 gives a contribution
roughly two orders of magnitude smaller than the previous one. The sign pattern appears to
follow the rule: Sigriyas.im) = Sign(k + m — [ — 1). Further terms with larger differences
|k — 1], |l — m| are suppressed as compared to those with smaller ones. In view of Table 2
we would thus (conservatively) estimate the- [ + m > 10 particle contributions to be
< 10% of the sum of thé + / + m = 8 contributions. This gives

ys = —4.9032%3). (5.6)
Inserting into (2.42) withy,, 87 taken from (5.5) then yields our final result
gr=14.69751). (5.7)

3 This famous Fredholm determinant (solving the Painlevé Il equation) is basically the summed up FF series;
see, e.g., [24].
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Table 3
Previous determinations gf in the Ising model

Method Value forgr

High temperature  1694317) [13], 1467(5) [25]
Borel summation  1%5(8) [26]
Monte Carlo 143(1.0) [27]

14.65 ———————F————T T T T

146 — —

8

14.55 —

PN A R BRI R
0 0.02 0.04 0.06 0.08 0.1

1/¢

Fig. 1. The data fogr atz ~ 7.4 for different lattice spacings.

This amounts to a determination g to within < 0.001%. For comparison we collected
the results of some previous determinations in Table 3.

Finally we would like to mention that an analogous 4-point couplingan be defined
at criticality T = T, by sending the magnetic field to zero. Of course in this case the
definition of Binder's cumulant has to be modified appropriately to take into account the
fact that the field has non-vanishing vacuum expectation value. Remarkatign be
computed exactly by taking advantage of the fact that the skhakhavior of the partition
function is known exactly [28,29]. The final resulttig = —6097 /4 = —478307.

5.2. Recent Monte Carlo simulation of the Ising model

Our Monte Carlo investigation ofr was performed on several IBM RISC 6000
workstations at the Werner-Heisenberg-Institut.

In this subsectiog®™ is denoted simply by . We studied the dependence on the lattice
spacing by running g8 = 0.418 ¢ = 10.839936),8 = 0.4276 £ = 18.924790) an(8 =
0.433345 ¢ = 33.873923) on lattices of size = 80, L = 140 andL = 250, respectively.

These values were chosen in such a way that they have almost exactly the same value of
z=L/& =~ 7.4. Fig. 1 shows that there is no significant dependence on the lattice spacing
(i.e.,&). Therefore we decided to use all the data together to study the finite size effects.
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Fig. 2. The data fogr Vs v/z exp(—z) together with the fit.

Table 4
Ising data fory = G(0) andgr(B. L)

B L # of runs & eff X SR
0.418 40 200 10.839936 163.54(13) 11.941(11)
0.418 60 200 10.839936 172.81(11) 14.104(26)
0.418 80 321 10.839936 173.94(6) 14.587(30)
0.418 140 300 10.839936 174.08(4) 14.743(39)
0.4276 140 100 18.924790 455.34(35) 14.610(54)
0.4276 250 225 18.924790 455.90(12) 14.796(46)
0.433345 250 202 33.873923 1254.48(72) 14.567(37)

We studied the finite size dependence by measuring in addjtioon lattices of size
L =40, 60, 80, 140 ag = 0.418, ¢ = 10.839936). Finite size scaling works very well,
i.e., the results only depend an= L/&. The dependence anis still quite well described
by Eq. (4.11). This can be seen in Fig. 2. A least square fit produces

c=391(3),  gr(c0) = 14.69(2). (5.8)

The fit quality is not fantasticq? = 2.4 per d.o.f.) but acceptable. So our final Monte Carlo
estimate forgr is

¢r = 14.69(2). (5.9)

We report our numbers in Table 4. In this table we also indicate the number of
measurements. These were performed using the cluster algorithm as follows: one run
consisted of 100,000 clusters used for thermalization, followed by 20,000 sweeps of
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the lattice used for measurements. Each run was repeated after changing the initial
configuration. One such run was considered as one independent measurement. The error
was computed out of this sample by using the jack-knife method.

Our estimated value fogr in Eq. (5.9) is in very good agreement with the values from
the analysis of the high temperature expansion given in Table 3; it is also consistent with
the value Eq. (5.7) obtained from the form factor construction.

6. The XY-model

In this section we compute the leading contribution to the four-point coupling in
the two-dimensional @) nonlinearo-model better known as the XY-model. Starting
from the lattice formulation, after a chain of mappings consisting of several steps the
model is transformed to a system equivalent to the two-dimensional Coulomb gas. The
continuum limit of the Coulomb gas model (corresponding to the Kosterlitz—Thouless
critical point [30]) is thought to have a dual description in terms of a sine-Gordon model at
the (extremal) sine-Gordon couplifig = 8x. For a review of the XY-model, see [31].

In the following we will start by discussing the XY-model S-matrix. The next step is to
solve the Smirnov equations for the three-particle form factors, which enter the formula
for the leading term. A general method for finding the sine-Gordon form factors is given
in [32]. This extends the results of Smirnov [6], where the form factors for an even number
of particles were found. The spin three-particle form factor we are interested in is probably
similar to the three-particle form factor of the fermion operator (corresponding to the
equivalent massive Thirring-model description), explicitly given in [32]. Here however
we need the three-particle form factor only for special rapidities and we found it simpler
to obtain this special version by going back to the functional equations. It is then used to
numerically evaluate the leading contributiongie.

6.1. The XY-model S-matrix

We will regard the XY-model as the = 2 member of the family of @) o-models.
Recall that the formulae (3.2), (3.4) have a smaootk- 2 limit; this has been noted and
commented on previously by Woo [33]. In this limit

o1(0) = — 52(0), 02(0) =0, 03(0) = 52(0) (6.1)
(imr—0)
and
OOd ) - - —nw/2
52(0) = —exp{Zi / X“’ sin(Bw) Kz(a))}, Ro(w) = Zi:Ta)/Z (6.2)

0

In this paper we will assume that the spectrum of the XY-model in the (massive) contin-
uum limit consists of an @) doublet of massive particles whose S-matrix is given by (6.1)
with (6.2). Of course, taking the formal— 2 limit of the bootstrap results valid far> 3
would not be convincing in itself, but (6.1), (6.2) actually coincide withgRe— 87 limit
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of the sine-Gordon S-matrix, the prediction of the Kosterlitz—Thouless theory! The S-ma-
trix (6.1) and the corresponding scattering states as a consequence Mave; ésu(2))

Hopf algebra symmetry, which as a Lie algebra is isomorphic to su(2). The latter is an
explicit symmetry in the alternative chiral Gross—Neveu formulation of the model [31].

6.2. The three particle form factor

Next we calculate the three-particle form factor at the special rapidities necessary to
compute the leading contribution (3.34). For this purpose we note that the equations for
the functions, I given in Section 3.2 can relatively easily be solved in this particular case
n = 2. We first note that Eq. (3.54) simplifies

K(im —0)=K(im +0),

K(Gnm+0)= ﬁ{(m —0)(imr —20)L(iwr —6)

— (i +0)(im +20)L(im +0)}. (6.3)
Inserting (3.55) yields
3imr—20 im—20
im+20 im+20

Luckily a term proportional taK (i — 6) drops out here and one is left with the simple
form (6.4). This can easily be converted into the form (D.1) and solved as

K(—im —0) = K(—im +6). (6.4)

K(im —0) = (20 —57i)(20 — Ti) P ¥72 ¢ (i ch(0/2)). (6.5)
Here
D(0) = A1/4(0) + Az/4(9) (6.6)

in the notation of Appendix D andl(z) is a polynomial function to be determined later.

