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Abstract

The intrinsic 4-point coupling, defined in terms of a truncated 4-point function at zero momentum,
provides a well-established measure for the interaction strength of a QFT. We show that this coupling
can be computed non-perturbatively and to high accuracy from the form factors of an (integrable)
QFT. The technique is illustrated and tested with the Ising model, the XY-model and the O(3)
nonlinear sigma-model. The results are compared to those from high precision lattice simulations.
 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The intrinsic couplinggR, also sometimes called ‘physical’ or ‘renormalized’ coupling,
is a quantity of great interest in a Quantum Field theory (QFT), especially for scalar fields.
In some cases, such as theΦ4 theories, its vanishing implies actually that the theory is
trivial in the sense that the higher correlation functions of the scalar field can be written as
sums of products of two point functions, as in a free theory [1]. On the other hand, a non-
vanishinggR is not sufficient to assure the non-triviality of a theory; it only assures that a
certain four point vertex function does not vanish identically, but does not exclude that it
vanishes on shell.

Aside from that,gR is certainly a renormalization group invariant and a characteristic
physical quantity of a field theory. In particular it can be used to check the equivalence
or non-equivalence of different definitions of theories; this will be our main theme in this
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paper.gR is proportional to the connected — sometimes called truncated — four point
function at zero momentum, divided by the square of the zero momentum two point func-
tion and appropriate powers of the mass gap to make it dimensionless; details will be given
in the body of the paper.

We are dealing in this article with two main approaches to the construction of a QFT.
The first one starts from a suitably regularized functional integral and then removes the
regularization in a controlled way. This is a rather general procedure usable for a wide
variety of models; it has been successfully employed to construct QFTs in 2 and 3
dimensions obeying all the required axioms (see for instance [2]). Here we will make
use of a euclidean spacetime lattice as a regulator. Removal of the regularization, i.e.,
taking the continuum limit in a lattice theory requires the existence of a second order
phase transition point at which the characteristic length (correlation length) of the model
diverges. This approach raises the problem of ‘universality’, i.e., the question whether
different regularizations yield the same QFT after the regulator has been removed.

The other approach studied here is applicable to a large class of so-called integrable
models. It is not based on a Lagrangian, rather the dynamics is specified in terms of
a postulated exact ‘bootstrap’ S-matrix, supposed to enjoy a factorization property that
allows to express all S-matrix elements in terms of the two-particle S-matrix [3]. In
physical terms this property is linked to the existence of an infinite number of conservation
laws and the absence of particle production. The postulated S-matrices are then used to set
up a system of recursive functional equations for the form factors; solving this system one
can in principle compute exactly all the form factors, in other words continue the S-matrix
off the mass shell [4–6]. Once the form factors are known, one can express the correlation
functions of the basic fields as well as other (composite) operators by inserting complete
sets of scattering states between them. This gives the correlation functions as — hopefully
rapidly converging — infinite series of convolution products of form factors. In particular
in this way one can express the intrinsic coupling in terms of the form factors.

In both approaches, in principle one has to verify in the end that the axioms of a QFT
hold. In the lattice approach with a reflection positive action, such as the standard nearest
neighbor action, essentially the only nontrivial question besides the existence of a critical
point concerns the restoration of euclidean (Poincaré) invariance in the continuum limit. In
the form factor approach it is less obvious whether the axioms hold, in particular for the
form factor expansion of multi-point correlation functions. There exists, however, a formal
proof (disregarding convergence aspects) of locality [6] and it is hoped, of course, that the
other field theoretic axioms will hold as well, because the construction is to a large extent
inspired by them. It is also not clear from first principles — though in practice there are
very natural guesses —, which field in one construction should be identified with which
form factor sequence in the other. In any case, even assuming that all the axioms hold in
both constructions and that one has correctly identified the fields, it is a nontrivial question
whether the two approaches define the same theory, and in particular whether they give the
same value forgR.

In the lattice approach the intrinsic coupling of the two-dimensional O(n)models we are
discussing here has been widely studied, both by Monte Carlo simulations [7–9] and by
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various expansions in a small parameter [10–13]. For a more precise comparison with the
form factor approach, we also carried out our own high precision Monte Carlo simulations
which are reported in this paper.

In the form factor approach the series forgR, being a low energy quantity, is expected to
converge very rapidly. Our results give every indication that these hopes are fully justified,
though the actual computations turn out to be surprisingly intricate. In the present study
we want to develop this computational framework, outline the computations and compare
their results, where possible, to those obtained numerically from the lattice approach by
the different methods mentioned above.

Remarkably in all the examples considered the first non-trivial term in the series, which
contains only one and two particle intermediate states, appears to give about 98% of the
full answer (!). Moreover for this dominant contribution a general model-independent ex-
pression in terms of the 1- and 3-particle form factors and the derivative of the S-matrix
can be obtained.

In this paper we discuss three models which can be viewed as the O(n) nonlinear sigma-
models forn = 1,2,3. Though formally members of the O(n) series of nonlinear sigma-
models, the physics of these systems, their form factor description, and not the least our
motivation to study them is very different: then = 1 case is just the massive continuum
limit of the Ising model. Here the spin form factors are very simple and we were able to
push the computation of the series up to all terms with a total particle number (summed
over the three intermediate states) of less or equal 8. The extremely rapid decay of the
terms is manifest and we use the observed pattern as a guideline for the other systems. The
final result amounts to a determination ofgR with an estimated precision of better than
0.001%.

Then= 2 case is better known as the XY-model. Here we rely on a bootstrap description
of the model, to which we hope to return in more detail elsewhere [14]. Not all the form
factors are known explicitly, but the specific version of the 3-particle spin form factor
needed for the dominant contribution can be found by elementary techniques. We compare
this leading order result with that obtained by lattice techniques and find reasonable
agreement, which can be taken as support for the proposed bootstrap description.

Finally then = 3 model is the first with a nonabelian symmetry group. The evaluation
of gR here is in part motivated by the controversy about the absence or presence of a
Kosterlitz–Thouless type phase transition; see [9] for a more thorough discussion.

Let us remark that the form factor bootstrap has also been applied to the computation of
gR in the sinh-Gordon model; in this model the intrinsic coupling is especially interesting
because of its relevance to the issue of “triviality” versus “weak-strong-duality”. For details
see the accompanying paper [15].

The article is organized as follows. In the next section we describe the form factor
construction of Green’s functions in terms of form factors generally and derive the formula
for the dominant contribution to the coupling. Further we prepare the ground for the
computation of the subleading terms in the specific models. We then give a few generalities
about the Monte Carlo simulations, and move on to discuss the three models as outlined
above one by one in more detail, comparing the results of the form factor construction to
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those obtained by the the lattice definition of the models; for the latter the values ofgR are
estimated by high temperature expansions as well as Monte Carlo simulations.

2. Construction of Green functions in terms of form factors

In this section we will consider a general massive QFT described in terms of its
generalized form factor sequences by which we mean matrix elements of local operators
between physical states. We will restrict our attention to the case ofd = 2 dimensions
(although the extension to arbitraryd is often straightforward). The application of the
representation to the integrable models where the form factors are explicitly known will be
the subject of the next chapter.

2.1. Generalities

Our first goal is to construct the euclidean correlation functions (Schwinger functions)
from the generalized form factors. The Schwinger functions are convenient because
they have simpler properties than the Wightman functions and also because it facilitates
the comparison with lattice results later. For pointsxk ∈ R2, k = 1, . . . ,L, we denote
by (xk1, xk2) their components and byιxk = (−ixk2, xk1) a Wick rotated version. For
definiteness we will consider here correlation functions ofn scalar fieldsΦa(x), a =
1, . . . , n (the generalization to other types of fields is straightforward). Then

Sa1···aL(x1, . . . , xL)=
〈
Φa1(x1) · · ·ΦaL(xL)

〉
,

Sa1···aL(x1, . . . , xL)=Wa1···aL(ιx1, . . . , ιxL), for x12> · · ·> xL2. (2.1)

The first equation is the usual operator interpretation of the Schwinger functions. The sec-
ond equation (2.1) then indicates the relation of the Schwinger function to the correspond-
ing Wightman function for points(z1, . . . , zL)= (ιx1, . . . , ιxL) in the “primitive tube” of
analyticity.1 Outside the primitive tube the Schwinger functions can in principle likewise
be obtained from the Wightman functions by analytic continuation and are then found to
be completely symmetric in all variables. In a form factor expansion however the primitive
domain is preferred in that only there the convergence of the momentum space integrals is
manifest through exponential damping factors (cf. below). We thus mimic the effect of the
analytic continuation by performing the symmetrization by hand

Sa1···aL(x1, . . . , xL)=
∑
s∈SL

S
as1···asL
Θ (xs1, . . . , xsL),

S
a1···aL
Θ (x1, . . . , xL) :=Θ(x1, . . . , xL)W

a1···aL(ιx1, . . . , ιxL), (2.2)

whereΘ(x1, . . . , xL) is a generalized step function that vanishes unlessx12 > · · · >
xL2 holds and the sum is over all elements of the permutation groupSL. The functions
S
a1···aL
Θ (x1, . . . , xL) are expected to have a convergent expansion in terms of form factors

1 We use the signature(+,−) for (complexified) Minkowski space in which case(z1, . . . , zL) is in the primitive
tube if−Im(zk − zk+1) ∈ V+, k = 1, . . . ,L− 1, whereV+ is the forward light cone.
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in the interior of their support region (as well as for certain points on the boundary). The
cases of interest here areL= 2 andL= 4. Formally inserting a resolution of the identity
in terms of asymptotic multi-particle states1=∑m |m〉〈m| one obtains

S
a1a2
Θ (x1, x2)=Θ(x1, x2)

∑
m

e−(x1−x2)2Em ei(x1−x2)1Pm

× 〈0|Φa1(0)|m〉〈m|Φa2(0)|0〉, (2.3)

and

S
a1a2a3a4
Θ (x1, x2, x3, x4)

=Θ(x1, x2, x3, x4)
∑
k,l,m

e−(x1−x2)2Ek ei(x1−x2)1Pk

× e−(x2−x3)2El ei(x2−x3)1Pl e−(x3−x4)2Em ei(x3−x4)1Pm

× 〈0|Φa1(0)|k〉〈k|Φa2(0)|l〉 〈l|Φa3(0)|m〉〈m|Φa4(0)|0〉. (2.4)

The states|m〉 are assumed to be improper eigenstates of the momentum operatorPµ, and
Em, Pm denote the eigenvalues ofP0, P1 on |m〉, respectively. To write down an explicit
parameterization of the complete set of states|m〉 requires of course the full knowledge of
the spectrum of stable particles. This is a basic input assumption for the integrable models
dealt with in the next section. Here for simplicity of notation we will consider the case
where there is only one multiplet of stable particle states of massM. An explicit parame-
terization will then be given in Section 2.3.

We introduce their (dimensionless) Fourier transformsV by

(2π)2δ(2)(k1+ · · · + kL)M−2(L−1)V a1···aL(k1, . . . , kL)

=
∫

d2x1 · · ·d2xL S
a1···aL
Θ (x1, . . . , xL)e

i(k1x1+···+kLxL), (2.5)

taking into account the translation invariance ofSΘ . The Fourier transform of the full
Schwinger function is then obtained by symmetrization

S̃ a1···aL(k1, . . . , kL)= (2π)2δ(2)(k1+ · · · + kL)M−2(L−1)

×
∑
s∈SL

V as1···asL(ks1, . . . , ksL), (2.6)

whereon rotational invariance gets restored. The desired representation of the two and four
point functions in terms of form factors is given by

V a1a2(k1, k2)=
∑
m

V a1a2
m (k1, k2),

V a1a2a3a4(k1, k2, k3, k4)=
∑
k,l,m

V
a1a2a3a4
klm (k1, k2, k3, k4), (2.7)

where

V a1a2
m (k1, k2)= 2πM2 δ(Pm + k11)

Em − ik12
〈0|Φa1(0)|m〉〈m|Φa2(0)|0〉,
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V
a1a2a3a4
klm (k1, k2, k3, k4)

= (2πM2)3
δ(Pk + k11)

Ek − ik12

δ(Pl + k11+ k21)

El − ik12− ik22

δ(Pm − k41)

Em + ik42

× 〈0|Φa1(0)|k〉〈k|Φa2(0)|l〉 〈l|Φa3(0)|m〉〈m|Φa4(0)|0〉, (2.8)

with the understanding that the sum of the momentakj vanishes. Further we denote by
V
a1a2
m (k1, k2) andV a1a2a3a4

klm (k1, k2, k3, k4) the quantities (2.8) with the integrations over
the rapidities performed, the measure being inherited from Eq. (2.25) below.

The key assumption of the form factor approach in this context is that the matrix
elements in (2.8) can be computed exactly via solutions of a recursive system of functional
equations, the so-called form factor equations or Smirnov axioms. Symbolically

〈l|Φa(0)|m〉←→Fab1···bla1···am(ω1, . . . ,ωl |θ1, . . . , θm)=:FaBA(ω|θ). (2.9)

The rhs, for which we shall often use the indicated shorthand notation, is called a
generalized form factor, the special case with eitherl = 0 orm = 0 are the form factors
proper. The form factors are meromorphic functions in the rapidities, while the generalized
form factors are distributions. The form factors can be computed, at least in principle, as
solutions of the before mentioned system of functional equations. The generalized form
factors can then be obtained from them by means of an explicit, though cumbersome,
combinatorial formula. We shall later just state the special cases of this formula required.
A discussion of the general formula can, e.g., be found in the appendix of [16].

Implicit in the products of matrix elements in (2.8) of course are appropriate index
contractions. For definiteness let us note them explicitly

〈0|Φa(0)|m〉〈m|Φb(0)|0〉←→ Iabm (θ),

〈0|Φa(0)|k〉〈k|Φb(0)|l〉 〈l|Φc(0)|m〉〈m|Φd(0)|0〉←→ Iabcdklm (ω|ξ |θ), (2.10)

where

Iabm (θ)=
∑
A

FaA(θ)FbAT(θ
T),

I abcdklm (ω|ξ |θ)=
∑
A,B,C

FaA(ω)FbATB
(ωT|ξ)Fc

BTC
(ξT|θ)Fd

CT(θ
T). (2.11)

HereAT = (ak, . . . , a1), ωT = (ωk, . . . ,ω1), etc. The construction is such thatIabm (θ) is a
completely symmetric function inθ = (θ1, . . . , θm). Similarly Iabcd

klm (ω|ξ |θ) is symmetric
in each of the sets of variablesω = (ω1, . . . ,ωk), ξ = (ξ1, . . . , ξl ) andθ = (θ1, . . . , θm),
individually.

2.2. The intrinsic coupling

As surveyed in the introduction the intrinsic coupling is defined in terms of the zero
momentum limit of a connected 4-point function. We may assume that the Schwinger
functions of the scalar fields with an odd number of arguments vanish; then the connected
L= 2,4 Schwinger functions of interest here are
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S̃ a1a2
c (k1, k2)= S̃ a1a2(k1, k2),

S̃ a1a2a3a4
c (k1, k2, k3, k4)= S̃ a1a2a3a4(k1, k2, k3, k4)− S̃ a1a2(k1, k2)S̃

a3a4(k3, k4)

− S̃ a1a3(k1, k3)S̃
a2a4(k2, k4)

− S̃ a1a4(k1, k4)S̃
a2a3(k2, k3). (2.12)

Making explicit the overall delta-functions arising from translational invariance we
introduce the Green functions by

S̃ a1···aL
c (k1, . . . , kL)= (2π)2δ(2)(k1+ · · · + kL)Ga1···aL(k1, . . . , kL), (2.13)

where the constraintk1 + · · · + kL = 0 in the arguments ofGa1···aL will always be
understood.