SinceY (9) already has the right singularity structure the functi&®) and L(0) are
analytic in the physical strip. The residue axioms determine their valde=ad and6 =
imr/2as

K(©0) =0, L) =1,
i ug i . .
K| = )=——"— Ll —=)=- 2K 2). 6.7
(5)-msm tF)=-stmr2rins2 67)
So far we have established that the solution can be expressed in terms of
. chP0/2)  Ha -
YO)= -2 — "= (im+0)+A(20)—A(0) 6.8
@) =—2 a2 cho ¢ (68)
and
K(0) = (20 +37i)(20 + 5mi) 2" p(sh(0/2)). (6.9)

The polynomialy (z) can be determined using the residue constraints (6.7), which we can
rewrite as
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2
K(0)=0, K'(0)=—,
LT
K(in/2) = eA0-24Gr/2) K(—in/2) = —eAO—Alr/D=A(=in/2), (6.10)

Using (6.8) and (D.4) one sees that for reéal> oo
1Y (0)| ~e?0%4. (6.11)

This can be used to infer that the polynomjdl) can be at most second order, otherwise
the integral contribution to the leading term would diverge. Taking into account that
K (0) = 0 and the requirement of real analyticity one must have

$(2) =id1z + p22°, (6.12)

for real constantg; and¢,. Now it is easy to see that (6.7) determirasas

4 .
$1=1c3 e PUn/2), (6.13)
In order to determine, we employ the following identities [34]
[ chlamw) —1 1
CN(aemrw) — oI
= A L 14
p@) eXp{/ e } 2 Sin(ar/2)’ (6.14)
0
[ chiamw) — 1 1-q?
CNlaomrw) — —
= dp——— =20t =~ — 6.15
q(@) exp{/ “ shirw) ¢ } cosamr /2)’ ( )
0
to obtain
¢’ 16V2

exp{A(0) — 2A(in /2) + D(im /2) — D(iw /4 } = p(D) (6.16)

¢(3/2) 51

This can be used to show that (6.10) is satisfied for the chpice 0. Thus¢(sh%) =
i¢1sh%, and since AL (0) = (im — 20)K (0) — (i + 20)K (—0), bothk(9) = Y (0)K (0)
and/(#) = Y (0)L(0) are known explicitly for the XY-model.

6.3. Calculation of the leading contribution

Having all the ingredients at our disposal we can compute the leading term (3.7) of the
intrinsic coupling. Firstly from (3.32) we have far= 2

4
1
Vidor= —(n4—1). (6.17)

Further substituting the explicit results for the functi@ns obtained above into Eq. (3.41)
and evaluating the resulting expression numerically we obtain

Varto1= —5.149021), (6.18)

and hence

Va121= Va1 + VAo = —4.65718 (6.19)
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Thus the leading contribution to the XY-model four-point coupling is
=222 ~ 2pi121=9314 (6.20)
Y202 ’
Sincey»82 > 1 and since the next leading contributiongApare probably positive (as
they are in the Ising and O(3) models), we expect that the true valgewfll be less than
that given in (6.20) (probably by 2—-4%).

6.4. Comparison with lattice results

For the XY-model with standard action Kim [8] gives the value
gr = 8.89(20) (6.21)

for § =1/0.98. We are in the process of producing higher precision Monte Carlo data
for this model; so far we can only give a preliminary result, obtained on a lattice of size
L =500 atg =1.0174:

gr = 9.14(12). (6.22)

We will return to this issue in a separate publication, where we intend to analyze the finite
size corrections as well as the lattice artifacts.

We also wish to mention the results from the high temperature expansion: Butera and
Comi [12] obtain

gr = 9.15(10), (6.23)
whereas Pelissetto and Vicari [13] give
gr=9.10(5). (6.24)

So there is an overall rough agreement between the lattice and the form factor results, but
the precision is not comparable to that obtained for the Ising model.

7. The O(3) nonlinear sigma-model

The O(3) nonlinear sigma-model is an important testing ground for quantum field
theoretical scenarios in nonabelian gauge theories. The form factor technique has been
particularly fruitful in studying its possible off-shell dynamics and can be confronted with
what can be achieved by perturbation theory or numerical simulations [35]. The intrinsic
coupling has been computed before by a number of different techniques; we compare the
results with ours at the end of this section. The present form factor determination takes
as usual the Zamolodchikov two-particle S-matrix [3] as its starting point; it is given by
Egs. (3.1), (3.2) witm = 3 and
0 —mi
O+mi
The corresponding kernel (3.4) is simply given by

Ka(w)=e 7. (7.2)

52(0) =

(7.1)
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7.1. Form factor determination @fg

Following the by now routine procedure we first collect the ingredients for the evaluation
of the dominant(1, 2, 1) contribution to the intrinsic coupling. From (3.32) one readily
finds forn =3

n _4

]/4;1212 ; (73)

The O(3) form factors have been computed in [6,35,36]. In particular the reduced 3-particle
form factorG in Eq. (3.21) is given by

G2 s (01, 02, 63) = T3(01, 02, 3) {82 Sz (B3 — 62) + 82 Susay (61 — 03 — 270i)
+ 85 8a1a,(62 — 61) }. (7.4)
where
... 00= [ 6:-6p,
1<i<j<N
w0 —im) 6
0)= — " tanh=. 75
YO = ari =) N3 (7:5)

Correspondingly the functioris [ parametrizingf;, via Eq. (3.40) are fon = 3 explicitly
given by

20 73T2(20)0(20 — 7i)
k(@)= —I1(0 1(0) = 7.6
@) - @), 1) AT40) (2 + 02)2 (7.6)
Plugging this into the general formula Eq. (3.41) yields
w1 [ (7@l nd @l + D) THw) 64
Va121= _/d” 21 -2\5 2l 7.7)
8r ) 4u?+ 2?) T8u)chPu u

Numerically we then obtairys.121 = —4.168354921), so that as a first approximation
gRA —%m; 121=6.9472. This is already in rough agreement with other determinations in
the continuum theory: the/1, thee- and theg-expansions [7,13]. The leading ordefrl
computations have been performed in [37]. For the spectral integrals the result is

1 1
y2=1+ 0.00671941} + 0(—2>, So=1+ 0.0002683é + 0(—2) (7.8)
n n n n

and for the coupling [10]

87

1 1
gR="—" [1 ~0.602033 + 0(?)}. (7.9)

which gives the approximatiogr ~ 6.70 for the case: = 3. The results from the other
methods are given in Table 7. Considering the rather short series in each case it is amazing
how well the estimates by the various methods agree.

For a more precise determination we now return to the form factor approach and examine
the subleading contributions. Using the exact form factors [35] the results for the 3- and
5-particle contributions tg, andé, are readily evaluated and are listed in Table 5.
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Table 5
m-particle contribution ta,, 87 in the O(3) model

m Y2:m 62;m

3 1679951) x 10~3 3.464941) x 107>
5 6.622(1) x 106 7.114(1) x 1079

Table 6
k-1-m-particles contribution tg4 in the O(3) model

k? l? m J/4; klm
1,21 —4.168354921)
1,23 0.0517481)
1,41 —0.004065%1)

The size of the higher particle contributiongtpands, can roughly be estimated by an
off hand extrapolation of Table 5; essentially they are negligible to the desired accuracy.
The latter could also be justified by referring to a more refined extrapolation scheme, based
on the scaling hypothesis of Ref. [35]. In upshot we obtain

yo=10016871), &= 1.000034657L). (7.10)

The computation of the subleading termsg/tois much more involved. The starting point

is again the formulae (3.10) in Section 3.1. Due to the complexity of the form factors
however the computation is feasible only computer aided. The essential steps are given in
Appendices B, C. The computation has been performed independently by subsets of the
authors using slightly different techniques. The final results for the contributions of the
k-1-m intermediate states with+ [ + m < 6 to y4 are listed in Table 6.