In the following we will now assume that the theory is O(n) invariant and thus for the
2-point function we can write

Ga1a2(k,−k)= δa1a2G(k). (2.14)

The intrinsic coupling is then defined by

gR=−N M2

G(0)2
1

n2

∑
a,b

Gaabb(0,0,0,0), (2.15)

where we leave the choice of positive constantN for later.
Performing the symmetrization (2.2) and the Fourier transform one recovers the familiar

expression forG(k) in terms of the spectral density

G(k)=
∞∫

0

dµρ(µ)
1

µ2+ k2
, (2.16)

where

ρ(µ)=
∑
m

δ
(
µ−

√
E2
m − P 2

m

)
4πEmδ(Pm)

1

n

∑
a

〈0|Φa(0)|m〉〈m|Φa(0)|0〉. (2.17)

In order to computẽS a1a2a3a4(k1, k2, k3, k4) the symmetrized sum (2.6), (2.7) has to be
performed. For reasons that will become clear immediately we first single out the partial
sum withl = 0. Taking into account theS4 permutations one finds

(2π)2δ(2)(k1+ k2+ k3+ k4)M
−6
∑
k,m

∑
s∈S4

V
a1a2a3a4
k0m (ks1, ks2, ks3, ks4)

= S̃ a1a2(k1, k2)S̃
a3a4(k3, k4)+ S̃ a1a3(k1, k3)S̃

a2a4(k2, k4)

+ S̃ a1a4(k1, k4)S̃
a2a3(k2, k3)+ (2π)2δ(2)(k1+ k2+ k3+ k4)M

−6

×
∑
s∈S4

Ωas1as2as3as4(ks1, ks2, ks3, ks4). (2.18)

Here

Ωa1a2a3a4(k1, k2, k3, k4)=−π
2
δ(k11+ k21)M

6 δa1a2δa3a4H(k1, k2)G(k4), (2.19)
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with

H(k1, k2)=
∞∫

0

dµρ(µ)
µ2+ k2

11+ k12k22

(µ2+ k2
1)(µ

2+ k2
2)

1√
µ2+ k2

11

. (2.20)

In obtaining (2.18) we defined the second denominator in (2.8) forl = 0 with the iε
prescription as:−i(k12+ k22+ iε). Here and later the distributional identity

1

x + iε = P
1

x
− iπδ(x),

will be heavily used, whereP is the Principal Value prescription.
One observes that the first three terms in (2.18) are precisely the ones removed by the

definition of the connected 4-point function. Remarkably there is a remainder, theΩ term,
which is present even in the free theory. Typically the spectral densities are decreasing or
bounded by a constant asµ→∞. The functionsG(k4) andH(k1, k2) are then regular at
ki = 0. Inserting finally (2.18) into (2.6), (2.7) one obtains for the Green function (2.13)

M6Ga1a2a3a4(k1, k2, k3, k4)

=
∑

k,l 6=0,m

∑
s∈S4

V
as1as2as3as4
klm (ks1, ks2, ks3, ks4)

+
∑
s∈S4

Ωas1as2as3as4(ks1, ks2, ks3, ks4). (2.21)

On general grounds one expects the vertex function to be real analytic. In particular there
must also be terms involving the delta function in theVklm above which cancel those of the
Ω-term (we will demonstrate this explicitly in the computation ofV121 in Appendix A).
Thus, provided the coupling is well-defined (finite) at all, the result will be independent
of the way the zero momentum limit is taken. It is therefore desirable to find a convenient
limiting procedure that simplifies the computation. To this end we first observe that in (2.8)
thekj1 andkj2 components enter asymmetrically. In particular as long as the intermediate
state is not the vacuum (i.e.,l 6= 0 in the second formula, and recalling that we are assuming
that none of the operators involved has a non-zero vacuum expectation value) one can put
kj2 = 0, j = 1,2,3,4. We now compute the 4-point vertex function at zero momentum
through the limiting procedure:

Ga1a2a3a4(0,0,0,0)= lim
κj→0

Ga1a2a3a4(k1, k2, k3, k4)

∣∣∣
kj=(M shκj ,0)

, (2.22)

where
∑4
j=1 shκj = 0, and the limit is taken such that

|κi | 6= |κj |, for i 6= j, and|κi − κj | 6= |κk − κl| for distinct pairs. (2.23)

In view of (2.19) it is clear that the limit prescription in (2.22), which we will use in the
following, has just been designed such that theΩ term does not have to be considered in
computation of the coupling.

Before embarking on further computations let us comment on a few structural issues. On
physical grounds one expects the intrinsic coupling to be both finite (in a theory with a mass
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gap) and positive (forN > 0) when the interaction is repulsive. Mathematically however it
is a quite challenging problem to actually prove this, whatever non-perturbative definition
of the theory one adopts. In the context of constructive (lattice) QFT such results seem to
be available only for a single phaseΦ4

2 theory (see, e.g., [2] for a survey). In the present
context we wish to define the theory strictly terms of its form factors. Mathematically
speaking one should then try to prove in particular that the right-hand side of (2.21) defines
a real analytic function. For the dominant low particle contributions we demonstrate in
Appendix A explicitly that all non-analytic (e.g., distributional) terms indeed cancel out.
We have not attempted to prove this in general, nor can we estimate the rate of convergence
of the sums in (2.21) on general grounds. In all the examples considered later however the
series appears to be rapidly convergent; the terms are alternating in sign and decrease in
magnitude very quickly with increasing particle numbers.

2.3. State parameterization

Here we assume that the single particle spectrum consists only of an O(n) vector
multiplet of massM. The one particle states|a,α〉 are thus specified by an internal
“isospin” labela and the rapidityα (i.e., the spatial momentum of the state isp =M shα).
The states are normalized according to

〈a,α|b,β〉 = 4πδabδ(α − β). (2.24)

The condensed notation for the sum over states now becomes∑
m

|m〉〈m| ←→ |0〉〈0|

+
∞∑
m=1

∑
a1,...,am

∞∫
−∞

dθ1

4π

θ1∫
−∞

dθ2

4π
· · ·

θm−1∫
−∞

dθm
4π
|a1, θ1; . . . ;am, θm〉in

× in〈a1, θ1; . . . ;am, θm|. (2.25)

It is often convenient (for a fixedm) to perform the change of variables

uj = θj − θj+1, j = 1, . . . ,m− 1, Λ= 1

2
ln

( ∑
j e
θj∑

j e
−θj

)
, (2.26)

since in terms of these variables the total energy and momentum of the states take on a
simpler form:

(Em,Pm)←→
(
M

m∑
j=1

chθj ,M
m∑
j=1

shθj

)
= (

M(m)(u)chΛ,M(m)(u)shΛ
)
, (2.27)

where the eigenvaluesMm =
√
E2
m − P 2

m of the mass operator are given by

M(m)(u)=M
[
m+ 2

∑
i<j

ch(ui + · · · + uj−1)

]1/2

. (2.28)



J. Balog et al. / Nuclear Physics B 583 [FS] (2000) 614–670 623

Correspondingly the integration measures in (2.25) above are replaced by

∞∫
−∞

dθ1

4π

θ1∫
−∞

dθ2

4π
· · ·

θm−1∫
−∞

dθm
4π
−→

∞∫
0

dm−1u

(4π)m−1

∞∫
−∞

dΛ

4π
. (2.29)

For later reference we also display the inverse transformation

θj = uj + · · · + um−1+ um +Λ, j = 1, . . . ,m,

whereum := 1

2
ln

(1+∑m−1
j=1 e

−uj−···−um−1

1+∑m−1
j=1 e

uj+···+um−1

)
. (2.30)

2.4. The two point function

The spectral function (2.17) appearing in the representation of the two point function
can be written as a sum of contributions of fixed particle numberm

ρ(µ)=
∑

0<m odd

ρ(m)(µ), (2.31)

where only odd numbers of particles contribute due to our assumption that the fieldsΦa

are parity odd. We normalize the fieldsΦa by

〈0|Φa(0)|b,α〉 = δab , (2.32)

rendering the 1-particle contribution to the spectral density simply

ρ(1)(µ)= δ(µ−M). (2.33)

Them> 3-particle contribution to the spin spectral function (2.17) is given by

ρ(m)(µ)=
∞∫

0

dm−1u

(4π)m−1 δ
(
µ−M(m)(u)

)
Im(u), (2.34)

with

Im(u) := 1

n

∑
a

∑
a1,...,am

∣∣Faa1···am(θ1, . . . , θm)
∣∣2, (2.35)

which equalsI11
m (θ) under the integral. The functionFa featuring here corresponds to the

matrix element ofΦa between vacuum and anm-particle in-state as in (2.9)

Faa1···am(θ1, . . . , θm)= 〈0|Φa(0)|a1, θ1; . . . ;am, θm〉in, θm < · · ·< θ1. (2.36)

The inverse 2-point function has a low momentum expansion of the form

G(k)−1=Z−1
R

[
M2

R+ k2+O(k4)
]
, (2.37)

with

M2
R=M2 γ2

δ2
, ZR= γ

2
2

δ2
, (2.38)
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whereγ2, δ2 are spectral moments:

γ2=M2

∞∫
0

dµ

µ2 ρ(µ), δ2=M4

∞∫
0

dµ

µ4 ρ(µ). (2.39)

2.5. The intrinsic coupling revisited

In (2.15) we left open the choice of the normalization constantN because for different
models different choices are convenient. In analytical and numerical lattice computations
(at fixed cutoff) it is often easier to compute the second moment massMR instead of
the (exponential) spectral massM (in lattice units). For ease of comparison with these
techniques we thus chooseN =M2

R/M
2, i.e., we define the intrinsic coupling by

gR=− M2
R

G(0)2
1

n2

∑
a,b

Gaabb(0,0,0,0). (2.40)

Using O(n) symmetry it follows

Ga1a2a3a4(0,0,0,0)=M−6γ4
(
δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3

)
, (2.41)

and hence we can write (2.40) as

gR=−n+ 2

n

γ4

γ2δ2
. (2.42)

These spectral moments have, corresponding to the decomposition (2.31), an expansion
in contributions arising from states with a fixed (odd) number of particles

γ2= 1+
∑

3>m odd

γ2;m, δ2= 1+
∑

3>m odd

δ2;m. (2.43)

Similarly, corresponding to the sum in (2.21) we have

γ4=
∑

k,l>0,m

γ4;klm, γ4;klm= γ4;mlk, (2.44)

where the sum goes over odd integersk,m and positive even integersl. To avoid writing
many O(n) indices we will use

γ4;klm= 1

3
Limκj→0

∑
s∈S4

vklm(κs1, κs2, κs3, κs4), (2.45)

where

vklm(κ1, κ2, κ3, κ4)= V 1111
klm (k1, k2, k3, k4)

∣∣
kj=(M shκj ,0)

, (2.46)

and the symbol Lim above means taking the limitκj → 0 with the κj satisfying∑
j shκj = 0 and the constraints in Eq. (2.23).
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3. The nonlinear O(n) sigma-models

As outlined in the introduction the form factor bootstrap (FFB) construction of an
integrable quantum field theory starts from postulates of the on shell properties of the
theory. By integrable here it is meant that the theory has an infinite set of conserved charges
which entail that there is no particle production. This property usually is characteristic
of non-relativistic quantum mechanics, remarkably here it holds for relativistic quantum
field theories (QFTs) (assuming that the FFB approach does indeed define a QFT). In
4 dimensions absence of particle production implies that the theory is free but in two
dimensions this is not so. In addition to the absence of particle production, one postulates
the spectrum of stable particle states and their 2-particle S-matrix which has to satisfy the
so-called Yang–Baxter (or factorization) equation (A.5).

In principle one could proceed without reference to a Lagrangian, but often contact
to a Lagrangian description is desirable. Thus typically postulates of specific S-matrices
are motivated by studies of associated Lagrangian QFTs. Unfortunately in most cases one
cannot solve the QFTs to the extent necessary to really derive the candidate S-matrix, rather
one has patches of partial information. This is in particular the case for the O(n) nonlinear
sigma-models formally described by a set of spin fieldsσa , a = 1, . . . , n > 2, with the
constraintσ 2 = 1 and Lagrangian density∝ (∂µσ)2. There is a wealth of information on
these models which will be recalled when we study the various cases in the following
sections, and for an overview we refer the reader to our previous paper [9]. In particular
the spectrum of stable particles is thought to consist of an O(n) vector multiplet of massM
without further bound states (i.e., of the form of the spectrum considered in Section 2.3).
The S-matrix element (forn> 2) has the decomposition

Sab;cd(θ)= σ1(θ) δabδcd + σ2(θ) δacδbd + σ3(θ) δadδbc, (3.1)

where the center of mass energy is given by
√
s = 2M chθ/2.

Classically the theories have an infinite set of local and non-local conserved charges.
One can argue that there are no anomalies which obstruct the existence of such charges
in the quantum theory. In the case of the non-local charges forn > 3 the construction
of Lüscher [17] is closely connected to the usual perturbative renormalizability and the
(perturbative) asymptotic freedom of the model. Knowledge of the action of the non-
local charges on the asymptotic states then restricts the S-matrix to the form postulated
by Zamolodchikov and Zamolodchikov [3] forn> 3

σ1(θ)= −2πiθ

(iπ − θ) ·
s2(θ)

(n− 2)θ − 2πi
,

σ2(θ)= (n− 2)θ · s2(θ)

(n− 2)θ − 2πi
, (3.2)

σ3(θ)=−2πi · s2(θ)

(n− 2)θ − 2πi
,

i.e., the invariant amplitudes are all given in terms of one amplitude which we have chosen
here to be the invariant amplitudes2(θ) in the symmetric traceless (“isospin 2”) channel.
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The amplitudes2(θ) is off-hand determined only up to so-called CDD factors, which were
initially [3] fixed by selecting the solution with the minimal number of poles and zeros in
the physical strip. This solution fors2(θ) is given by

s2(θ)=−exp

{
2i

∞∫
0

dω

ω
sin(θω)K̃n(ω)

}
(3.3)

with

K̃n(ω)= e
−πω + e−2πω/(n−2)

1+ e−πω . (3.4)

The proposed identification of (3.2)–(3.4) with the S-matrix of the O(n) sigma-model
passes several non trivial tests. First, the leading terms of its largen-expansion coincide
with those obtained in leading orders of a field theoretical largen computation. Second, in
the determination of the exactM/Λ ratio a consistency condition arises when matching the
results of a perturbative computation against that obtained via the thermodynamic Bethe
ansatz [41]. This consistency condition is also sensitive to the CDD factor; the minimal
bootstrap solution (3.2)–(3.4) passes the test.

We note that the above formulae have a smoothn→ 2 limit. A study of the possible
relation of the so defined FFB O(2) model to the continuum limit of the lattice XY-model
(from the massive phase) will be the topic of a future publication [14].

Further we remark that the S-matrix for the casen= 1 (Ising model) can also be written
in the form (3.1) by setting

σ1(θ)= σ2(θ)= 0, σ3(θ)=−1, n= 1. (3.5)

The representation (3.1) is of course redundant in this case, but it does allow us in
the following to discuss alln > 1 simultaneously. For example in all cases we have an
expansion at low energies of the form

Sab;cd(θ)=−δadδbc + iθDab;cd +O(θ2), (3.6)

in sharp contrast to a weak perturbation of a free field theory.
Having all the on-shell information covers all the physical information on the theory one

observes from scattering of the stable particles, but off shell information is being explored
if the system is probed by external sources weakly coupled to local operators with given
quantum numbers.

3.1. Derivation of the leading term in the FF expansion ofgR

For the leading 1-2-1 particle contribution togR a general model-independentexpression
can be given in terms of the derivative the S-matrix and the 3-particle form factor. For
notational reasons we restrict attention here to the O(n) models considered later in more
detail. The extension to a general integrable QFT without bound states is described in
Appendix A. For the O(n) models the formula reads
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γ4;121= 4i
3∑
j=1

dσj (θ)

dθ

∣∣∣∣∣
θ=0

+ 1

8π

∞∫
0

du

{
1

ch2u
fc(u)fc(−u)− 64

u2

}
. (3.7)

Here fc(θ) is a particular version of the 3-particle form factorFabcd(θ1, θ2, θ3) of the
local fieldΦa , supposed to correspond to the renormalized spin fieldσaR in a Lagrangian
construction. Explicitly

fc(θ) :=F1
1cc(iπ, θ,−θ). (3.8)

In order to derive (3.7) consider first more generally the(1, l,1) contribution in (2.21)
with l > 2. Using (2.8) and switching to the explicit notation introduced in Section 2.3 one
can perform the integrals over the rapidities of the ‘1’ particles. Then one decomposes
the rapidity measure for the intermediate ‘l’ particle contribution according to (2.26).
Using (2.29) theΛ integration can be performed and by means of (2.30) one arrives at

v1l1(κ1, κ2, κ3, κ4)

= π
2

1

ch2κ1 ch2κ4

1

l!
∫

dlθ

(4π)l
δ(θ1, . . . , θl, κ1, κ2)∑l

j=1 chθj
I1l1(−κ1|θ |κ4)

= 1

8 ch2κ1 ch2 κ4

∫
dl−1u

(4π)l−1

1

ch2Λ∗
M2

M(l)(u)2
I1l1(−κ1|θ |κ4), (3.9)

where I1l1(−κ1|θ |κ4) := I1111
1l1 (−κ1|θ |κ4) is a product of generalized form factors as

in (2.10), (2.11). Explicitly the correspondence to the matrix elements is

I1l1(−κ1|θ |κ4)=
∑
b1,...,bl

〈1,−κ1|Φ1(0)|b1, θ1; . . . ;bl, θl〉in

× in〈b1, θ1; . . . ;bl, θl|Φ1(0)|1, κ4〉. (3.10)

In the first expression we introduced the notation

δ(θ1, . . . , θl)= δ
(

l∑
j=1

shθj

)
, (3.11)

in the second oneΛ∗ is defined by

shΛ∗ = − M

M(l)(u)
(shκ1+ shκ2). (3.12)

As remarked before the generalized form factors can be expressed in terms of form factors
of the same operator and delta distributions by an explicit combinatorial formula. We shall
usually just display the specific version needed. A discussion of the general formula can be
found in the appendix of [16]. For the generalized form factor entering (3.10) the formula
reads

〈a1,−κ1|Φa2(0)|b1, θ1;b2, θ2〉in
∣∣
θ1>θ2

=Fa2
a1b1b2

(−κ1+ iπ − iε, θ1, θ2)+ 4πδa1b1δa2b2δ(κ1+ θ1)

+ 4πSb1b2;a2a1(θ1− θ2)δ(κ1+ θ2). (3.13)

Substituting this in Eq. (3.9) we obtain
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v121= 1

64π ch2 κ1 ch2κ4
·
{ ∞∫
−∞

dα1
1

chᾱ2(chα1+ chᾱ2)

×F1
1xy(iπ − κ1− iε,α1, ᾱ2)F1

1xy(iπ − κ4− iε,−α1,−ᾱ2)

+ 8π

chκ3(chκ3+ chκ4)
F1

111(iπ − κ1− iε, κ4, κ3)

+ 8π

chκ2(chκ1+ chκ2)
F1

111(iπ − κ4− iε, κ1, κ2)

}
. (3.14)

Here we used the simplifications discussed above and the real analyticity property (3.16e)
below. Moreover, we changed the integration variable from the difference of the two
rapidities to one of the rapidities (α1). The other rapidity (̄α2) is then the solution of the
transcendental equation

shα1+ shᾱ2+ shκ1+ shκ2= 0 (3.15)

and is an analytic function ofα1. There are no contributions from terms involving delta-
functions such asδ(κ1+ κ4) appearing inI121 since we are taking the limit (2.22) where
these delta-functions vanish. (These terms are however crucial to cancel corresponding
singularities in theΩ term; cf. Appendix A.)

The form factors appearing in (3.14) obey a system of functional equations which allow
one to further simplify the expression. Let us recall these equations in the form relevant to
the three-particle form factorFdabc(α,β, γ ) in the O(n) model.

Fdabc(α,β, γ )= Sbc;yx(β − γ )Fdaxy(α, γ,β), (3.16a)

Fdabc(α,β, γ )=Fdcab(γ + 2πi,α,β), (3.16b)

Fdabc(α,β, γ )=Fdabc(α + λ,β + λ,γ + λ), (3.16c)

Fdabc(α,β, γ )=Fdcba(−γ,−β,−α), (3.16d)

[Fdabc(α,β, γ )]∗ =Fdabc(−α∗,−β∗,−γ ∗). (3.16e)

Here the S-matrix appearing in the exchange axiom (3.16a) is the O(n) S-matrix (3.1).
(3.16d) and (3.16e) express the parity invariance and real analyticity property of the
form factors, respectively. The homogeneous axioms (3.16) are supplemented by the
inhomogeneous residue equation

lim
α→β+iπ(α− β − iπ)F

d
abc(α,β, γ )= 2i

{
δabδcd − Sbc;ad(β − γ )

}
. (3.17)

We now take advantage of the analytic properties of the form factors and change the
integration contour in (3.14) from the real axis to a curveC which is arbitrary except that
it has to stay within the ‘physical strip’ 0< Imα1 < π/2. Along this contour we can put
ε = 0 and also the limitκi → 0 can safely be taken. The integrated part of (3.14) then
simplifies to

v
(II )
121=

1

128π

∫
C

dα

ch2α
fb(α)fb(−α), (3.18)
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where we introduced the shorthands

f dabc(α) :=Fdabc(iπ,α,−α),
f 1

1bc(α)=: δbcfb(α) (no sum). (3.19)

Of course, one has to take into account the contribution of those singular points of the
integrand that get crossed when deforming the contour of integration. There are two such
singular points:

α1= κ4+ iε and ᾱ2=−κ1− iε, (3.20)

which never coincide if (2.23) holds.
Applying Cauchy’s theorem one can evaluate the contribution from the first singular

point using the residue axiom (3.17). This gives

− 1

16 ch2κ1 ch2 κ4 chᾱ2(chα1+ chᾱ2)

×{F1
111(iπ − κ1− iε,α1, ᾱ2)−F1

111(iπ − κ1− iε, ᾱ2, α1)
}
,

where in the second term we also used the exchange axiom (3.16a). After taking the limit
ε→ 0, which is possible if (2.23) holds, the contribution of the first singular point becomes

1

16 ch2κ1 ch2κ4 chκ3(chκ3+ chκ4)

×{F1
111(iπ − κ1, κ3, κ4)−F1

111(iπ − κ1, κ4, κ3)
}
.

The contribution of the second singularity is similar:

1

16 ch2κ1 ch2κ4 chκ2(chκ1+ chκ2)

× {F1
111(iπ − κ4, κ2, κ1)−F1

111(iπ − κ4, κ1, κ2)
}
.

Putting together the contribution of the singular points and the last two terms of (3.14) the
non-integrated contribution can be written as

v
(I)
121

.= 1

8 ch2κ1 ch2 κ4 chκ3(chκ3+ chκ4)

× {F1
111(iπ − κ1, κ3, κ4)+F1

111(iπ − κ1, κ4, κ3)
}
,

where
.= indicates equality after the symmetrization over the elements of the permutation

groupS4 has been carried out.
We now use the Smirnov axioms (3.16) and (3.17) to simplify the non-integrated part in

the (symmetrized)κi→ 0 limit. It is convenient to first introduce the reduced form factor
Gdabc(α,β, γ ) by

Fdabc(α,β, γ )= T3(α,β, γ )Gdabc(α,β, γ ). (3.21)

Here and in the following we set

TN(θ1, . . . , θN ) :=
∏

16i<j6N
T (θi − θj ), (3.22)
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whereT is basically the tanh-functionT (θ) := tanhθ/2. NoteT (θ) has a simple pole
at θ = iπ , T (iπ − θ) = −T (iπ + θ) = −2/θ +O(θ), and a simple zero atθ = 0. The
advantage of the representation (3.21) is that the singularities are carried by the tanh factors
and the reduced form factorGdabc is analytic everywhere in the physical strip. In particular,
for smallα,β andγ it can be expanded as

Gdabc(iπ + α,β, γ )= J dabc+ (α − γ )Kd
abc+ (β − γ )Ldabc+ · · · , (3.23)

where the dots stand for terms higher order inα,β andγ . We can compute the constant
tensors appearing in the expansion (3.23) using the form factors equations. From the
residue axiom (3.17) we can immediately fix

J dabc= i
(
δabδcd + δacδbd

)
, Kd

abc+Ldabc=Dbc;ad. (3.24)

To determine the expansion coefficients individually we employ the exchange rela-
tion (3.16a) and find

Kd
abc=Dbc;ad −Dbc;da, Ldabc=Dbc;da. (3.25)

Using the expansion (3.23), for smallκ the non-integrated contribution becomes

v
(I)
121

.= 1

4

κ3− κ4

(κ1+ κ3)(κ1+ κ4)

{
2i + (κ3− κ4)D +O(κ2)

}
, (3.26)

where

D =D11;11=−i
3∑
j=1

dσj (θ)

dθ

∣∣∣∣∣
θ=0

. (3.27)

This can be simplified by noting that upon averaging over the permutations

1

κ1+ κ4

.= 1

κ1+ κ3

.= 0, (3.28)

and similarly

κ4

κ1+ κ4

.= κ3

κ1+ κ3

.=− κ3

κ1+ κ4

.=− κ4

κ1+ κ3

.= 1

2
. (3.29)

After this simplification we have for the non-integrated contribution

v
(I)
121

.=−1

2
D, (3.30)

and hence the non-integrated part of the leading contribution to the four-point coupling
eventually becomes

γ
(I)
4;121=−4D. (3.31)

For the Ising model the S-matrix is constant and thereforeγ
(I)
4;121= 0 for n= 1. Forn> 2

we use (3.3) and find

γ
(I)
4;121=−

4

π
+ 8

∞∫
0

dωK̃n(ω). (3.32)
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The integrated part (3.18) (which is in this form rather useful for numerical evaluation) can
be written in an alternative form using the the residue axiom which implies

f dabc(θ)=−
4

θ
J dabc+O(1)=−

4i

θ
(δabδcd + δacδbd)+O(1). (3.33)

Using this we can explicitly subtract the singular part in (3.18) and shift the contour back
to the real axis. Noting also that the integrand is an even function ofα we arrive at

γ
(II )
4;121=

1

8π

∞∫
0

du

{
1

ch2u
fb(u)fb(−u)− 64

u2

}
. (3.34)

The extension of the formula (3.7) to general integrable models without bound states is
described in Appendix A.

3.2. The three particle form factor

Only the special three-particle form factorf dabc(θ) in (3.19) is necessary to compute the
leading contribution (3.7) togR. It turns out to obey an autonomous system of functional
equations (in a single variable) that derives from the form factor equations satisfied by
Fdabc(α,β, γ ). Solving it allows one to computefb(θ) — and hence to evaluate (3.7) — in
situations where the general form factors are not known.

We begin by noting that the functionsf dabc(θ) are real analytic, i.e.,[f dabc(θ)]∗ =
f dabc(−θ∗), in the physical strip 06 Imθ 6 π , with simple poles atθ = 0 and θ =
iπ/2. Moreover, using (3.16b,d) one can easily deduce that it is symmetric in its last two
indices,

f dabc(θ)= f dacb(θ). (3.35)

Using (3.16a) one obtains

f dabc(θ)= Sbc;yx(2θ) f daxy(−θ), (3.36)

and finally combining (3.16a–d) results in

f dabc(iπ − θ)= Sca;yx(θ)Syb;zl(2θ) Slx;vw(θ)f dwvz(iπ + θ). (3.37)

These are the consequences of the homogeneous form factor axioms; they are supple-
mented by the residue equations

Resf dabc(0)=−4i(δabδcd + δacδbd), (3.38)

Resf dabc

(
iπ

2

)
= i
{
δbcδad − Sca;bd

(
iπ

2

)}
. (3.39)

In view of Eq. (3.35) we can parameterizef as

f dabc(θ)= k(θ)δadδbc + l(θ)[δacδbd + δabδcd ]. (3.40)

Then the contributionγ (II )4;121 is given by
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γ
(II )
4;121=

1

8π

∞∫
0

du
{[
nk(u)k(−u)+ 2k(u)l(−u)+ 2k(−u)l(u)

+ 4l(u)l(−u)]/ch2u− 64/u2}. (3.41)

In terms of the two functionsk(θ) andl(θ) Eq. (3.36) can be written as

k(θ)= [s2(2θ)+ nσ1(2θ)
]
k(−θ)+ 2σ1(2θ) l(−θ),

l(θ)= s2(2θ) l(−θ), (3.42)

while (3.37) becomes

k(iπ − θ)= [A11(θ)k(iπ + θ)+A12(θ)l(iπ + θ)
]
a(θ)s2(θ)

2s2(2θ),

l(iπ − θ)= [A21(θ)k(iπ + θ)+A22(θ)l(iπ + θ)
]
a(θ)s2(θ)

2s2(2θ). (3.43)

Here

a(θ)= (n− 2)θ + 2iπ

(iπ − θ)(iπ − 2θ)[(n− 2)θ − iπ][(n− 2)θ − 2iπ]2 , (3.44)

and

A11(θ)= (θ − iπ)
[
2(n− 2)2θ3+ (n− 2)(n− 4)θ2iπ + (n+ 2)θπ2− 2iπ3],

A12(θ)=−4(n− 2)iπθ(θ − iπ)(θ + iπ),
A21(θ)=−2(n− 4)iπ3θ,

A22(θ)=A11(−θ). (3.45)

The matrixA(θ) satisfies

A(θ)−1=A(−θ)a(θ)a(−θ), detA(θ)= 1

a(θ)a(−θ). (3.46)

The functional equations (3.42), (3.43) still contain the transcendental functions2(θ). It
can be eliminated by the following standard procedure. We introduce the functionu(θ) as
the unique solution of

u(θ)= s2(θ) u(−θ), (3.47)

u(iπ − θ)=−u(iπ + θ), (3.48)

subject to the normalization condition

u(iπ − θ)= 1

θ
+O(θ). (3.49)

Using the results of Appendix D one can immediately write down the solution

u(θ)=−1

2
T (θ) e∆(θ), (3.50)

where in (D.3) of course the kernel̃Kn(ω) defined in (3.4) has to be used. Introducing

Y (θ)= 2i

u0
u(iπ − θ) u(iπ + θ) u(2θ), u0= u′(0)=−1

4
e∆(0), (3.51)
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we parameterizek, l as

k(θ)= Y (θ)K(θ) and l(θ)= Y (θ)L(θ). (3.52)

Rewriting then the functional equations (3.42), (3.43) in terms ofK andL, the new system
involves only rational coefficient functions. Explicitly they read

K(θ)= −1

[(n− 2)θ − iπ](iπ − 2θ)

× {[(n− 2)θ + iπ](iπ + 2θ)K(−θ)+ 4iπθL(−θ)},
L(θ)= L(−θ), (3.53)

and

K(iπ − θ)= [A11(θ)K(iπ + θ)+A12(θ)L(iπ + θ)
]
a(θ),

L(iπ − θ)= [A21(θ)K(iπ + θ)+A22(θ)L(iπ + θ)
]
a(θ), (3.54)

respectively. The first equation of (3.53) can be used to eliminateL(θ) in favor ofK(θ)
via

L(θ)= 1

4iπθ

{[
iπ − (n− 2)θ

]
(iπ − 2θ)K(θ)

− [iπ + (n− 2)θ
]
(iπ + 2θ)K(−θ)}, (3.55)

and (3.55) also solves the second equation of (3.53). Inserting (3.55) into (3.54) results in
a single linear functional equation forK(θ). The normalization of the solution is fixed by
the residue equations (3.39).