The leading 1-2-1 contribution is a facter42 greater in magnitude than the sum of
k-1-m contributions withk + [ +m = 6. Itis difficult to bound the rest of the contributions,
especially since the signs appear to be alternating. The computation of the states with
I +m + n = 8 would be quite an undertaking. But assuming that the pattern in Table 6
continues, as it seems to be the case in the Ising model (see Table 2), then we consider the
assumption that the sum of the remaining contributioftd + m > 8 is < 10% of the sum
of thek + [ + m = 6 contributions to be reasonable and we then obtain

y4 = —4.06910), (7.11)
and hence our final result
grR="6.770(17). (7.12)

This amounts to a determination gk to within 0.3%. For comparison we give some
results of other already published determinations in Table 7. The first two are continuum
methods while the last one is based on the lattice regularization. We describe the two lattice
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Table 7
Other determinations gfg in the O(3) model

Method Value forgr
g-expansion 6.66(6) [7]
g-expansion 6.66(11) [13]

High temperature 66(4) [10], 6.6(1) [11]

techniques in somewhat more detail in the next subsection, including in particular our own
recent Monte Carlo results.

7.2. Lattice computations @fz

High temperature expansion

The analyses of the high temperature expansion for the spectral moments give
1.00132) [37] andé2 = 1.0000295) [38]. The agreement with the FFB values Eq. (7.10)
is acceptable; note that these are smaller than that anticipated from the leading order of the
1/n approximation, Egs. (7.8).

The various Padé approximations show the coupling falling rapidb/iasreases in the
region of smallg, then a region of rather flat behavior after which these approximations
show diverse behavior; some analyses indicate that in fact there is a shallow minimum
and that the continuum limit is actually approached from below (see, e.g., Refs. [13,23]).
In Ref. [11] Campostrini et al. quote for the case= 3 the resuligr = 6.6(1), and in a
more recent publication Pelissetto and Vicari cité6§4) [13]. Butera and Comi on the
other hand are rather cautious, and did not quote a value for the ea8an Ref. [12]; if
pressed they would at present cite= 6.6(2) [39].

Numerical simulations

Monte Carlo computations afg have a long history, see, e.g., Refs. [7,8]. In order
to attempt to match the apparent precision attained in the FFB approach, we recently
performed new high-precision measurements. These were performed on several IBM RISC
6000 workstations at the Werner-Heisenberg-Institut. In addition we made use of the
SGI 2000 machine of the University of Arizona, especially for the very time consuming
simulations on large lattices.

Based on the fixed point action [18] we have measyigat three different values of
B:0.70, 0.85 and 1.00, corresponding to correlation leiggth3.2, 6.0 and 122, at the
values of; = L /& in the range 5.4-8.2. The data and their analysis can be found in [9], the
final result isgk” = 6.77(2).

Monte Carlo measurements with the standard action were performed using a method
similar to the cluster estimator of [40]. We have reported the analysis of such simulations
already in our earlier paper [9]. But in the meantime we produced more data and we take
the opportunity to report them here.

The present status of the results of our simulations are given in Table 8. In this
table we also indicate the number of measurements. These were performed using the
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Table 8
0O(3) data forg, x =3G2(0) andgr

B L # of runs H X gr(, L) gr(§,00)
15 80 344 11.030(7) 175.95(11) 6.553(16) 6.616(16)
1.6 140 370 18.950(14) 447.13(34) 6.612(15) 6.668(15)
1.7 250 367 34.500(15)  1267.20(57) 6.665(14)  6.730(14)
1.8 500 382 64.790(26)  3838.76(1.50) 6.691(15) 6.733(15)
1.9 910 127 122.330(74) 11883.0(6.4) 6.737(21)  6.792(21)
1.95 1230 68 167.71(17)  20901.4(19.0)  6.792(40)  6.853(40)
6.9 - =

60 l ]

6.7 - —

gr
—
[EE—
[EE—
P

[
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1/¢

Fig. 3. The extrapolated values g (&, c0).

cluster algorithm as follows: one run consisted of 100000 clusters used for thermalization,
followed by 20000 sweeps of the lattice used for measurements. Each run was repeated
after changing the initial configuration. One such run was considered as one independent
measurement. The error was computed out of this sample by using the jack-knife method.
Our measurements were taken at 6 different correlation lengths ranging from about 11
to about 168 on lattices satisfyirlg/é ~ 7. To study the finite volume effects, we took in
addition data at ~ 11 for lattices of sized. with L/& ~ 5.5, 9 and 13. As discussed
in [9], the finite size effects are well described by the formula (4.11), even at finite (large)
correlation lengths. In the @) model then = oo valuec = +/8x fits very well.
But unlike the Ising model, the lattice artifacts are by no means negligible. To study
them, we first use Eg. (4.11) to extrapolate our datatooo. In this extrapolation we use
the effective correlation length and neglect the fact that this is not exactly equal to the
exponential correlation length. In Fig. 3 we plot those extrapolated valugg afainst
1/& which we identify with 7£€f.
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Unfortunately there is no rigorous result concerning the nature of the approach to
the continuum limit. At the time of our last analysis [9] the data point at the largest
value of £ ~168 was not available. In that paper we fitted the data in the entire
range from& ~ 11 to & ~ 122 using a Symanzik type ansatz of the fogm(§) =
gr(00) [1+b1E?logé + bo£ 2], and thereby obtained the resgl = 6.77(2). When
we now repeat the same fit for the new data, which in particular includes the new point
at& ~ 168, the result is only slightly changed gg = 6.78(2) but the quality of the fit
becomes poorer. The fact that the two data points closest to the continuum limit lie above
6.78 is in this scenario interpreted as a statistical fluctuation.

On the other hand the present rather large central valéie-at68 could be interpreted
as an indication that the continuum limit is approached much slower than conventionally
assumed, perhaps as slow gdnk (which may be expected in the O(2) model [42])!

If we adopt this viewpoint it is clear that, although qualitative fits can be made, without
further analytic information, our data are not sufficient to make a reliable quantitative
extrapolation to the continuum limit. However, independent of the assumed form of the
approach to the continuum limit, if the large value&t- 168 is confirmed by more
extensive studies it would practically establish a discrepancy between the form factor and
the lattice constructions of the O(3) sigma-model. This point, which needs complete control
over all systematic effects, albeit extremely difficult on such large lattices, is certainly
worthy of further investigations.

8. Conclusions

A new technique to compute the intrinsic 4-point coupling in a large class of two-
dimensional QFTs has been developed and tested. Starting from the form factor resolution
of the 4-point function the termwise zero momentum limit turned out to exist, providing a
decomposition of the coupling into terms with a definite numtaet, m) of intermediate
particles. Based on the exactly known form factors these terms can be computed practically
exactly and in the models mainly considered (Ising and O(3)) were found to be rapidly de-
caying with increasing particle numbers. There is every reason to expect that this trend
continues, which allowed us to equip the results with an intrinsic error estimate. The final
results are

Ising model: gr=14.69751),
O(3) model: gr=6.770(17). (8.1)

They amount to a determination g& to within < 0.001% and (%, respectively.

In addition we obtained the universal, model-independent formula (A.3) for the
dominant contribution to the coupling, which typically seems to account for about 98% of
the full answer. We illustrated its use in testing our proposed bootstrap description of the
XY-model. It would surely also be interesting to apply it, e.g., to supersymmetric theories,
where alternative techniques are hardly available.
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The comparison with the lattice determinationsggfis quite impressive in the case of
the Ising model, where there is also very good agreement between the high temperature and
the Monte Carlo determinations. For O(2) we are so far lacking both precise Monte Carlo
and form factor data, but at this preliminary stage there is rough agreement. We intend to
return to this model in a separate publication.