We expect that this procedure can be used to computefb(θ) and hence the leading
contribution to the coupling for all O(n) models. For the O(2) model we demonstrate this
in Section 6.

3.3. Subleading contributions

In order to achieve higher accuracy and to obtain some clue on the rate of convergence of
the series (2.44) we will compute some of the subleading terms as well. It turns out that the
1-2-1 term indeed gives the numerically most important contribution to the coupling. But
based on the computation of the subleading terms the numerical result can also be endowed
with an intrinsic error estimate. Our results indicate that the next important contributions
to the coupling are(1,2,3)+ (3,2,1) and(1,4,1). Its explicit evaluation is deferred to
Appendices C and B. The difficulty in the evaluation lies in the rapidly varying nature of the
integrands, which have in the multidimensional phase space many zeros and (integrable)
singularities. To deal with these we have either decomposed the integrand into appropriate
parts or avoided the singularities by shifting some contours of integration into the complex
plane.

The (1,4,1) contribution is thel = 4 case of Eq. (3.9) and will be evaluated in
Appendix B. Here we prepare the ground for the evaluation of the(1,2,3) + (3,2,1)
terms. More generally let us examine the(1,2,m)+ (m,2,1) contribution and to this end
return to (2.8). Performing the internal rapidity integrations one obtains
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v12m(κ1, κ2, κ3, κ4)

= π2

ch2κ1

1

m!
∫

dξ1dξ2
(4π)2

δ(ξ1, ξ2, κ1, κ2)

chξ1+ chξ2

×
∫

dmθ

(4π)m
δ(θ1, . . . , θm,−κ4)∑m

j=1 chθj
I12m(−κ1|ξ2, ξ1|θ). (3.56)

Next one spells outI12m := I1111
12m by inserting the formula expressing the generalized form

factors in terms of ordinary form factors. Taking advantage of the S-matrix exchange
relations many of terms contribute equally upon integration and one ends up with four
terms

v12m = v(I)12m + v(II )12m + v(III )12m + v(IV)12m, (3.57)

with

v
(I)
12m(κ1, κ2, κ3, κ4)∼ 1

16(4π)mm!
∑
b1,b2

∑
a1,...,am

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

dmα
δ(α1, . . . , αm,−κ4)∑k

i=1 chαi
F1

1b1b2
(−κ1+ iπ−, β1, β2)

×F1
b2b1a1a2···am(β2+ iπ−, β1+ iπ−, α1, . . . , αm)F1

a1a2···am(α1, . . . , αm)
∗, (3.58)

v
(II )
12m(κ1, κ2, κ3, κ4)∼ 1

8(4π)m−1(m− 1)!
∑
b1,b2

∑
a2,...,am

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

dm−1α
δ(β1, α2, . . . , αm,−κ4)

chβ1+∑m
i=2 chαi

F1
1b1b2

(−κ1+ iπ−, β1, β2)

×F1
b2a2···am(β2+ iπ−, α2, . . . , αm)F1

b1a2···am(β1, α2, . . . , αm)
∗, (3.59)

v
(III )
12m(κ1, κ2, κ3, κ4)∼ 1

16(4π)m−2(m− 2)!
∑
b1,b2

∑
a3,...,am

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

dm−2α
δ(α3, . . . , αm, κ3)

chβ1+ chβ2+∑m
i=3 chαi

F1
1b1b2

(−κ1+ iπ−, β1, β2)

×F1
a3···am(α3, . . . , αm)F1

b1b2a3···am(β1, β2, α3, . . . , αm)
∗, (3.60)

v
(IV)
12m(κ1, κ2, κ3, κ4)∼ 1

16(4π)m−1m!
∑

a1,...,am

∫
dmα

δ(α1, . . . , αm,−κ4)∑m
i=1 chαi

×F1
11a1a2···am(−κ2+ iπ−,−κ1+ iπ−, α1, . . . , αm)F1

a1a2···am(α1, . . . , αm)
∗,
(3.61)

whereπ− stands forπ − ε. All integrals range from−∞ to+∞.
Further details of the computation of the 1-2-3 contribution are given in Appendix C.

Note that for the numerical evaluation of thek + l + m = 6 contributions we need the
analytic expressions for the 5-particle form factor of the spin operator. Unfortunately these
are at present only known forn= 1 andn= 3. For the Ising model all the form factors are
explicitly known and in this case we have also computed thek + l +m= 8 contributions.
After a preparatory next section where we discuss the definition and measurement of the
intrinsic coupling in the lattice regularization, we will discuss the casesn= 1,2,3 in turn.
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4. Lattice computations ofgR

In the subsequent sections we will compare the results of the form factor bootstrap
couplinggR with those obtained from the lattice theory. As noted earlier, in the framework
of the lattice regularization there are two methods to computegR in the O(n) models: high
temperature (= strong coupling) expansions and Monte Carlo simulations. Both approaches
usually take the standard lattice action on a square lattice

S =−β
∑
x,µ

σ (x) · σ(x + µ̂), (4.1)

as the starting point, whereσ(x) · σ(x)=∑a σ
a(x)σ a(x)= 1.

The lattice definition ofgR(β) is as in Eq. (2.40)

gR(β)=− 1

ξ2
2G2(0)2

1

n2

∑
a,b

Gaabb
4 , (4.2)

where all quantities are defined analogously to the continuum theory

G2(k)= 1

n

∑
a

∑
x

eikx
〈
σa(x)σ a(0)

〉
, (4.3)

G
a1a2a3a4
4 =

∑
x1,x2,x3

{〈
σa1(x1)σ

a2(x2)σ
a3(x3)σ

a4(0)
〉

− [〈σa1(x1)σ
a2(x2)

〉〈
σa3(x3)σ

a4(0)
〉+ 2 perms

]}
, (4.4)

andξ2 is the second moment correlation length

ξ2
2 =

µ2

4G2(0)
, µ2= 1

n

∑
a

∑
x

x2〈σa(x)σ a(0)〉. (4.5)

The coupling from the lattice regularization is defined as the continuum limit

gR= lim
β→βc

gR(β), (4.6)

whereβc is a critical point where the correlation length diverges (in lattice units).
Butera and Comi [12] have produced long high temperature series forG2(0),µ2,

andG4 in the O(n) model with standard action, and Pelissetto and Vicari [13] have
reanalyzed these series to compute estimates for the intrinsic couplinggR for n6 4. Similar
computations have been performed previously by Campostrini et al. [11].

Our Monte Carlo simulations were of course done on a finite lattice, more precisely a
square lattice of sizeL (points) in each direction and periodic boundary conditions, both
with the standard action (4.1) and the fixed point action of Ref. [18]. The infinite volume
lattice couplinggR(β) is then obtained as the limit

gR(β)= lim
L→∞gR(β,L), (4.7)

of a finite volume couplinggR(β,L) which is proportional to Binder’s cumulantuL:
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gR(β,L)=
(

L

ξeff(β,L)

)2

uL,

uL = 1+ 2

n
− 〈(Σ

2)2〉
〈Σ2〉2 , (4.8)

whereΣa = ∑x σ
a(x). In this definition ξeff(β,L) is an effective correlation length

which converges to the second moment correlation lengthξ2 in the limit L→∞. In our
computations we used the particular definition (as, e.g., in Ref. [7]):

ξeff(β,L)= 1

2 sin(π/L)

√
G2(0)

G2(k0)
− 1, (4.9)

wherek0= (2π/L,0).
In our analysis of the Monte Carlo data we shall make the working assumption that one

is allowed to replace the limiting procedure limβ→βc limL→∞ by

gR = lim
z→∞ ĝR(z), z := L/ξeff(β,L),

ĝR(z) := lim
β→βc, z fixed

gR(β,L). (4.10)

That is we attempt to first take the continuum limit at fixed physical volume and afterwards
take the physical volume to infinity. Thez→∞ limit of ĝR(z) is expected to be reached
exponentially; for example in the leading order 1/n expansion [10]

ĝR(z)= ĝR(∞)
(
1− c√zexp(−z)+ · · · ). (4.11)

The situation may however be slightly more complicated due to our particular definition of
ξeff. Indeed in the continuum limit at fixed physical volume we expectG2(0)/G2(k0)→
G(0)/G(k) wherek ∼ K0 = (2πMR/z,0) and the continuum expressions are in finite
physical volume. On the other hand for the continuum two point function defined in infinite
volume

1

K2
0

[
G(0)/G(K0)− 1

]∼ 1

M2
R

[
1−

(
2π

z

)2

(γ2− 1)

]
. (4.12)

In our simulations the values of 2π/z are∼ 1, i.e., not so small; nevertheless at such
values the correction factor on the rhs of (4.12) only deviates from 1 by the order 10−3.
This deviation is much smaller than the statistical accuracy of our simulations, and hence
we ignore these additional effects in our analyses of the lattice data.

5. The Ising model

The particular field theory we are considering in this section is that obtained from
the Ising model in zero external field2 for 0< T − Tc→ 0. The spin–spin correlation

2 One can obtain an infinite number of field theories from the Ising model in the presence of an external field
H by taking the limitH → 0, T → Tc with h=H/|T − Tc|15/8 fixed.
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functions in the scaling limit are known exactly from the work of Wu et al. [19], and from
this knowledge Sato, Miwa and Jimbo [20] found that the S-matrix operator was given by

S= (−1)N(N−1)/2, (5.1)

whereN is the particle number operator. An energy independent phase is not observable
in a scattering experiment; the non-trivial S-matrix (5.1) reflects the fact that the off-shell
spin–spin correlation functions are not that of a free field. The continuum limit of the Ising
model is also described by a free Majorana field, but this is non-local with respect to the
spin field; for a more detailed discussion we refer the reader to the lectures of McCoy [21].

5.1. Form factor determination

The generalized form factors are given by [22]

out〈θ1, . . . , θm|σ(0)|θm+1, . . . , θN 〉in

= (2i)(N−1)/2
∏

16i<j6m
T
(|θi − θj |) ∏

16r6m<s6N

P
T (θr − θs)

×
∏

m<k<l6N
T
(|θk − θl|), (5.2)

with N an odd (positive) integer. We evaluate the dominant contribution to the coupling
using Eq. (3.7). The non-integrated part (3.31) vanishes. For the integral (3.34) we need
f1(θ), which is readily obtained from (5.2),

f1(θ)=−2i T (2θ)/T 2(θ). (5.3)

Thus the dominant contribution toγ4 is

γ4;121= 1

2π

∞∫
0

du

[
T 2(2u)

T 4(u)ch2u
− 16

u2

]
=−5

2
− 47

6π
. (5.4)

Numerically this givesγ4;121=−4.993427441(1) or gR ≈ 14.98 in the leading approxi-
mation.

The simplicity of the form factors (5.2) also makes the Ising model a good testing ground
for the computation of the subleading contributions, to which we turn now. The evaluation
of the spectral moments (2.39), (2.43) is straightforward. Form = 3,5,7 the results are
given in Table 1.

Table 1 suggests that the series (2.43) converge extremely rapidly and we would estimate

γ2= 1+ 8.15259(1)× 10−4, δ2= 1+ 1.094(1)× 10−5, (5.5)

where the estimated errors come both from the numerical integration and from estimating
the contributions of the higher particle terms. To get some check on this we may consider
the ratioδ2/γ2 for which from the leading terms (5.5) we getδ2/γ2= 0.999 196 336(11).
This is in excellent agreement with the resultδ2/γ2 = 0.999 196 33 of Campostrini et
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Table 1
m-particle contributions toγ2, δ2 in the Ising model

m γ2;m δ2;m

3 8.1446256566(1) × 10−4 1.094(1)× 10−5

5 7.96(1)× 10−7 2.22(1)× 10−10

7 7.8(1)× 10−10 4.6(1)× 10−15

Table 2
k-l-m-particles contributions toγ4 in the Ising model

k, l,m γ4;klm

1,2,1 −4.993427441(1)

1,2,3 0.046310(1)
1,4,1 −0.002653(1)

3,2,3 0.0002884(3)
1,4,3 −0.0000420(5)
1,2,5 0.00002562(2)
1,6,1 −0.0000040(1)

al. [23], which they obtained by numerical evaluation of the exact formula for the 2-point
function3 of Wu et al. [19].

The evaluation ofγ4 is more involved. In order to gain insight into the rate of decay of
the higher particle contributions as well as their sign pattern we pushed the computation up
to k+ l+m6 8. Thek+ l+m= 8 contributions in particular turned out to be a formidable
computation despite the deceptive simplicity of the form factors. The computation is based
on the formulae (3.9), (3.56) and similar ones for(m,2,m), with m odd, and for(1, l,3),
with l even. To give the reader a chance to follow the computations we have collected some
intermediate results in Appendices B, C. The final results for the contributions of thek-l-m
intermediate states withk + l +m6 8 to γ4 are summarized in Table 2.

The rapid decay of the terms is manifest. Increasingk+ l+m by 2 gives a contribution
roughly two orders of magnitude smaller than the previous one. The sign pattern appears to
follow the rule: Sign(γ4;klm)= Sign(k +m− l − 1). Further terms with larger differences
|k − l|, |l −m| are suppressed as compared to those with smaller ones. In view of Table 2
we would thus (conservatively) estimate thek + l +m > 10 particle contributions to be
6 10% of the sum of thek + l +m= 8 contributions. This gives

γ4=−4.90321(3). (5.6)

Inserting into (2.42) withγ2, δ2 taken from (5.5) then yields our final result

gR= 14.6975(1). (5.7)

3 This famous Fredholm determinant (solving the Painlevé III equation) is basically the summed up FF series;
see, e.g., [24].
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Table 3
Previous determinations ofgR in the Ising model

Method Value forgR

High temperature 14.6943(17) [13], 14.67(5) [25]
Borel summation 15.5(8) [26]
Monte Carlo 14.3(1.0) [27]

Fig. 1. The data forgR at z≈ 7.4 for different lattice spacings.

This amounts to a determination ofgR to within< 0.001%. For comparison we collected
the results of some previous determinations in Table 3.

Finally we would like to mention that an analogous 4-point couplinghR can be defined
at criticality T = Tc by sending the magnetic fieldH to zero. Of course in this case the
definition of Binder’s cumulant has to be modified appropriately to take into account the
fact that the field has non-vanishing vacuum expectation value. RemarkablyhR can be
computed exactly by taking advantage of the fact that the smallH behavior of the partition
function is known exactly [28,29]. The final result ishR=−609π/4=−478.307.

5.2. Recent Monte Carlo simulation of the Ising model

Our Monte Carlo investigation ofgR was performed on several IBM RISC 6000
workstations at the Werner-Heisenberg-Institut.

In this subsectionξeff is denoted simply byξ . We studied the dependence on the lattice
spacing by running atβ = 0.418 (ξ = 10.839936),β = 0.4276 (ξ = 18.924790) andβ =
0.433345 (ξ = 33.873923) on lattices of sizeL= 80,L= 140 andL= 250, respectively.
These values were chosen in such a way that they have almost exactly the same value of
z= L/ξ ≈ 7.4. Fig. 1 shows that there is no significant dependence on the lattice spacing
(i.e.,ξ ). Therefore we decided to use all the data together to study the finite size effects.
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Fig. 2. The data forgR vs
√
zexp(−z) together with the fit.

Table 4
Ising data forχ =G2(0) andgR(β,L)

β L # of runs ξeff χ gR

0.418 40 200 10.839936 163.54(13) 11.941(11)
0.418 60 200 10.839936 172.81(11) 14.104(26)
0.418 80 321 10.839936 173.94(6) 14.587(30)
0.418 140 300 10.839936 174.08(4) 14.743(39)
0.4276 140 100 18.924790 455.34(35) 14.610(54)
0.4276 250 225 18.924790 455.90(12) 14.796(46)
0.433345 250 202 33.873923 1254.48(72) 14.567(37)

We studied the finite size dependence by measuring in additiongR on lattices of size
L = 40, 60, 80, 140 atβ = 0.418, (ξ = 10.839936). Finite size scaling works very well,
i.e., the results only depend onz= L/ξ . The dependence onz is still quite well described
by Eq. (4.11). This can be seen in Fig. 2. A least square fit produces

c= 3.91(3), ĝR(∞)= 14.69(2). (5.8)

The fit quality is not fantastic (χ2= 2.4 per d.o.f.) but acceptable. So our final Monte Carlo
estimate forgR is

gR= 14.69(2). (5.9)

We report our numbers in Table 4. In this table we also indicate the number of
measurements. These were performed using the cluster algorithm as follows: one run
consisted of 100,000 clusters used for thermalization, followed by 20,000 sweeps of
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the lattice used for measurements. Each run was repeated after changing the initial
configuration. One such run was considered as one independent measurement. The error
was computed out of this sample by using the jack-knife method.

Our estimated value forgR in Eq. (5.9) is in very good agreement with the values from
the analysis of the high temperature expansion given in Table 3; it is also consistent with
the value Eq. (5.7) obtained from the form factor construction.

6. The XY-model

In this section we compute the leading contribution to the four-point coupling in
the two-dimensional O(2) nonlinearσ -model better known as the XY-model. Starting
from the lattice formulation, after a chain of mappings consisting of several steps the
model is transformed to a system equivalent to the two-dimensional Coulomb gas. The
continuum limit of the Coulomb gas model (corresponding to the Kosterlitz–Thouless
critical point [30]) is thought to have a dual description in terms of a sine-Gordon model at
the (extremal) sine-Gordon couplingβ2= 8π . For a review of the XY-model, see [31].

In the following we will start by discussing the XY-model S-matrix. The next step is to
solve the Smirnov equations for the three-particle form factors, which enter the formula
for the leading term. A general method for finding the sine-Gordon form factors is given
in [32]. This extends the results of Smirnov [6], where the form factors for an even number
of particles were found. The spin three-particle form factor we are interested in is probably
similar to the three-particle form factor of the fermion operator (corresponding to the
equivalent massive Thirring-model description), explicitly given in [32]. Here however
we need the three-particle form factor only for special rapidities and we found it simpler
to obtain this special version by going back to the functional equations. It is then used to
numerically evaluate the leading contribution togR.

6.1. The XY-model S-matrix

We will regard the XY-model as then = 2 member of the family of O(n) σ -models.
Recall that the formulae (3.2), (3.4) have a smoothn→ 2 limit; this has been noted and
commented on previously by Woo [33]. In this limit

σ1(θ)= θ

(iπ − θ) s2(θ), σ2(θ)= 0, σ3(θ)= s2(θ) (6.1)

and

s2(θ)=−exp

{
2i

∞∫
0

dω

ω
sin(θω) K̃2(ω)

}
, K̃2(ω)= e−πω/2

2 chπω/2
. (6.2)

In this paper we will assume that the spectrum of the XY-model in the (massive) contin-
uum limit consists of an O(2) doublet of massive particles whose S-matrix is given by (6.1)
with (6.2). Of course, taking the formaln→ 2 limit of the bootstrap results valid forn> 3
would not be convincing in itself, but (6.1), (6.2) actually coincide with theβ2→ 8π limit
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of the sine-Gordon S-matrix, the prediction of the Kosterlitz–Thouless theory! The S-ma-
trix (6.1) and the corresponding scattering states as a consequence have aUq=−1(su(2))
Hopf algebra symmetry, which as a Lie algebra is isomorphic to su(2). The latter is an
explicit symmetry in the alternative chiral Gross–Neveu formulation of the model [31].

6.2. The three particle form factor

Next we calculate the three-particle form factor at the special rapidities necessary to
compute the leading contribution (3.34). For this purpose we note that the equations for
the functionsk, l given in Section 3.2 can relatively easily be solved in this particular case
n= 2. We first note that Eq. (3.54) simplifies

K(iπ − θ)=K(iπ + θ),
K(iπ + θ)= 1

2iπθ

{
(iπ − θ)(iπ − 2θ)L(iπ − θ)

− (iπ + θ)(iπ + 2θ)L(iπ + θ)}. (6.3)

Inserting (3.55) yields

K(−iπ − θ)= 3iπ − 2θ

3iπ + 2θ
· iπ − 2θ

iπ + 2θ
K(−iπ + θ). (6.4)

Luckily a term proportional toK(iπ − θ) drops out here and one is left with the simple
form (6.4). This can easily be converted into the form (D.1) and solved as

K(iπ − θ)= (2θ − 5πi)(2θ − 7πi) eD(θ/2) φ(i ch(θ/2)). (6.5)

Here

D(θ)=∆1/4(θ)+∆3/4(θ) (6.6)

in the notation of Appendix D andφ(z) is a polynomial function to be determined later.
SinceY (θ) already has the right singularity structure the functionsK(θ) andL(θ) are

analytic in the physical strip. The residue axioms determine their value atθ = 0 andθ =
iπ/2 as

K(0)= 0, L(0)= 1,

K

(
iπ

2

)
= u0

u2(iπ/2)
, L

(
iπ

2

)
=−s2(iπ/2)K(iπ/2). (6.7)

So far we have established that the solution can be expressed in terms of

Y (θ)=−2i
ch3(θ/2)

sh(θ/2)chθ
e2∆(iπ+θ)+∆(2θ)−∆(0) (6.8)

and

K(θ)= (2θ + 3πi)(2θ + 5πi) eD(
iπ−θ

2 ) φ(sh(θ/2)). (6.9)

The polynomialφ(z) can be determined using the residue constraints (6.7), which we can
rewrite as
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K(0)= 0, K ′(0)= 2

iπ
,

K(iπ/2)= e∆(0)−2∆(iπ/2), K(−iπ/2)=−e∆(0)−∆(iπ/2)−∆(−iπ/2). (6.10)

Using (6.8) and (D.4) one sees that for realθ→∞
|Y (θ)| ∼ e−θ θ3/4. (6.11)

This can be used to infer that the polynomialφ(z) can be at most second order, otherwise
the integral contribution to the leading term would diverge. Taking into account that
K(0)= 0 and the requirement of real analyticity one must have

φ(z)= iφ1z+ φ2 z
2, (6.12)

for real constantsφ1 andφ2. Now it is easy to see that (6.7) determinesφ1 as

φ1= 4

15π3
e−D(iπ/2). (6.13)

In order to determineφ2 we employ the following identities [34]

p(α) := exp

{ ∞∫
0

dω
ch(απω)− 1

sh(πω)
e−πω

}
= απ

2

1

sin(απ/2)
, (6.14)

q(α) := exp

{ ∞∫
0

dω
ch(απω)− 1

sh(πω)
e−2πω

}
= 1− α2

cos(απ/2)
, (6.15)

to obtain

exp
{
∆(0)− 2∆(iπ/2)+D(iπ/2)−D(iπ/4)}= p(1) q2(1)

q(3/2)
= 16
√

2

5π
. (6.16)

This can be used to show that (6.10) is satisfied for the choiceφ2 = 0. Thusφ(shθ2) =
iφ1 shθ2 , and since 4θL(θ)= (iπ − 2θ)K(θ)− (iπ + 2θ)K(−θ), bothk(θ)= Y (θ)K(θ)
andl(θ)= Y (θ)L(θ) are known explicitly for the XY-model.

6.3. Calculation of the leading contribution

Having all the ingredients at our disposal we can compute the leading term (3.7) of the
intrinsic coupling. Firstly from (3.32) we have forn= 2

γ
(I)
4;121=

4

π
(ln4− 1). (6.17)

Further substituting the explicit results for the functionsk, l obtained above into Eq. (3.41)
and evaluating the resulting expression numerically we obtain

γ
(II )
4;121=−5.14902(1), (6.18)

and hence

γ4;121= γ (I)4;121+ γ (II )4;121=−4.65718. (6.19)
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Thus the leading contribution to the XY-model four-point coupling is

gR=−2
γ4

γ2δ2
≈−2γ4;121= 9.314. (6.20)

Sinceγ2δ2> 1 and since the next leading contributions toγ4 are probably positive (as
they are in the Ising and O(3) models), we expect that the true value ofgR will be less than
that given in (6.20) (probably by 2–4%).

6.4. Comparison with lattice results

For the XY-model with standard action Kim [8] gives the value

gR= 8.89(20) (6.21)

for β = 1/0.98. We are in the process of producing higher precision Monte Carlo data
for this model; so far we can only give a preliminary result, obtained on a lattice of size
L= 500 atβ = 1.0174:

gR= 9.14(12). (6.22)

We will return to this issue in a separate publication, where we intend to analyze the finite
size corrections as well as the lattice artifacts.

We also wish to mention the results from the high temperature expansion: Butera and
Comi [12] obtain

gR= 9.15(10), (6.23)

whereas Pelissetto and Vicari [13] give

gR= 9.10(5). (6.24)

So there is an overall rough agreement between the lattice and the form factor results, but
the precision is not comparable to that obtained for the Ising model.

7. The O(3) nonlinear sigma-model

The O(3) nonlinear sigma-model is an important testing ground for quantum field
theoretical scenarios in nonabelian gauge theories. The form factor technique has been
particularly fruitful in studying its possible off-shell dynamics and can be confronted with
what can be achieved by perturbation theory or numerical simulations [35]. The intrinsic
coupling has been computed before by a number of different techniques; we compare the
results with ours at the end of this section. The present form factor determination takes
as usual the Zamolodchikov two-particle S-matrix [3] as its starting point; it is given by
Eqs. (3.1), (3.2) withn= 3 and

s2(θ)= θ − πi
θ + πi . (7.1)

The corresponding kernel (3.4) is simply given by

K̃3(ω)= e−πω. (7.2)
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7.1. Form factor determination ofgR

Following the by now routine procedure we first collect the ingredients for the evaluation
of the dominant(1,2,1) contribution to the intrinsic coupling. From (3.32) one readily
finds forn= 3

γ
(I)
4;121=

4

π
. (7.3)

The O(3) form factors have been computed in [6,35,36]. In particular the reduced 3-particle
form factorG in Eq. (3.21) is given by

Gaa1a2a3
(θ1, θ2, θ3)= τ3(θ1, θ2, θ3)

{
δaa1
δa2a3(θ3− θ2)+ δaa2

δa1a3(θ1− θ3− 2πi)

+ δaa3
δa1a2(θ2− θ1)

}
, (7.4)

where

τN(θ1, . . . , θN )=
∏

16i<j6N
τ(θi − θj ),

τ (θ)= π(θ − iπ)
θ(2πi − θ) tanh

θ

2
. (7.5)

Correspondingly the functionsk, l parametrizingfb via Eq. (3.40) are forn= 3 explicitly
given by

k(θ)= 2θ

πi − θ l(θ), l(θ)= π
3T 2(2θ) θ(2θ − πi)
4T 4(θ)(π2+ θ2)2

. (7.6)

Plugging this into the general formula Eq. (3.41) yields

γ
(II )
4;121=

1

8π

∞∫
0

du

{
π6u2(4u2+ π2)(2u2+ π2)

4(u2+ π2)5

T 4(2u)

T 8(u)ch2u
− 64

u2

}
. (7.7)

Numerically we then obtainγ4;121= −4.16835492(1), so that as a first approximation
gR≈−5

3γ4;121= 6.9472. This is already in rough agreement with other determinations in
the continuum theory: the 1/n, theε- and theg-expansions [7,13]. The leading order 1/n
computations have been performed in [37]. For the spectral integrals the result is

γ2= 1+ 0.00671941
1

n
+O

(
1

n2

)
, δ2= 1+ 0.00026836

1

n
+O

(
1

n2

)
. (7.8)

and for the coupling [10]

gR= 8π

n

[
1− 0.602033

1

n
+O

(
1

n2

)]
. (7.9)

which gives the approximationgR ≈ 6.70 for the casen = 3. The results from the other
methods are given in Table 7. Considering the rather short series in each case it is amazing
how well the estimates by the various methods agree.

For a more precise determination we now return to the form factor approach and examine
the subleading contributions. Using the exact form factors [35] the results for the 3- and
5-particle contributions toγ2 andδ2 are readily evaluated and are listed in Table 5.
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Table 5
m-particle contribution toγ2, δ2 in the O(3) model

m γ2;m δ2;m

3 1.67995(1)× 10−3 3.46494(1)× 10−5

5 6.622(1)× 10−6 7.114(1)× 10−9

Table 6
k-l-m-particles contribution toγ4 in the O(3) model

k, l,m γ4;klm

1,2,1 −4.16835492(1)
1,2,3 0.051748(1)
1,4,1 −0.004065(1)

The size of the higher particle contributions toγ2 andδ2 can roughly be estimated by an
off hand extrapolation of Table 5; essentially they are negligible to the desired accuracy.
The latter could also be justified by referring to a more refined extrapolation scheme, based
on the scaling hypothesis of Ref. [35]. In upshot we obtain

γ2= 1.001687(1), δ2= 1.000034657(1). (7.10)

The computation of the subleading terms toγ4 is much more involved. The starting point
is again the formulae (3.10) in Section 3.1. Due to the complexity of the form factors
however the computation is feasible only computer aided. The essential steps are given in
Appendices B, C. The computation has been performed independently by subsets of the
authors using slightly different techniques. The final results for the contributions of the
k-l-m intermediate states withk + l +m6 6 to γ4 are listed in Table 6.