The situation in O(3) is not completely clear: there is a less than perfect agreement
between the high temperature result and the new high precision Monte Carlo data, and
there is also room for doubt about the agreement between Monte Carlo and form factor.
We cannot resolve this question at the moment, mainly because even with our enormous
amount of Monte Carlo data it is at the moment not clear what the correct extrapolation to
the continuum is.

Note added in proof

In a recent paper by M. Caselle, M. Hasenbusch, A. Pelisetto and E. Vicari (hep-
th/003049),gr is computed in the Ising model using a completely different method to
that presented in this paper. Their resgit,= 14.697353), is in excellent agreement with
oursin Eq. (8.1).
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Appendix A. General formula for the dominant term

Here we describe the generalization of the formula (3.7) for the dominant 1-2-1 particle
contribution togr to general integrable QFTs without bound states and operators other
than the ‘fundamental’ field. The latter is particularly natural in the form factor approach
because ‘fundamental’ and ‘composite’ operators are treated on an equal footing. Thus let
O, be possibly distinct, possibly non-scalar but parity odd operafprand writeo; for
the quantum numbers labeling them. Parallel to (2.13) we define the Green functions by

SOt (ka, . k) = (2m)%8 P (k4 - 4 k) GO (k- kL), (A1)

whereiﬁ’l”'oL (k1, ..., ky) is the Fourier transform of the connected part of the Euclidean
correlation function(O1(x1)---Or(xr)). The obvious generalization of the intrinsic
coupling is

5 Go1020304 (0’ O, 0’ O)

=-NM .
8R N Z]<k G()j()k (07 0)2

(A.2)
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Here M is again the mass gap and the constihis conveniently adjusted to normalize
the 1-particle contribution to the denominator to unityAf are the constant 1-particle
form factors of O, the leading 1-particle contribution t6°1°2(0, 0) is just Z°1°2 :=

*Zj’-‘olcabj'-‘oz whereC? is the charge conjugation matrix associated with the given
S-matrix (cf. below) Thus we tak&” = > L (Z°i9)2, With these normalizations the
dominant 1-2-1 particle contribution to the couplmg (A.2)is

gR|17271 — _1- Z Doxlos2§0s3ox4
2

S€S4
o0
+ / d_u Z _i 7051052 7053054 4~ ff);lf"sélcauacbbs
4 u? Ch2
0 S€S4
X Fg2 0 (0, =, u) C2P2CAPLEDS | (i, —u,u)*j|. (A.3)

Here the symmetrization is over all elements of the permutation gfaup is defined in
terms of the given bootstrap S—matﬁgi (6) by

09,0730, .
DO102:0304 — _; _—

]_‘51]_‘;’2 CCC/ Cdd’]_‘f?]_‘(‘[’fl (A4)

and F3, (61, 62, 63) is the 3- partlcle form factor 0©. Taking the results for the @J
models as a guideline one would expect that (A.3) typically yields about 98% of the full
answer for the coupling.

In the following we describe the derivation of (A.3). In contrast to that of (3.7) we
keep track here of the distributional terms like (2.19) and show explicitly that they cancel
out in the final answer. In particular this illustrates that the use of the simplifying limit
procedure (2.23) is justified.

To fix conventions we first recall the defining relations of a generic bootstrap S-matrix.
A matrix-valued meromorphic functioﬁgg(e), 0 € C, is called a two particles-matrix if
it satisfies the following set of equations. First the Yang—Baxter equation

k ji I 7
S (612) St (613) Sip (623) = Sp (B23) St (613) Sy (612), (A.5)

wheref1, = 61 — 62, etc. Second unitarity (A.6a,b) and crossing invariance (A.6c¢)

") §¢4 (—0) = 845¢, (A.6a)
Sme@) Spd 2mi — 0) = 846, (A.6D)
SU(0) = CorC 5% (i — 0), (A.6C)

where (A.6¢) together with one of the unitarity conditions (A.6a), (A.6b) implies the other.
Further real analyticity and Bose symmetry

[sh@)]" = Sd(—6%).  5%©) = 554(6). (A7)
Finally the normalization condition

Si (0) = =855 (A.8)
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The indicesa, b, . .. refer to a basis in a finite dimensional vector sp&cendices can
be raised and lowered by means of the (constant, symmetric, positive definite) ‘charge
conjugation matrix’C,, and its inverseC*?, satisfyingC,,C%* = §2. The S-matrix is
a meromorphic function of. Bound state poles, if any, are situated on the imaginary
axis in the so-called physical strip Q Im6 < 7. From crossing invariance and the
normalization (A.8) one infers thatjg(in) = —C,»C% is always regular, in contrast to
84¢(—imr) which may be singular.

Next we prepare the counterparts of Egs (2.10), (2.11).

(0101|m) (m|O02|0) «— I;1°2(0),
(01O1k) (k| O2]) (1| O3|m) (m|O4|0) «— ,{011,220304(wlél9), (A.9)

where

I;02(0) = FHO)C P F @),
(A.10)

G2 ()8 10) = F (@) CABF 32 (T 16)CCL F O3 (6 T10)CEX FO4(67).

DTE
From the S-matrix exchange relations it follows tigt’?(6) is a completely symmetric
function in@ = (61, ..., 6,,). Similarly 172 (w|£]0) is symmetric in each of the sets
of variablesw = (w1, ..., wr), E = (&1, ...,&) andd = (04, ..., 0,,). As before we denote
by V,, (k1, k2) and Vi, (k1, k2, k3, k4) the quantities (2.8) with the integrations over the
rapidities performed, where the measure is inherited from (2.25). For simplicity we drop
the operator labels; in the notation. When evaluated &f = (M shk;, 0) we write
Vkim (K1, K2, K3, K4), €tC.

In the next step one inserts the expressions for the generalized form factors in terms of
the ordinary form factors; see [16] for an account in the present conventions:. £a2
one obtains explicitly

8(k1+ k4)

]_‘glcabccd]:gzl 4ﬂf;’nzcmilﬁ3 Cbc
v121(k1, k2, K3, k4) =

8chf i1 chPis | chia(chkr + chip)
A FR FP3
chia(chky + chko)
1
foz Cmnf'o?»
+ chka(chky + chko) cbn
1
+
chis(chks + chky)

ﬂ’l n

Sep (i — k1 + Kk2) § (k2 + Ka)

(ka+im —ie, —k1, —Kk2)*

0 . .
FRCM F2 (—k1+im — i€, Ka, k3)

/ du 1 mk ~nl
T 2 C
) Am 4chP(u/2) + (shiy + shio)?

X FO2 (—ke1 +im —ie, A — )2, A +u/2)

FOyka+im —ie, A — /2, Ay + u/2>*}. (A.11)
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The x; — 0 limit of this expression can be evaluated on general grounds. The key
observation is that a three particle form factor has the following universal ‘small rapidity’
expansion

1 1 )
T ipas 01+ i — i€, 02,603) = G—is " o [2i (Carar Foy + Cayas Fy)
: e
+ 2Cayc (13D, — 012D2%, ) FY], whereD;‘gz—z@S;g(e)L ; (A.12)

This expression is uniquely determined by the following properties: (i) The numerator is
linear and boost invariant in the rapidities. (ii) It obeys the (linearized) S-matrix exchange
relations inf and 3. (iii) It has simple poles abt»1 + ie and 631 + ie with residues
dictated by the form factor ‘residue equation’ (see, e.g., [16] for an account in the present
conventions) Using (A.12) in (A.11) one can compute the smatlehavior ofv121. We
denote byv121 the contribution from the non-integrated part andlkéy) that from the
integrated part. One finds

1,
o = % 209224501 +13) — (k1 + k)] — 5 DS, (A.13)

where =" again indicates that both sides give the same result for the symmetsized
limit and DY192:0304 — [)0201:0403 — [)0403:0201 g given by (A.4).