The leading 1-2-1 contribution is a factor∼ 42 greater in magnitude than the sum of
k-l-m contributions withk+ l+m= 6. It is difficult to bound the rest of the contributions,
especially since the signs appear to be alternating. The computation of the states with
l + m + n = 8 would be quite an undertaking. But assuming that the pattern in Table 6
continues, as it seems to be the case in the Ising model (see Table 2), then we consider the
assumption that the sum of the remaining contributionsk+ l+m> 8 is6 10% of the sum
of thek + l +m= 6 contributions to be reasonable and we then obtain

γ4=−4.069(10), (7.11)

and hence our final result

gR= 6.770(17). (7.12)

This amounts to a determination ofgR to within 0.3%. For comparison we give some
results of other already published determinations in Table 7. The first two are continuum
methods while the last one is based on the lattice regularization. We describe the two lattice
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Table 7
Other determinations ofgR in the O(3) model

Method Value forgR

g-expansion 6.66(6) [7]
ε-expansion 6.66(11) [13]

High temperature 6.56(4) [10], 6.6(1) [11]

techniques in somewhat more detail in the next subsection, including in particular our own
recent Monte Carlo results.

7.2. Lattice computations ofgR

High temperature expansion:
The analyses of the high temperature expansion for the spectral moments giveγ2 =

1.0013(2) [37] andδ2= 1.000029(5) [38]. The agreement with the FFB values Eq. (7.10)
is acceptable; note that these are smaller than that anticipated from the leading order of the
1/n approximation, Eqs. (7.8).

The various Padé approximations show the coupling falling rapidly asβ increases in the
region of smallβ , then a region of rather flat behavior after which these approximations
show diverse behavior; some analyses indicate that in fact there is a shallow minimum
and that the continuum limit is actually approached from below (see, e.g., Refs. [13,23]).
In Ref. [11] Campostrini et al. quote for the casen = 3 the resultgR = 6.6(1), and in a
more recent publication Pelissetto and Vicari cite 6.56(4) [13]. Butera and Comi on the
other hand are rather cautious, and did not quote a value for the casen= 3 in Ref. [12]; if
pressed they would at present citegR= 6.6(2) [39].

Numerical simulations:
Monte Carlo computations ofgR have a long history, see, e.g., Refs. [7,8]. In order

to attempt to match the apparent precision attained in the FFB approach, we recently
performed new high-precision measurements. These were performed on several IBM RISC
6000 workstations at the Werner-Heisenberg-Institut. In addition we made use of the
SGI 2000 machine of the University of Arizona, especially for the very time consuming
simulations on large lattices.

Based on the fixed point action [18] we have measuredgR at three different values of
β : 0.70, 0.85 and 1.00, corresponding to correlation lengthξ ≈ 3.2, 6.0 and 12.2, at the
values ofz= L/ξ in the range 5.4–8.2. The data and their analysis can be found in [9], the
final result isgFP

R = 6.77(2).
Monte Carlo measurements with the standard action were performed using a method

similar to the cluster estimator of [40]. We have reported the analysis of such simulations
already in our earlier paper [9]. But in the meantime we produced more data and we take
the opportunity to report them here.

The present status of the results of our simulations are given in Table 8. In this
table we also indicate the number of measurements. These were performed using the
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Table 8
O(3) data forξ , χ = 3G2(0) andgR

β L # of runs ξ χ gR(ξ,L) gR(ξ,∞)

1.5 80 344 11.030(7) 175.95(11) 6.553(16) 6.616(16)
1.6 140 370 18.950(14) 447.13(34) 6.612(15) 6.668(15)
1.7 250 367 34.500(15) 1267.20(57) 6.665(14) 6.730(14)
1.8 500 382 64.790(26) 3838.76(1.50) 6.691(15) 6.733(15)
1.9 910 127 122.330(74) 11883.0(6.4) 6.737(21) 6.792(21)
1.95 1230 68 167.71(17) 20901.4(19.0) 6.792(40) 6.853(40)

Fig. 3. The extrapolated values ofgR(ξ,∞).
cluster algorithm as follows: one run consisted of 100000 clusters used for thermalization,
followed by 20000 sweeps of the lattice used for measurements. Each run was repeated
after changing the initial configuration. One such run was considered as one independent
measurement. The error was computed out of this sample by using the jack-knife method.

Our measurements were taken at 6 different correlation lengths ranging from about 11
to about 168 on lattices satisfyingL/ξ ≈ 7. To study the finite volume effects, we took in
addition data atξ ≈ 11 for lattices of sizesL with L/ξ ≈ 5.5, 9 and 13. As discussed
in [9], the finite size effects are well described by the formula (4.11), even at finite (large)
correlation lengths. In the O(3) model then=∞ valuec=√8π fits very well.

But unlike the Ising model, the lattice artifacts are by no means negligible. To study
them, we first use Eq. (4.11) to extrapolate our data toz=∞. In this extrapolation we use
the effective correlation lengthξeff and neglect the fact that this is not exactly equal to the
exponential correlation length. In Fig. 3 we plot those extrapolated values ofgR against
1/ξ which we identify with 1/ξeff.
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Unfortunately there is no rigorous result concerning the nature of the approach to
the continuum limit. At the time of our last analysis [9] the data point at the largest
value of ξ ∼ 168 was not available. In that paper we fitted the data in the entire
range fromξ ∼ 11 to ξ ∼ 122 using a Symanzik type ansatz of the formgR(ξ) =
gR(∞)

[
1+ b1ξ

−2 logξ + b2ξ
−2
]
, and thereby obtained the resultgR = 6.77(2). When

we now repeat the same fit for the new data, which in particular includes the new point
at ξ ∼ 168, the result is only slightly changed togR = 6.78(2) but the quality of the fit
becomes poorer. The fact that the two data points closest to the continuum limit lie above
6.78 is in this scenario interpreted as a statistical fluctuation.

On the other hand the present rather large central value atξ ∼ 168 could be interpreted
as an indication that the continuum limit is approached much slower than conventionally
assumed, perhaps as slow as 1/ lnξ (which may be expected in the O(2) model [42])!
If we adopt this viewpoint it is clear that, although qualitative fits can be made, without
further analytic information, our data are not sufficient to make a reliable quantitative
extrapolation to the continuum limit. However, independent of the assumed form of the
approach to the continuum limit, if the large value atξ ∼ 168 is confirmed by more
extensive studies it would practically establish a discrepancy between the form factor and
the lattice constructions of the O(3) sigma-model. This point, which needs complete control
over all systematic effects, albeit extremely difficult on such large lattices, is certainly
worthy of further investigations.

8. Conclusions

A new technique to compute the intrinsic 4-point coupling in a large class of two-
dimensional QFTs has been developed and tested. Starting from the form factor resolution
of the 4-point function the termwise zero momentum limit turned out to exist, providing a
decomposition of the coupling into terms with a definite number(k, l,m) of intermediate
particles. Based on the exactly known form factors these terms can be computed practically
exactly and in the models mainly considered (Ising and O(3)) were found to be rapidly de-
caying with increasing particle numbers. There is every reason to expect that this trend
continues, which allowed us to equip the results with an intrinsic error estimate. The final
results are

Ising model: gR= 14.6975(1),

O(3) model: gR= 6.770(17). (8.1)

They amount to a determination ofgR to within< 0.001% and 0.3%, respectively.
In addition we obtained the universal, model-independent formula (A.3) for the

dominant contribution to the coupling, which typically seems to account for about 98% of
the full answer. We illustrated its use in testing our proposed bootstrap description of the
XY-model. It would surely also be interesting to apply it, e.g., to supersymmetric theories,
where alternative techniques are hardly available.
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The comparison with the lattice determinations ofgR is quite impressive in the case of
the Ising model, where there is also very good agreement between the high temperature and
the Monte Carlo determinations. For O(2) we are so far lacking both precise Monte Carlo
and form factor data, but at this preliminary stage there is rough agreement. We intend to
return to this model in a separate publication.

The situation in O(3) is not completely clear: there is a less than perfect agreement
between the high temperature result and the new high precision Monte Carlo data, and
there is also room for doubt about the agreement between Monte Carlo and form factor.
We cannot resolve this question at the moment, mainly because even with our enormous
amount of Monte Carlo data it is at the moment not clear what the correct extrapolation to
the continuum is.

Note added in proof

In a recent paper by M. Caselle, M. Hasenbusch, A. Pelisetto and E. Vicari (hep-
th/003049),gR is computed in the Ising model using a completely different method to
that presented in this paper. Their result,gR= 14.69735(3), is in excellent agreement with
ours in Eq. (8.1).
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Appendix A. General formula for the dominant term

Here we describe the generalization of the formula (3.7) for the dominant 1-2-1 particle
contribution togR to general integrable QFTs without bound states and operators other
than the ‘fundamental’ field. The latter is particularly natural in the form factor approach
because ‘fundamental’ and ‘composite’ operators are treated on an equal footing. Thus let
Ol be possibly distinct, possibly non-scalar but parity odd operatorsOl and writeol for
the quantum numbers labeling them. Parallel to (2.13) we define the Green functions by

S̃ o1···oL
c (k1, . . . , kL)= (2π)2δ(2)(k1+ · · · + kL)Go1···oL(k1, . . . , kL), (A.1)

whereS̃ o1···0L
c (k1, . . . , kL) is the Fourier transform of the connected part of the Euclidean

correlation function〈O1(x1) · · ·OL(xL)〉. The obvious generalization of the intrinsic
coupling is

gR=−NM2 G
o1o2o3o4(0,0,0,0)∑
j<k G

ojok (0,0)2
. (A.2)
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HereM is again the mass gap and the constantN is conveniently adjusted to normalize
the 1-particle contribution to the denominator to unity. IfFoa are the constant 1-particle
form factors ofO, the leading 1-particle contribution toGo1o2(0,0) is just Zo1o2 :=
M−2Fo1

a C
abFo2

b , whereCab is the charge conjugation matrix associated with the given
S-matrix (cf. below). Thus we takeN =∑j<k(Z

ojok )2. With these normalizations the
dominant 1-2-1 particle contribution to the coupling (A.2) is

gR|1−2−1=−1

2

∑
s∈S4

Dos1os2;os3os4

+
∞∫

0

du

4π

∑
s∈S4

[
− 4

u2
Zos1os2Zos3os4 + 1

16 ch2u
Fos1a F

os4
b Caa3Cbb3

×Fos2a3a2a1
(iπ,−u,u)Ca2b2Ca1b1Fos3b3b2b1

(iπ,−u,u)∗
]
. (A.3)

Here the symmetrization is over all elements of the permutation groupS4. D is defined in
terms of the given bootstrap S-matrixScdab(θ) by

Do1o2;o3o4 =−i d

dθ
Sabcd (θ)

∣∣∣∣
θ=0
Fo1
a F

o2
b C

cc′Cdd
′Fo3
c′ F

o4
d ′ (A.4)

andFoabc(θ1, θ2, θ3) is the 3-particle form factor ofO. Taking the results for the O(n)
models as a guideline one would expect that (A.3) typically yields about 98% of the full
answer for the coupling.

In the following we describe the derivation of (A.3). In contrast to that of (3.7) we
keep track here of the distributional terms like (2.19) and show explicitly that they cancel
out in the final answer. In particular this illustrates that the use of the simplifying limit
procedure (2.23) is justified.

To fix conventions we first recall the defining relations of a generic bootstrap S-matrix.
A matrix-valued meromorphic functionSdcab(θ), θ ∈ C, is called a two particleS-matrix if
it satisfies the following set of equations. First the Yang–Baxter equation

Snmab (θ12)S
kp
nc (θ13)S

ji
mp(θ23)= Snmbc (θ23)S

pi
am(θ13)S

kj
pn(θ12), (A.5)

whereθ12= θ1− θ2, etc. Second unitarity (A.6a,b) and crossing invariance (A.6c)

Smnab (θ) S
cd
nm(−θ)= δda δcb, (A.6a)

Smcan (θ) S
nd
bm(2πi − θ)= δda δcb, (A.6b)

Sdcab(θ)= Caa′Cdd
′
Sca

′
bd ′(iπ − θ), (A.6c)

where (A.6c) together with one of the unitarity conditions (A.6a), (A.6b) implies the other.
Further real analyticity and Bose symmetry[

Sdcab(θ)
]∗ = Sdcab(−θ∗), Sdcab(θ)= Scdba (θ). (A.7)

Finally the normalization condition

Sdcab(0)=−δcaδdb . (A.8)
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The indicesa, b, . . . refer to a basis in a finite dimensional vector spaceV . Indices can
be raised and lowered by means of the (constant, symmetric, positive definite) ‘charge
conjugation matrix’Cab and its inverseCab, satisfyingCadCdb = δba . The S-matrix is
a meromorphic function ofθ . Bound state poles, if any, are situated on the imaginary
axis in the so-called physical strip 06 Imθ < π . From crossing invariance and the
normalization (A.8) one infers thatSdcab(iπ) = −CabCdc is always regular, in contrast to
Sdcab(−iπ) which may be singular.

Next we prepare the counterparts of Eqs (2.10), (2.11).

〈0|O1|m〉〈m|O2|0〉←→ Io1o2
m (θ),

〈0|O1|k〉〈k|O2|l〉〈l|O3|m〉〈m|O4|0〉←→ I
o1o2o3o4
klm (ω|ξ |θ), (A.9)

where

Io1o2
m (θ)=Fo1

A (θ)C
ABFo2

BT(θ
T),

(A.10)
I
o1o2o3o4
klm (ω|ξ |θ)=Fo1

A (ω)C
ABFo2

BTC
(ωT|ξ)CCDFo3

DTE
(ξT|θ)CEKFo4

KT

(
θT).

From the S-matrix exchange relations it follows thatI
o1o2
m (θ) is a completely symmetric

function in θ = (θ1, . . . , θm). Similarly Io1o2o3o4
klm (ω|ξ |θ) is symmetric in each of the sets

of variablesω= (ω1, . . . ,ωk), ξ = (ξ1, . . . , ξl) andθ = (θ1, . . . , θm). As before we denote
by Vm(k1, k2) andVklm(k1, k2, k3, k4) the quantities (2.8) with the integrations over the
rapidities performed, where the measure is inherited from (2.25). For simplicity we drop
the operator labelsoj in the notation. When evaluated atkj = (M shκj ,0) we write
vklm(κ1, κ2, κ3, κ4), etc.

In the next step one inserts the expressions for the generalized form factors in terms of
the ordinary form factors; see [16] for an account in the present conventions. Form = 2
one obtains explicitly

v121(κ1, κ2, κ3, κ4)= F
o1
a C

abCcdFo4
d

8 ch2κ1 ch2κ4

{
4πFo2

m C
mnFo3

n Cbc

chκ2(chκ1+ chκ2)
δ(κ1+ κ4)

+ 4πFo2
m Fo3

n

chκ2(chκ1+ chκ2)
Smncb (iπ − κ1+ κ2) δ(κ2+ κ4)

+ 1

chκ2(chκ1+ chκ2)
Fo2
m C

mnFo3
cbn(κ4+ iπ− iε,−κ1,−κ2)

∗

+ 1

chκ3(chκ3+ chκ4)
Fo3
m C

mnFo2
bcn(−κ1+ iπ − iε, κ4, κ3)

+
∞∫

0

du

4π

1

4 ch2(u/2)+ (shκ1+ shκ2)2
CmkCnl

×Fo2
bmn(−κ1+ iπ − iε,Λ∗ − u/2,Λ∗ + u/2)

×Fo3
ckl(κ4+ iπ − iε,Λ∗ − u/2,Λ∗ + u/2)∗

}
. (A.11)
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The κi → 0 limit of this expression can be evaluated on general grounds. The key
observation is that a three particle form factor has the following universal ‘small rapidity’
expansion

Foa1a2a3
(θ1+ iπ − iε, θ2, θ3)=

[
1

θ12− iε −
1

θ13− iε
][

2i
(
Ca1a2Foa3

+Ca1a3F
o
a2

)
+ 2Ca1c

(
θ13D

cd
a2a3
− θ12D

dc
a2a3

)
Fod
]
, whereDcdab =−i

d

dθ
Scdab(θ)

∣∣∣∣
θ=0

. (A.12)

This expression is uniquely determined by the following properties: (i) The numerator is
linear and boost invariant in the rapidities. (ii) It obeys the (linearized) S-matrix exchange
relations inθ2 and θ3. (iii) It has simple poles atθ21+ iε and θ31+ iε with residues
dictated by the form factor ‘residue equation’ (see, e.g., [16] for an account in the present
conventions). Using (A.12) in (A.11) one can compute the smallκi behavior ofv121. We
denote byv(I)121 the contribution from the non-integrated part and byv(II )121 that from the
integrated part. One finds

v
(I)
121

.= π
4
Zo1o3Zo2o4

[
δ(κ1+ κ3)− δ(κ1+ κ4)

]− 1

2
Do1o2;o3o4, (A.13)

where ‘
.=’ again indicates that both sides give the same result for the symmetrizedκi→ 0

limit andDo1o2;o3o4 =Do2o1;o4o3 =Do4o3;o2o1 is given by (A.4).
Analyzing the smallκi behavior of the integral in (A.11) (by splitting it according to∫∞

0 du= ∫ ε0 du+ ∫∞
ε

du, ε→ 0+) one finds a distributional term and a regular one. The
result is

v
(II )
121=

π

4

[
Zo1o4Zo2o3 +Zo1o3Zo2o4

]
δ(κ1+ κ4)

+
∞∫

0

du

4π

[
1

16 ch2u
Fo1
a F

o4
b C

aa3Cbb3Fo2
a3a2a1

(iπ,−u,u)

×Ca2b2Ca1b1Fo3
b3b2b1

(iπ,−u,u)∗ − 2

u2

(
Zo1o4Zo2o3+Zo1o3Zo2o4

)]
, (A.14)

where the integrand is regular foru→ 0.
For the generalization of theΩ term (2.19) one obtains in the 1-particle approximation

and in theκi→ 0 limit

Ωo1o2o3o4(k1, k2, k3, k4)|kj=(M shκj ,0) =−
π

2
δ(κ1+ κ2)Z

o1o2Zo3o4. (A.15)

Finally, combining (A.13), (A.14) and (A.15) according to (2.21) one sees that, — as
promised in Section 2.2 — all distributional terms drop out when computing the right-
hand side of (2.21). The final result thus does not depend on any prescription how to take
theκi→ 0 limit and is given by (A.3), as asserted.
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Appendix B. Computation of the 1-4-1 contribution

We start from the general formula Eq. (3.9) withl = 4. Forβ1> β2> β3> β4 we have
for one of the factors occurring in (3.10)

〈a,α|Sc(0)|b1, β1;b2, β2;b3, β3;b4, β4〉in
=Fcab1b2b3b4

(iπ + α− iε, β1, β2, β3, β4)

+ 4π
{
δab1δ(α − β1)Fcb2b3b4

(β2, β3, β4)

+ δ(α − β2)Fcdb3b4
(β1, β3, β4)Sb1b2,da(β1− β2)

+ δ(α − β3)Fcdeb4
(β1, β2, β4)Sb2b3,ef (β2− β3)Sb1f,da(β1− β3)

+ δ(α − β4)Fcdef (β1, β2, β3)Sb3b4,fg(β3− β4)

× Sb2g,eh(β2− β4)Sb1h,da(β1− β4)
}
. (B.1)

For the 5-particle form factor we introduce the reduced form factor through

Faa1a2a3a4a5
(θ1, θ2, θ3, θ4, θ5)= T5(θ1, . . . , θ5)Gaa1a2a3a4a5

(θ1, θ2, θ3, θ4, θ5). (B.2)

Multiplying out we obtain

I141=K(I ) +K(II ) +K(III ), (B.3)

where we momentarily omit the arguments(κ4,−κ1, β1, β2, β3, β4). The shorthands are:

K(I ) =
∑

b1,b2,b3,b4

F1
1b1b2b3b4

(iπ − κ1− iε, β1, β2, β3, β4)

×F1
1b1b2b3b4

(iπ + κ4− iε, β1, β2, β3, β4)
∗, (B.4)

K(II ) = 4π
{
δ(β4+ κ1)K̄(II )(κ4,−κ1, β1, β2, β3)

+ δ(β4− κ4)K̄(II )(−κ1, κ4, β1, β2, β3)
∗}

+ (β4↔ β3)+ (β4→ β2, β2→ β3, β3→ β4)

+ (β4→ β1, β1→ β2, β2→ β3, β3→ β4), (B.5)

K(III ) = (4π)2K̄(III )(κ4,−κ1, β3, β4)
[
δ(β1+ κ1)δ(β2− κ4)+ (β1↔ β2)

]
+ (β2↔β3)+ (β2→β4, β4→β3, β3→β2)

+ (β1→β2, β2→β3, β3→β1)+ (β1→β2, β2→β4, β4→β3, β3→β1)

+ (β1→ β3, β3→ β2, β2→ β4, β4→ β1), (B.6)

where

K̄(II )(α, γ,β1, β2, β3)

=
∑

b1,b2,b3

F1
b1b2b3

(β1, β2, β3)F1
11b1b2b3

(iπ + α − iε, γ,β1, β2, β3)
∗, (B.7)

K̄(III )(κ4,−κ1, β3, β4)

=
∑

b1b2,b3,b4

F1
b1b3b4

(κ4, β3, β4)F1
b2b3b4

(−κ1, β3, β4)
∗S1b2,b11(κ1+ κ4). (B.8)

Because of the symmetry in theβi arguments ofK(I ), K̄(II ), K̄(III ) one has
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v
(I)
141(κ1, κ2, κ3, κ4)= 1

12288π3

∞∫
−∞

dβ1

∞∫
−∞

dβ2

∞∫
−∞

dβ3

∞∫
−∞

dβ4

× δ(β1, β2, β3, β4, κ1, κ2)∑4
k=1 chβk

K(I )(κ4,−κ1, β1, β2, β3, β4),

(B.9)

v
(II )
141(κ1, κ2, κ3, κ4)= 1

768π2

∞∫
−∞

dβ1

∞∫
−∞

dβ2

∞∫
−∞

dβ3
1

1+∑3
k=1 chβk

× {δ(β1, β2, β3, κ2)K̄(II )(κ4,−κ1, β1, β2, β3)

+ δ(β1, β2, β3,−κ3)K̄(II )(−κ1, κ4, β1, β2, β3)
∗}, (B.10)

v
(III )
141 (κ1, κ2, κ3, κ4)= 1

64π

∞∫
−∞

dβ1

∞∫
−∞

dβ2
δ(β1, β2, κ2, κ4)

2+∑2
k=1 chβk

× K̄(III )(κ4,−κ1, β1, β2). (B.11)

The contribution(III ) is very simple; we can set theκi to zero to obtain

v
(III )
141 (κ1, κ2, κ3, κ4)= 1

128π

∞∫
−∞

dβ
1

chβ(1+ chβ)
T 2(2β)T 4(β)k(III )(β), (B.12)

where we decomposed

K̄(III )(0,0, β,−β)= T 2(2β)T 4(β)k(III )(β). (B.13)

Writing similarly

K̄(II )(α, γ,β1, β2, β3)= k(II )(α, γ,β1, β2, β3)

× 1

T (α − γ )
∏

16i<j63

T 2(βi − βj )
3∏
k=1

T (βk − γ )
T (βk − α− iε) , (B.14)

one has

v
(II )
141=

2∑
j=1

v
(II ,j)
141 , (B.15)

with

v
(II ,1)
141 (κ1, κ2, κ3, κ4)= 1

768π2

1

T (κ1+ κ4)

∞∫
−∞

dβ1

∞∫
−∞

dβ2

∞∫
−∞

dβ3

× 1

1+∑3
k=1 chβk

∏
16i<j63

T 2(βi − βj )

×
{
δ(β1, β2, β3, κ2)k

(II )(κ4,−κ1, β1, β2, β3)

3∏
k=1

T (βk + κ1)
P

T (βk − κ4)
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− δ(β1, β2, β3,−κ3)k
(II )(−κ1, κ4, β1, β2, β3)

∗
3∏
k=1

T (βk − κ4)
P

T (βk + κ1)

}
,

(B.16)

v
(II,2)
141 (κ1, κ2, κ3, κ4)= i

128π

∞∫
−∞

dβ1

∞∫
−∞

dβ2
δ(β1, β2, κ2, κ4)

2+∑2
k=1 chβk

× T 2(β1− β2)

2∏
k=1

T (βk − κ4)T (βk + κ1)

× {k(II )(κ4,−κ1, β1, β2, κ4)− k(II )(−κ1, κ4, β1, β2,−κ1)
∗}. (B.17)

In the latter term we can set theκi to zero to obtain

v
(II ,2)
141 (0,0,0,0)

= −1

128π

∞∫
−∞

dβ
1

chβ(1+ chβ)
T 2(2β)T 4(β) Im

[
k(II )(0,0, β,−β,0)]. (B.18)

Lastly we turn to the(I) contribution. There are many ways to manipulate the integral
into a form more amenable to numerical evaluation. Here we proceed as follows: writing

K(I ) = k(I)(κ4,−κ1, β1, β2, β3, β4)
∏

16i<j64

T 2(βi − βj )

×
4∏
k=1

1

T (βk + κ1+ iε)T (βk − κ4− iε) , (B.19)

we replace the 1/(x ± iε) distributions by a sum of products of principal parts and delta
functions, thereby obtaining

v
(I)
141=

3∑
j=1

v
(I,j)

141 . (B.20)

The three terms are:

v
(I,1)
141 (κ1, κ2, κ3, κ4)

= 1

12288π3

∞∫
−∞

dβ1

∞∫
−∞

dβ2

∞∫
−∞

dβ3

∞∫
−∞

dβ4
δ(β1, β2, β3, β4, κ1, κ2)∑4

k=1 chβk

× k(I)(κ4,−κ1, β1, β2, β3, β4)
∏

16i<j64

T 2(βi − βj )

×
4∏
k=1

P
T (βk + κ1)

P
T (βk − κ4)

, (B.21)

v
(I,2)
141 (κ1, κ2, κ3, κ4)= i

1536π2

1

T (κ1+ κ4)
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×
∞∫
−∞

dβ1

∞∫
−∞

dβ2

∞∫
−∞

dβ3
1

1+∑3
k=1 chβk

∏
16i<j63

T 2(βi − βj )

×
{
δ(β1, β2, β3, κ2)k

(I )(κ4,−κ1, β1, β2, β3,−κ1)

3∏
k=1

T (βk + κ1)
P

T (βk − κ4)

+ δ(β1, β2, β3,−κ3)k
(I )(κ4,−κ1, β1, β2, β3, κ4)

3∏
k=1

T (βk − κ4)
P

T (βk + κ1)

}
,

(B.22)

v
(I,3)
141 (κ1, κ2, κ3, κ4)= −1

256π

∞∫
−∞

dβ1

∞∫
−∞

dβ2
δ(β1, β2, κ2, κ4)

2+∑2
k=1 chβk

× k(I)(κ4,−κ1, β1, β2,−κ1, κ4)T
2(β1− β2)

2∏
k=1

T (βk − κ4)T (βk + κ1).

(B.23)

In the latter expression we can set theκi to zero to obtain

v
(I,3)
141 (0,0,0,0)

= −1

512π

∞∫
−∞

dβ
1

chβ(1+ chβ)
T 2(2β)T 4(β)k(I )(0,0, β,−β,0,0). (B.24)

ForW(1) := v(I,1)141 we now invoke the identity∏
16i<j64 sh(yi − yj )∏4

k=1 sh(yk + x)

= 1

ch(x)

4∑
k=1

(−1)k ch(yk)

sh(yk + x)
∏

16i<j64, i 6=k 6=j
sh(yi − yj ), (B.25)

to get

W(1) = lim
αc→∞

[
W(1)[A](αc)+W(1)[B](αc)

]
, (B.26)

with the notation

W(1)[X](αc)= 1

192π3

αc∫
−αc

dα1GX(α1), X =A,B. (B.27)

Here

GA(α1)= P
T (α1)

∞∫
−∞

dα2
P

T (α2)

∞∫
−∞

dα3FA(α1, α2, α3)
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= P
T (α1)

∞∫
0

dα2
P

T (α2)

∞∫
0

dα3
{
FA(α1, α2, α3)

−FA(α1,−α2, α3)−FA(−α1, α2, α3)+FA(−α1,−α2, α3)
}
, (B.28)

GB(α1)= G(α1)

sh2(α1/2)
− 4G(0)

α2
1

, (B.29)

where

G(α1)= ch2 α1

2

∞∫
−∞

dα2

∞∫
−∞

dα3FB(α1, α2, α3). (B.30)

In these formulae

FX(α1, α2, α3)

= 1

16

[
k(I)(0,0, α1, α2, α3, α4)fX(α1, α2, α3, α4)

∏4
k=1 ch2 αk

2

chα4

(∑4
m=1 chαm

)∏
i<j ch2 αi−αj

2

]
α4=γ

, (B.31)

whereγ is given through shγ =−∑3
k=1 shαk and

fA(α1, α2, α3, α4)=−3 sh
α1− α3

2
sh
α1− α4

2

× sh
α2− α3

2
sh
α2− α4

2
sh2 α3− α4

2
, (B.32)

fB(α1, α2, α3, α4)= sh2 α2− α3

2
sh2 α2− α4

2
sh2 α3− α4

2
. (B.33)

For the[B] contribution it is numerically convenient to decompose

W(1)[B](αc)∼ hG(0)+W(1)[B0] +W(1)[B1](αc), (B.34)

where

W(1)[B0] = 1

96π3

1∫
0

dα1

(
G(α1)−G(0)

sh2(α1/2)

)
,

W(1)[B1](αc)= 1

96π3

αcut∫
1

dα1
G(α1)

sh2(α1/2)
, (B.35)

and

h=− 1

96π3

{
4−

1∫
0

dα1

[
1

sh2(α1/2)
− 4

α2
1

]}
=−0.0014539754. (B.36)

Finally we recombine

v141(κ1, κ2, κ3, κ4)=
3∑
j=1

W(j)(κ1, κ2, κ3, κ4), (B.37)

with
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W(1) = v(I,1)141 ,

W(2) = v(I,2)141 + v(II ,1)141 , (B.38)

W(3) = v(I,3)141 + v(II ,2)141 + v(III )141 .