Analyzing the smalk; behavior of the integral in (A.11) (by splitting it according to
Jo du= f5du+ [ du, e > OF) one finds a distributional term and a regular one. The
result is

U;(Lg)l — z [Z<)104Zo203 + 70103 ZOZO“]S(Kl + K4)
4

o0
du 1 )
* / 4 [ 16ctfu f”lf"4caa3cbb3_7_—g§a2al( s, u)

Cazbzcalbl}'o bzbl(”r’ —u, M)* _ 32 (2010420203 + 70103 Z<)2<)4)j| ; (A.l4)
u

where the integrand is regular for— 0.
For the generalization of th@ term (2.19) one obtains in the 1-particle approximation
and in thex; — 0 limit

$2°19293%4 (ky, k2, k3, ka)|k;=(M sh;,0) = _% 8(k1+ K2) ZOM72Z%3%4. (A.15)

Finally, combining (A.13), (A.14) and (A.15) according to (2.21) one sees that, — as
promised in Section 2.2 — all distributional terms drop out when computing the right-
hand side of (2.21). The final result thus does not depend on any prescription how to take
thex; — 0 limit and is given by (A.3), as asserted.
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Appendix B. Computation of the 1-4-1 contribution

We start from the general formula Eq. (3.9) wite- 4. ForB1 > B2 > B3 > B4 we have
for one of the factors occurring in (3.10)
(a, | SC(0)|b1, B1; b, B2; b3, B3; ba, fa)"”
= Fabibobabs (70 + 0 —ie, B1, B2, B3, Ba)
+ 47 {8ab, 8 (@ — B1) Fi 11, (B2, B3, Pa)
+8(a = B2 F g, (B1s B3, Ba) Shiby,da(BL — B2)
+8(a — B3) Fop, (B1, B2, Ba) Shybs.ef (B2 — B3)Sby f.da(P1 — B3)
+ 8@ — Ba) F o 1 (B, B2, B3) Sbabs, ¢ (B3 — Ba)
X Shyg.en(B2 — Ba) Spyh.da(BL— Ba)}. (B.1)
For the 5-particle form factor we introduce the reduced form factor through
Fararasagas (015 02,03, 04, 05) = T5(01, . . ., 05) Gy 1oasagas (01, 02, 03, 0a,05).  (B.2)
Multiplying out we obtain
Iar= KD 4 D 4 e (B.3)
where we momentarily omit the argumeits, —«1, 81, B2, B3, B4). The shorthands are:
K= " Flippaps (7 — k1~ i 1. B2, B3, a)
b1,b2,b3,b4
X Flhabobaps (0 + 4 — i€, B1, B2, B3, Ba)*, (B.4)
KW =4 {8(Ba + k)K" (ka, —x1, B1. B2. B3)
+8(Ba — k) K (=k1, ka, B1. B2, B3)*}
+ (Ba <> B3) + (Ba — B2, B2 — B3, B3 — Ba)
+ (Ba— B1. L — B2, B2 — B3, B3 — Pa), (B.5)
KM = (47)2K M (e, —k1, B3, Ba)[8(BL+ k18 (B2 — k4) + (B1 <> B2)]
+ (B2« B3) + (B2— Ba, Pa— B3, B3 — P2)
+ (B1— B2, B2— B3, B3 — B1) + (B1—> B2, B2— Ba, Ba— B3, B3— 1)

where
KW (e, y, Br. B2, B3)
= ) Fiios(B1 B2 B F iy o, (i + 00 — i, v, B1. B2, B3)" (B.7)
by,b2,b3
KM (4, —c1, B3, Ba)
= Y Fivepa(a B3 B F iy, (k1. B3 B2)* Sty b1 (k1 + Ka). (B.8)
b1b2,b3,by

Because of the symmetry in tifie arguments ofC), €D, £ one has
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(o8} o8} oo

o0
1
) _
v141(K1’K2’K3’K4)_1228813 / dﬁl/dﬁzfdﬁsfdm
—00

5(,31, ,327 B3, /34, K1, k2)
Zk 1¢hBk

(”) - 1 o0 o0 1
Vg 47(k1, K2, Ks’K4)_—768712/ dﬂl/ dﬁz/ dps —1+Zf=10hﬂk
x {8(B1, B2, Ba, k2) KM (ka, k1, B1, B2, B3)
+ 8(/31, B2, ﬁs, —k3) K" (=i, ka, B1, B2, B3)*},

U(” ) S(ﬁls ﬁZs‘(27K4)
141 (K]_,KZ, K3,K4) ﬁ
4 Zk 1€ ﬁk

x K“” >(K4, —1, B1, B2).

The contribution(lll) is very simple; we can set the to zero to obtain

1
v§41)(lc1, K2, K3, K4) =

1
1287 / d’Bch,8(1+ chp)
—0oQ
where we decomposed

KMD(0,0, 8, —B) = T22p) T* Bk (B).
Writing similarly

KM (o, y, B1. B2, Bz3) =k (@, . B1. B2, B3)

3
1 2 TBk—v)
X —— 1_[ T (ﬁi—ﬁj)l_[—.,
T(a—-y) 1<izj<3 kle(,Bk—Ol—lS)
one has
2 I
n ()]
Vg1 = U1411 )
Jj=1
with
1 o0 o0 o0
v141)(K1,K2,K3,K4) 6872 T(K1+K4) /dﬁlfdﬂzfdﬁs
—0Q
1

X T2(B; — B)

3
X !5(,31, B2 B3, k)k ™ (kca, —x1, B B2, Ba) [ [ T (i + w0)

_r
i1 (Bx — Ka)

7228 1Bk (),

655

’C(]) (K47 —K1, ﬂls ﬁz: ﬁ3s ﬁ4)s

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)



656 J. Balog et al. / Nuclear Physics B 583 [FS] (2000) 614-670

P
— 8(B1, B2, B3, —k)k"V (—k1, ka, 1, B2, B3)* ]‘[T(ﬂk 7}
e T (Bi + K1)
(B.16)
(1,2) i 8(B1, B2, k2, ka)
V141 (Kl’KZ’K3’K4)_—128n/ dﬁl/ dﬁ2—2+z,lech/8k
2
x T?(B1— B2) [ | T(Bx — k) T (Br + K1)
k=1
x Ak Gea, =i, B1. B, ka) — k™ (=i, ka, P B2, —k1)"). (B.17)

In the latter term we can set tlke to zero to obtain

v1:2(0,0,0,0)

T22p)14(B) Im[k" (0,0, 8, —B,0)].  (B.18)

~ 1287 / ﬁch,B(1+ chp)

Lastly we turn to thg7) contribution. There are many ways to manipulate the integral
into a form more amenable to numerical evaluation. Here we proceed as follows: writing

IC(]) = k(l) (K4, —K1, ﬁls /327 ﬁ?ﬂ ﬁ4) 1_[ Tz(ﬁl - /8-/)

1<i<j<4

4 1

) 1!:[1 T(Bi+ K1+ ie)T (B — ka—ie)

(B.19)

we replace the A(x + ie) distributions by a sum of products of principal parts and delta
functions, thereby obtaining

3
1 1,j
vig =D vyt (B.20)
Jj=1
The three terms are:

(1,1
V141 (K1, K2, K3, K4)
o o0 o0

_ 1 i 8(B1, B2, B3, Pa, k1, k2)
_12288r3/ 9 1/ 9 2/ % 3/ W50 o

x kD Gea, =i, B1, B2, B3, B [ T2Bi — B))

1<i<j<4

u P
B.21
l:[ (,Bk + k1) T(Bx —ka)’ (B.21)

(1.2) = : :
Viay (K1, K2, K3, K4) = 153672 T (k1 + ka)
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08} oo (o8}

1
x | dB /dﬂ /dﬁ —_— T2(B;i — B))
_i l—oo 2_00 31+Z£=1Chﬁk 1<1_[ '

i<j<3

3
x !8(/31, Ba, B3, 1)k (ka, —k1, B, B2, B3, —k1) [ [ T Bk + xc1)

_P
it T (B — ka)

3
+8(B1, B2, B3, —c)k D (ca, —rc1, B, B2, B3, ka) [ | T (B — ka)

L Ti+n |’

(B.22)
3(B1, B2, k2, k4)

1 o0 o0
(1,3 -
Viar (K1, K2,K3,K4) = -—— / dﬁlfdﬁzz—
256r
A 2+ i_1ChBk

2
x kD (ca, 11, B1, B2, —k1, k) T2 (Br— B2) [ [ T (Be — xa) T (i + k1),

k=1
(B.23)
In the latter expression we can set ihdo zero to obtain
v{£3(0,0,0,0)
1 o0
=— d T228)T*(B)k" (0,0, B, —B, 0, 0). B.24
5127/ ﬂchﬁ(1+chﬁ) 2818k (0,0, 8,—8,0,0) ( )
—0o0
For w® .= ("1 we now invoke the identity
[Ti<icj<ashi —y))
1_[2:1 sh(yx + x)
4 k
1 (=1)" ch(yx) l—[
= Z sh(y; — y)), (B.25)
ch(x) ;= sh(y +x) 1<i<j<4, iZk#)
to get
W= lim [WOA] @) + WO B (o) ], (B.26)
with the notation
WX () = 1 f do1 Gy (1), X=A,B. (B.27)
19273 ’ ’
e
Here

P . P T
GA(Oél):m f dorp T2 /dasz(Otl,Otz,Ots)
e R

o0
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P T P T
" T(a) O/ 27 0/ das{Fa (e, a2, a3)

— Falar, —az, a3) — Fa(—a1, a2, a3) + Fa(—a1, —a2, a3)},
G(o1) 4G (0)
Sl”?(otl/Z) af

Gp(a1) =

where
o0 o0
o1
G(Oél)=Ch27 f daz/dasz(al,az,as)-
—0o0 —0Q

In these formulae

Fx (a1, o2, o3)
_ i[k(”(O, 0, 1, 02, 3, 4) fx (1. 2, a3, o) [Ty CHP %k}
16 Chot4(231:1 cham> i-; ch? 25X oy

wherey is given through sk = — Zle shay and

falon, a2, a3, 04) = —3 S N
2 2

o — o3 Shotz—om Shz 053—054’
2 2 2
a2 — o3 ap — o4 a3 — o4
sk sk .
2 2 2
For the[ B] contribution it is numerically convenient to decompose

WP[B](ae) ~ hG(0) + WV [BO] + WV [B1](axe),

where

x sh

fB(a1, a2, a3, az) = st?

1
1 G(a1) - G(O)
w® —
[BO]_96n30/dal< st (a1/2) )

Qcut

G(a1)

1
wPB1]( c)=—/d ——,
%)= 96r3 J ! SR(ar/2)

and
1

1 1 4
h=—da [doy| ——— — = |} = 00014539754
967r3: 0/ a1|:sh2(a1/2) af”

Finally we recombine
3
v141(K1, K2, K3, K4) = Z W (i1, K2, K3, €a),
j=1
with

(B.28)
(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)
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1 _ (D
W =l
2 _ ., U2 1,1
W = w140 +v147s (B.38)

@ _ (13, (1,2, )
W =v141 + o941 + V147

Casen =1:
Here we simply have (recall the 2-particle S-matgix-1)
kD =16 kW=-g, k=-4 (B.39)

from which one sees

vj47'(0,0,0,0) = —v{3;”(0,0,0,0),

v{£3(0,0,0,00={})(0,0,0,0) = —% v{":2(0,0,0,0). (B.40)
Thus

W@ =0=w®, (B.41)

so that for the Ising case we simply ga; = W@, with W given by Eq. (B.21) and
kD by Eq. (B.39). This is, as expected, the same expression as that obtained directly with
the form factor written as a product over principal parts as in Eq. (5.2).

Casen = 3:
Firstly for W we obtain

wd = —0.000542Q1). (B.42)
Next for W@ one has

WP (k1, k2, k3, k4)
o0 o0 o0

_ 1 ! d d dpsJ
- 76872 T (k1 + k4) / ﬁl/ ,32/ B3J (B1, B2, B3)

—00

3
2
x {6% Ba, B3, k2w ® (i1, ka, B, B2, B3) [ | T(Bx + S ——

k=1

3
+8(B1, B2, B3, k)0 (k1, ka, B1, B2, B3) [ | T (Br + a)

i1 T~k |’

(B.43)

where

1
J(B1. B2. B3) = [T 726 -8, (B.44)

—
1+ k_1¢hpr 1<i<j<3
and

w@ (k1, ka, B1, B2, B3)

i
= k" (kcq, —k1, B1, B2, B3) + > kD (kca, —k1, 1, B2, B3, —K1), (B.45)
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W@ (i1, k4, B1. B2, B3)
= —k(”)(—Kl, K4, _ﬂla _ﬁZa _ﬁs)*

i
+t3 kD (ca, —k1, —B1, — B2, —Ba. ka). (B.46)
Explicit calculation reveals the fact
B'? (i1, ka, B, B2, B3) = wP (ka, k1, B, B2, B3). (B.47)

Now we expandy® for small;:

w® (i1, ka, B1, B2, B3) = wo(B1, B2, B3) + (k1 + ka)w1(B1, B2, B3)

+ (k1 — k) w2(B1, B2, B3) + O (7). (B.48)
In fact we do not requiras. Note that the functions; are real, so that in particular
Imw@(0,0, B1, B2, B3) =0, (B.49)
which is needed to avoid a singularity #i® for x; — 0. Hence
Ww® = w1+ w@[B]. (B.50)
with
WPA] = 192”2 / dp1 / d2 o 5, (B P2 forwa(Br, B2, o), (B.51)

wherefg is determined through ¢ty = — shpg; — shpz, and
WP [B](ky, k2. k3. ka)

1
~ 76872 T(K]_ T Ka)

oo (o8} o0

/ dB1 / dB2 / dBs Z(B1, B2, B3)

—00

{8(;31, o ook [ 75+ )7 (k2 > kg, k1 > k) }

i1 T (B — k4)
(B.52)
with
Z(B1, B2, B3) = J (B1, B2, B3)wo(B1, B2, B3). (B.53)
We then see that’ @[B] is a sum of two parts
w®@[B1=w®@[B1]+ W?[B2], (B.54)
with
1 o0 o0
WOBL= oy [ oy / g 2P PP
1 Z(B1, B2, B3)
w®@[B2] = / / < ) . B.55
[B2]= 227 dp1 ﬁzchﬁo % chfa . (B.55)

—00
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Numerically this gives

W@[A]=4.4108%1) x 104,
W@ [B1] =4.96001) x 107>, (B.56)
W®@[B2] =1.15031) x 10°°,

and hence
w® =0.000502191). (B.57)
Finally we turn to the computation ¥ ®. Due to Eq. (B.49) it follows that
v{:2(0,0,0,0)= —20{%2(0,0,0,0). (B.58)
Now explicit computation yields

k0,0, 8, —B,0,0) =7 8|z3(0, B, —B)|* (4082 + 3272),

K (8) = —127%|z3(0, B, —B)[* (B2 + 7). (B.59)
So forw® we arrive at
W T f SIF (B/2)75(8) (B2+ 7% (4 + 77 (B2 4 227)
Y chP BE(B2 +4n2)2
0
— —0.0004682756 (B.60)

Appendix C. Computation of the 1-2-3 contribution

We use the results (3.57)—(3.61) with= 3, and begin with contributiot/ V):

1,02, a3, —K4)

1 8(a
vina (K1, k2. K3, k4) ~ 153612/d3a

> cha
x G (—ip +im_, k1 +in_, a1, 0z, ag). (C.1)
Here
M) = D" Pl (A F e (A = Ts(A)Ta(A) g™ (4), (C.2)

aiazaz

where A stands fordy, 62, 03, 04, 65 and A’ for 63, 64, 5. Note thatg!V)(A) is totally
symmetric in the subset’.

We decompose the/lx + i¢) factors to obtain terms involving products of principle
parts and delta-functions; only terms having less than three delta-functions contribute in
the Lim procedure, i.e.,

3

v Vs

”&23) = ”5233)- (C.3)
s=1

The terms are
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!
ngg (i1, k2. k3, a)

1 8(a, a2, a3, —k4)
T (k1 — Kz)/ o
" 153612 Y3 chy;
X g(lv)(in 17T, o1, 2 ag)l_[Tz(a,- — oc,')l_[ L P
i<j U T+ xen) Tl +x2)

|
U;(Lz3 )(Kl, K2, K3, k4)

N / o 8(—kK2, a1, 002, —Ka4)
12871 1+ Zi:l chy;

P

Ny 2

X (im,im, 0,1, 00)T (0t1—0t2)| |T(Otk +K) e,
§ f T (g + k1)

while for the term involving the product of two delta-functions one finds

V.3 3
v§23 ) (K1, K2, K3, ka) = 0 (x>).

(C.4)

(C.5)

(C.6)

The contribution(/V, 1) is antisymmetric irnc; <> 2 and so it doesn’t contribute in the
sum over permutations. In the contributid\’, 2) we can take the — 0 limit and obtain

i 2
(V) { T(2a) )i
0,0,00)~——— | da ————— 0.o. —a).
V123 ) 1287rf o Cha[l+2cha) 8 (im0 )
—0o0

Now turn to the(/11) contribution:

v123 ) (ic1, k2, k3, K4)

3(B1, B2, k1, k2) any, .
647r/ ﬁZiChﬁi[1+ZjCh/3j]g (—k1+im_, B1, B2, k3),

where

G (01,02,03,00) =Y Fiy 4, (01,02,03) 1 (02, 03, 0)*
b1by

= T3(01, 02, 03) Ta(02, 03, 0)* g ") (01, 0. 03, 64).

Here one can set the to zero to obtain

ainy 1 T2(2p) iy, B
v123(0,0,0,0) 12871'/ ds Chzﬁ[l—i—ZChﬁ]g (im, B, —pB,0).

For the(ll) contribution:

/ 2 8(B1, B2, k1, k2)

Vyoa(K1, K2, K3, K4) ~
123( chp1+chpz

25&1’2
% /dza S(ﬁlv a1, (x227 K4)
Chﬁl + Zi:l Chot,

G (—ky +im_, B1, B2, 1, a2),

where

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)
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G (A =3 Fl(A) Farr (B) Fiyy (BN

b ai,az
=T3(A")T3(B)T3(B')*g" (4), (C.12)
whereA stands foif1, 62, 63, 64, 05; A’ stands foBy, 92, 03, B stands fol¥s + iw_, 64, 65,

andB’ stands fob,, 04, 5. Making the familiar decomposition of the singular distributions
one obtains:

3
I I,
”izg = Z vizsw’ (C.13)
s=1
with

8(B1, B2, k1, k2)
chpy+chpo

1
s e [ 65

/2 8(B1, a1, a2, —Kk4)
x [ d°a >
Chﬁl + Zi:l Chot,
P

P
X T(ﬂl—ﬁz)HmHT(ﬁl—%)m, (C.14)
i j

"W (—k1 +im, Br, B2, a1, @2) T (a1 — @)

8(B1, B2, k1, k2)
[chB1 + chB2][1+ chB1 + chpo]

x g (=K1 +im, B, B2, B2, —ka) T?(B1— B2 [ [ T (B) + )
J

(1.2 i 2
v K1, k2, k3, k4) ~ —— [ d
123 (K1, k2, K3, K4) 6471/ B

(C.15)
i
vglz{js) (K1, k2, K3, K4) ~ Ear dPo T2 (a1 — )
8(—K1, a1, a2, —K4) ;
§ { ] g" (—wer +im, —k1, —w2, a1, 02) [ | Tlerj + k1)
14> i—icha; '

J
P 8(—kK2, a1, 002, —Ka4)

X
T(oj +«k2) 1+ Z,-Zzlchai

g (—k1+im, —i2, —K1, a1, a2)

5 L} (C.16)
T(oj + K1)

In the contributions = 2, 3 we can set the; to zero to obtain

P T2(2
u(l';f)(o,o,o,ow—lz’aﬂ fdﬂ 2 (@B)___ (in, g —B,—B.0), (CAT)

BI1+2chp]

—00
~ 2
(1.3 i T4(20) A,
0.0.0,0)~ —— [ dg——0 2 0.0, . —a), C.18
V123 ) 12871/ % hallt2cha] 8 (00— (C.18)
—o0

Finally for the (1) contribution

8(B1, B2, k1, k2)
chpi+chpo

1
(1) 2
V155K, k2, K3, K4) ~ 6144 3/d B
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8 3 3 s
X /d3(x (o 03{2 @3, —a) GO (—k1+im_, B1, B2, a1, @2, @3), (C.19)
Zi:l ChOli
with
GO =" " A F ppararas B) Fanaras (BN (C.20)
b ai,az,a3
= T3(A")T5(B)T3(B')*g'" (A). (C.21)

Here A stands forf1, 02, 63, 04, 05, 0; A’ stands fordy, 62, 03, B stands forfz + inm_,
Oy 4+ i, 04, 05, 05, and B’ stands foil,, 05, 6.

Then we rearrange to terms where after doinggh@tegral the singularities in thg;
integral all have negative imaginary parts

4
w0 vibs)
V123= 2 V123 - (C.22)
s=1

The terms are:

v(l’l)(/c K2,K3,K4) ~ —

/d3 8(“19a21a31 K4)
23 1Chot,
T2(B1— B2) [Tic; T2 —a))

“TUr+ prt+ie)T (k1 + Pz — i) [l TBL+ie —a)T(B2—ie —ax)’
(C.23)

/dzﬁ 8(B1. B2, k1, k2)
chp1+chpz

gD (=K1 +im, 1, B2, a1, @2, a3)

U(I’Z)(Kl K2 K3 K4)’\’ / ﬂ8(ﬁ17 ﬁZa KlaKz)
123 Wo et 51272 chpi+chp,

fz §(P1, a1, a2, —ka)
x | da
chpr + Y2, cha;
T(B1— B2)T(er — a2) [1; T(B1— i)
T(K1+ﬁ1+zs)T(K1+ﬁ2—zs)]_[ T(B2—ic—aj)

gD (k1 +im, B1, B2, P1, a1, a2)

(C.24)

v123 ) (i1, K2, K3, k) ~ T (k1 — K2)

i
3072¢2
/dg d(a1, a2, a3, —ka)
Z 1Ch(x,
l_[1<]T (i — I)
]_[kT( k1—ie—a)T(—kp+ie—oy)’

gD (k1 +im, —k2, —k1, @1, a2, a3)

(C.25)

(1,4) 1
V153’ (K1, k2, 3, K4) ~ ~ 556, T (k1 —K2)
/dz d(—kK2, a1, 02, —K4)

1+Z _1 Che;

gD (k1 +im, —k2, —k1, —K2, @1, @)
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T?%(o1 — a2) [1; T (k2 + ;)

C.26
]_[jT(Kl—i-ie—i-aj) ( )

As for the last contribution, it vanishes in the limijt— 0
v{52(0,0,0,0)=0. (C.27)

For the contribution(/, 1) we now perform thes, integral and shift the8; integral to
larger imaginary part, after which we can send allth& zero to obtain

1 +oo+ig h4(’3/2)

(1,1) ¢

0,0,0,0) ~ ag ——

U123( s Uy Uy ) 5121_3 / 18 Ch4/3
—oo+i¢

o0 o0
« f s f duez T2(u) T2uz) T2 + uz) M (1) 2
0 0

(C.28)

) chay +ch
x gV(im, B, =P, a1, azﬂz)ﬂ( a ﬁ>,
k

chay — chp
where they, are determined in terms of thes as in Eq. (2.30).

For the(1, 2) term we obtain

1,2 1,5 1,6
viss ~Vigs +viss + O, (C.29)

where

3(B1, B2, k1, k2)
chBi1+chpa

5 i
{53 (1, 2, K3, kea) ~ 51272/(3'2,3

f > 6(B1, a1, 02, —Ka)
x [ d°a >
chp1+> 7 icha;

’P
x T(B1— )T —e2) | | Tt h []71-ep
i Yo

gD (—k1+im, B1, B2, B1, a1, @2)

P

—_—, C.30
T (P2 —aj) (€30

8(B1, B2, k1, k2)
Y. chpi[1+ Zj chp;]

x gD (—k1 +im, 1, Ba, 1, — B2, —K3)
x T?(B1— B2 [ [ T(Bi + x3)

1
v (1, ke, i3, kea) ~ ~ o8, /dzﬁ

_r (C.31)
T(Bi + k1)

In the latter we can do thgy integral and set the; to zero to obtain
v{52(0,0,0,0)

T2(2p)

1 o0
. D iz, B.—B. B. —B.0). 32
25671_/ dp 2 B1+ 2¢chpl S (.8, =, 8, 5. 0) (€.32)

Finally
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T2(20)

1

(1,3)

0,0,0,0)= ——— L Re

V123 ( )=~ 25ar / % cha[l+ 2 cha]
—o0

gD(i7,0,0,a, —,0). (C.33)

Summarizing the results we have

5
v123(0,0,0,00=> "V, (C.34)
j=1

where the five terms are as follows:
v ={42(0,0,0,0), (C.35)
given in Eq. (C.28). Further

v® =y1(0,0,0,0) + v{¥)(0,0,0,0)

T2(2
- / By 820 (36)
where
)y s (Iv)
2) _ 8 (lﬂa IBa _ﬁvo) lg (l7T l7T 0 ﬁ ,B)Chﬂ
g7 (B)= 1+ 2chp (C.37)
Next

vE =2i%2(0,0,0,0) + v{55(0,0,0,0)
_ / Pt ch?(8/2) P Ry OB a1,22)
512712 chBp T(B) chg + Y2, cha;

P
x T?a1—a2) [ [T(ej — ). (C.38)
J

(B, a1, a2)

T(aj+pB)
where
g (B. a1, a2) =28 (i, . —p. o1, a2) +igV(im, B, —B. B.er. ). (C.39)
Further
v® ={59(0,0,0,0)+ v32(0,0,0,0)

/ T2(20)
2567 | ° cha[l+ 2cha]
—00

g9 (). (C.40)

where
(@) =-ig®0,a, —a). (C.41)

Finally
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v® =u{£90,0,0,0) + v\ (0,0,0,0)

f e g® )
256w ch? B[1+ 2chg] ZChﬁ] '
where
g® ) =—-ig® (B, —p,0).
Casen =1:
Here we have simply

¢Pay=-16, g (B)=8i
¢y =4, g™V)(D) =8

and so

¢?@B) =4, ¢ =0,r=345.

Thus
v _ f ﬁshz,B 1
321 chtp 48r’
17 S(uy, u2)
O___~ [ q,72 2 2 S(uy, uz)
0
with
b chpl2 2 [chag 4+ chp
c chay +c
S(un, = d .
(u1, u2) / B o B ][[l(Chotk — chﬁ)
—oo+i¢ -

Numerically we find
v = _0.0008427211).
Casen = 3:

First we have

o]

9
VO = e f APul v @)Y )Y (1 +u2)| "M ) “2S (w1, u2),
0

where

u?+ 7
|W(U)| = m T4(M),

and

667

(C.42)

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)

(C.49)

(C.50)



668 J. Balog et al. / Nuclear Physics B 583 [FS] (2000) 614-670

+oo+i¢p
S(uy, uz) = / dg %h(”(in, B, —B, a1, a2, a3)
—oo+i¢
(4p? +1%) of — B

(B?+72)3 f (@2 — B2+ 212(a? + B2) + 74

Numerically this gives
v = _0.0008445271).
Doing the contractions yields

6 5p2 | 2\ T2
qaiy _ _m 2B+ 7)) T°(2P)
8 (lﬂsﬁs ﬁvo)_ 4 (/32+712)2 /32

g™ (in,in,0,8,—p)=2ig"(ix, B, —B,0).
Thus
§?B)=g"(in, B, -, 0),

3

and

V@ _ n° 7 dp sitB (2824 72482 + ?)
= 512 ,32Ch6,3 (,32+7T2)2(,32+47T2)
Next by explicit computation one verifies
g§P@=0 9B =45,
and thug
v =v® =o.

=0.0074380765

chax +chB\?
chay —chp

(C.51)

(C.52)

(C.53)

(C.54)

(C.55)

(C.56)

(C.57)

It remains to comput®& ®. Shifting thex; integral we obtain the representation

1 7 P ch(@B/2) P
3 _
v _25612_£ dﬁ_i % B2 cBp T(a)

gD (B, a1, a2) ch(a1/2) ch((ez + B)/2)
chazch((a1 — a2)/2)[chB + chay + chag]

x T (a1 — )T (o1 — B)T (o2 — ﬁ)ch“—zl,

where
o1 =o—pf,
andw; is determined by

shay = —shpB — sha;.

4 Eq. (C.57) is perhaps true for allbut we have not verified this conjecture.

(C.58)

(C.59)

(C.60)
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Numerically this gives

v® =_0.0001251121). (C.61)

Appendix D. Building blocks of form factors

In form factor calculations one often encounters the problem of finding an analytic
function f (9) satisfying

f(O)=0(0)f(=0),

flim—0) = flin +0), (D.1)
for giveno (0). If o(0) has the Fourier representation
o
i5(0) do 7
a@) =e°", §0)=2 [ — sin(w) k(w), (D.2)
w
0

with some kernel functiok(w) then the ‘minimal’ solution of (D.1) is given by [4]

o
do cho(r +i6) —1 -

FfO)=e2®,  A@)= k(w). (D.3)

1) shrw
0

The functionA(#) has the following properties. K(w) ~ ¢~ (z > 0) for @ — oo then
A(0) is analytic for—z < Im6 < 2w 4 z and for reab — oo

ReA@®) ~ A(im +6) ~—%I€(O) — InTQIZ’(O)Jrconst (D.4)

We encountered in Section 6 the following special case: for some (positive, real)
parametet

; 1+ a)ir+6
g) = ¢t - QH T HO D.5
corresponding to the kernel
ko (@) = —eT@dF®), (D.6)

We denote the corresponding solutionby(6).
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