Casen= 1:
Here we simply have (recall the 2-particle S-matrix=−1)

k(I) = 16, k(II ) =−8i, k(III ) =−4, (B.39)

from which one sees

v
(I,2)
141 (0,0,0,0)=−v(II ,1)141 (0,0,0,0),

v
(I,3)
141 (0,0,0,0)= v(III )141 (0,0,0,0)=−

1

2
v
(II ,2)
141 (0,0,0,0). (B.40)

Thus

W(2) = 0=W(3), (B.41)

so that for the Ising case we simply getv141=W(1), with W(1) given by Eq. (B.21) and
k(I) by Eq. (B.39). This is, as expected, the same expression as that obtained directly with
the form factor written as a product over principal parts as in Eq. (5.2).

Casen= 3:
Firstly forW(1) we obtain

W(1) =−0.0005420(1). (B.42)

Next forW(2) one has

W(2)(κ1, κ2, κ3, κ4)

= 1

768π2

1

T (κ1+ κ4)

∞∫
−∞

dβ1

∞∫
−∞

dβ2

∞∫
−∞

dβ3J (β1, β2, β3)

×
{
δ(β1, β2, β3, κ2)w

(2)(κ1, κ4, β1, β2, β3)

3∏
k=1

T (βk + κ1)
P

T (βk − κ4)

+ δ(β1, β2, β3, κ3)w̃
(2)(κ1, κ4, β1, β2, β3)

3∏
k=1

T (βk + κ4)
P

T (βk − κ1)

}
,

(B.43)

where

J (β1, β2, β3)= 1

1+∑3
k=1 chβk

∏
16i<j63

T 2(βi − βj ), (B.44)

and

w(2)(κ1, κ4, β1, β2, β3)

= k(II )(κ4,−κ1, β1, β2, β3)+ i

2
k(I)(κ4,−κ1, β1, β2, β3,−κ1), (B.45)
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w̃(2)(κ1, κ4, β1, β2, β3)

=−k(II )(−κ1, κ4,−β1,−β2,−β3)
∗

+ i

2
k(I)(κ4,−κ1,−β1,−β2,−β3, κ4). (B.46)

Explicit calculation reveals the fact

w̃(2)(κ1, κ4, β1, β2, β3)=w(2)(κ4, κ1, β1, β2, β3). (B.47)

Now we expandw(2) for smallκi :

w(2)(κ1, κ4, β1, β2, β3)=w0(β1, β2, β3)+ (κ1+ κ4)w1(β1, β2, β3)

+ (κ1− κ4)w2(β1, β2, β3)+O
(
κ2
i

)
. (B.48)

In fact we do not requirew2. Note that the functionswi are real, so that in particular

Imw(2)(0,0, β1, β2, β3)= 0, (B.49)

which is needed to avoid a singularity inW(2) for κi→ 0. Hence

W(2) =W(2)[A] +W(2)[B], (B.50)

with

W(2)[A] = 1

192π2

∞∫
−∞

dβ1

∞∫
−∞

dβ2
1

chβ0
J (β1, β2, β0)w1(β1, β2, β0), (B.51)

whereβ0 is determined through shβ0=−shβ1− shβ2 , and

W(2)[B](k1, k2, k3, k4)

= 1

768π2

1

T (κ1+ κ4)

∞∫
−∞

dβ1

∞∫
−∞

dβ2

∞∫
−∞

dβ3Z(β1, β2, β3)

×
{
δ(β1, β2, β3, κ2)

3∏
k=1

T (βk + κ1)
P

T (βk − κ4)
+ (κ2↔ κ3, κ1↔ κ4)

}
,

(B.52)

with

Z(β1, β2, β3)= J (β1, β2, β3)w0(β1, β2, β3). (B.53)

We then see thatW(2)[B] is a sum of two parts

W(2)[B] =W(2)[B1] +W(2)[B2], (B.54)

with

W(2)[B1] = 1

64π2

∞∫
−∞

dβ1

∞∫
−∞

dβ2
1

chβ0
Z(β1, β2, β0)

P
shβ1

,

W(2)[B2] = 1

384π2

∞∫
−∞

dβ1

∞∫
−∞

dβ2
1

chβ0

∂

∂β3

(
Z(β1, β2, β3)

chβ3

)
β3=β0

. (B.55)
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Numerically this gives

W(2)[A] = 4.41085(1)× 10−4,

W(2)[B1] = 4.9600(1)× 10−5, (B.56)

W(2)[B2] = 1.1503(1)× 10−5,

and hence

W(2) = 0.00050219(1). (B.57)

Finally we turn to the computation ofW(3). Due to Eq. (B.49) it follows that

v
(II ,2)
141 (0,0,0,0)=−2v(I,3)141 (0,0,0,0). (B.58)

Now explicit computation yields

k(I)(0,0, β,−β,0,0)= π−6
∣∣τ3(0, β,−β)∣∣2(40β2+ 32π2),

k(III )(β)=−12π−6
∣∣τ3(0, β,−β)∣∣2(β2+ π2). (B.59)

So forW(3) we arrive at

W(3) =−π
5

64

∞∫
0

sh6 (β/2)T 6(β)

ch5β

(β2+ π2)(4β2+ π2)(β2+ 2π2)

β6(β2+ 4π2)2

=−0.0004682756. (B.60)

Appendix C. Computation of the 1-2-3 contribution

We use the results (3.57)–(3.61) withm= 3, and begin with contribution(IV ):

v
(IV)
123 (κ1, κ2, κ3, κ4)∼ 1

1536π2

∫
d3α

δ(α1, α2, α3,−κ4)∑3
i=1 chαi

× G(IV)(−κ2+ iπ−,−κ1+ iπ−, α1, α2, α3). (C.1)

Here

G(IV)(A)=
∑
a1a2a3

F1
11a1a2a3

(A)F1
a1a2a3

(A′)∗ = T5(A)T3(A
′)∗g(IV)(A), (C.2)

whereA stands forθ1, θ2, θ3, θ4, θ5 andA′ for θ3, θ4, θ5. Note thatg(IV)(A) is totally
symmetric in the subsetA′.

We decompose the 1/(x ± iε) factors to obtain terms involving products of principle
parts and delta-functions; only terms having less than three delta-functions contribute in
the Lim procedure, i.e.,

v
(IV)
123 =

3∑
s=1

v
(IV,s)
123 . (C.3)

The terms are
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v
(IV,1)
123 (κ1, κ2, κ3, κ4)

∼ 1

1536π2T (κ1− κ2)

∫
d3α

δ(α1, α2, α3,−κ4)∑3
i=1 chαi

× g(IV)(iπ, iπ,α1, α2, α3)
∏
i<j

T 2(αi − αj )
∏
k

P
T (αk + κ1)

P
T (αk + κ2)

, (C.4)

v
(IV,2)
123 (κ1, κ2, κ3, κ4)

∼− i

128π

∫
d2α

δ(−κ2, α1, α2,−κ4)

1+∑2
i=1 chαi

× g(IV)(iπ, iπ,0, α1, α2)T
2(α1− α2)

∏
k

T (αk + κ2)
P

T (αk + κ1)
, (C.5)

while for the term involving the product of two delta-functions one finds

v
(IV,3)
123 (κ1, κ2, κ3, κ4)=O

(
κ3). (C.6)

The contribution(IV,1) is antisymmetric inκ1↔ κ2 and so it doesn’t contribute in the
sum over permutations. In the contribution(IV,2) we can take theκ→ 0 limit and obtain

v
(IV)
123 (0,0,0,0)∼−

i

128π

∞∫
−∞

dα
T 2(2α)

chα[1+ 2 chα] g
(IV)(iπ, iπ,0, α,−α). (C.7)

Now turn to the(III) contribution:

v
(III )
123 (κ1, κ2, κ3, κ4)

∼ 1

64π

∫
d2β

δ(β1, β2, κ1, κ2)∑
i chβi[1+∑j chβj ] G

(III )(−κ1+ iπ−, β1, β2, κ3), (C.8)

where

G(III )(θ1, θ2, θ3, θ4)=
∑
b1b2

F1
1b1b2

(θ1, θ2, θ3)F1
b1b21(θ2, θ3, θ4)

∗

= T3(θ1, θ2, θ3)T3(θ2, θ3, θ4)
∗g(III )(θ1, θ2, θ3, θ4). (C.9)

Here one can set theκi to zero to obtain

v
(III )
123 (0,0,0,0)∼

1

128π

∞∫
−∞

dβ
T 2(2β)

ch2β[1+ 2 chβ] g
(III )(iπ,β,−β,0). (C.10)

For the(II ) contribution:

v
(II )
123(κ1, κ2, κ3, κ4)∼ 1

256π2

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

d2α
δ(β1, α1, α2,−κ4)

chβ1+∑2
i=1 chαi

G(II )(−κ1+ iπ−, β1, β2, α1, α2), (C.11)

where
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G(II )(A)=
∑
b

∑
a1,a2

F1
1bb(A

′)F1
ba1a2

(B)F1
ba1a2

(B ′)∗

= T3(A
′)T3(B)T3(B

′)∗g(II )(A), (C.12)

whereA stands forθ1, θ2, θ3, θ4, θ5; A′ stands forθ1, θ2, θ3, B stands forθ3+ iπ−, θ4, θ5,
andB ′ stands forθ2, θ4, θ5. Making the familiar decomposition of the singular distributions
one obtains:

v
(II )
123=

3∑
s=1

v
(II ,s)
123 , (C.13)

with

v
(II ,1)
123 (κ1, κ2, κ3, κ4)∼ 1

256π2

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

d2α
δ(β1, α1, α2,−κ4)

chβ1+∑2
i=1 chαi

g(II )(−κ1+ iπ,β1, β2, α1, α2)T
2(α1− α2)

× T (β1− β2)
∏
i

P
T (κ1+ βi)

∏
j

T (β1− αj ) P
T (β2− αj ) , (C.14)

v
(II,2)
123 (κ1, κ2, κ3, κ4)∼ i

64π

∫
d2β

δ(β1, β2, κ1, κ2)

[chβ1+ chβ2][1+ chβ1+ chβ2]
× g(II )(−κ1+ iπ,β1, β2, β2,−κ3)T

2(β1− β2)
∏
j

T (βj + κ3)
P

T (βj + κ1)
,

(C.15)

v
(II,3)
123 (κ1, κ2, κ3, κ4)∼ i

256π

∫
d2α T 2(α1− α2)

×
{
δ(−κ1, α1, α2,−κ4)

1+∑2
i=1 chαi

g(II )(−κ1+ iπ,−κ1,−κ2, α1, α2)
∏
j

T (αj +κ1)

× P
T (αj + κ2)

+ δ(−κ2, α1, α2,−κ4)

1+∑2
i=1 chαi

g(II )(−κ1+ iπ,−κ2,−κ1, α1, α2)

× P
T (αj + κ1)

}
, (C.16)

In the contributionss = 2,3 we can set theκi to zero to obtain

v
(II ,2)
123 (0,0,0,0)∼ i

128π

−∞∫
−∞

dβ
T 2(2β)

ch2β[1+ 2 chβ] g
(II )(iπ,β,−β,−β,0), (C.17)

v
(II,3)
123 (0,0,0,0)∼ i

128π

−∞∫
−∞

dα
T 2(2α)

chα[1+ 2 chα] g
(II )(iπ,0,0, α,−α), (C.18)

Finally for the(I) contribution

v
(I)
123(κ1, κ2, κ3, κ4)∼ 1

6144π3

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2
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×
∫

d3α
δ(α1, α2, α3,−κ4)∑3

i=1 chαi
G(I )(−κ1+ iπ−, β1, β2, α1, α2, α3), (C.19)

with

G(I )(A)=
∑
b

∑
a1,a2,a3

F1
1bb(A

′)F1
bba1a2a3

(B)F1
a1a2a3

(B ′)∗ (C.20)

= T3(A
′)T5(B)T3(B

′)∗g(I)(A). (C.21)

HereA stands forθ1, θ2, θ3, θ4, θ5, θ6; A′ stands forθ1, θ2, θ3, B stands forθ3 + iπ−,
θ2+ iπ, θ4, θ5, θ6, andB ′ stands forθ4, θ5, θ6.

Then we rearrange to terms where after doing theβ2 integral the singularities in theβ1

integral all have negative imaginary parts

v
(I)
123=

4∑
s=1

v
(I,s)
123 . (C.22)

The terms are:

v
(I,1)
123 (κ1, κ2, κ3, κ4)∼− 1

6144π3

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

d3α
δ(α1, α2, α3,−κ4)∑3

i=1 chαi
g(I)(−κ1+ iπ,β1, β2, α1, α2, α3)

× T 2(β1− β2)

T (κ1+ β1+ iε)T (κ1+ β2− iε)
∏
i<j T

2(αi − αj )∏
k T (β1+ iε− αk)T (β2− iε− αk) ,

(C.23)

v
(I,2)
123 (κ1, κ2, κ3, κ4)∼ i

512π2

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

d2α
δ(β1, α1, α2,−κ4)

chβ1+∑2
i=1 chαi

g(I)(−κ1+ iπ,β1, β2, β1, α1, α2)

× T (β1− β2)T
2(α1− α2)

∏
i T (β1− αi)

T (κ1+ β1+ iε)T (κ1+ β2− iε)∏j T (β2− iε− αj ) , (C.24)

v
(I,3)
123 (κ1, κ2, κ3, κ4)∼ i

3072π2 T (κ1− κ2)

×
∫

d3α
δ(α1, α2, α3,−κ4)∑3

i=1 chαi
g(I)(−κ1+ iπ,−κ2,−κ1, α1, α2, α3)

×
∏
i<j T

2(αi − αj )∏
k T (−κ1− iε− αk)T (−κ2+ iε− αk) , (C.25)

v
(I,4)
123 (κ1, κ2, κ3, κ4)∼− 1

256π
T (κ1− κ2)

×
∫

d2α
δ(−κ2, α1, α2,−κ4)

1+∑2
i=1 chαi

g(I)(−κ1+ iπ,−κ2,−κ1,−κ2, α1, α2)
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× T
2(α1− α2)

∏
i T (κ2+ αi)∏

j T (κ1+ iε+ αj ) . (C.26)

As for the last contribution, it vanishes in the limitκi→ 0

v
(I,4)
123 (0,0,0,0)= 0. (C.27)

For the contribution(I,1) we now perform theβ2 integral and shift theβ1 integral to
larger imaginary part, after which we can send all theκi to zero to obtain

v
(I,1)
123 (0,0,0,0)∼

1

512π3

+∞+iφ∫
−∞+iφ

dβ
ch4(β/2)

ch4β

×
∞∫

0

du1

∞∫
0

du2T
2(u1)T

2(u2)T
2(u1+ u2)M

(3)(u)−2

× g(I)(iπ,β,−β,α1, α2, α3)
∏
k

(
chαk + chβ

chαk − chβ

)
, (C.28)

where theαk are determined in terms of theu’s as in Eq. (2.30).
For the(I,2) term we obtain

v
(I,2)
123 ∼ v(I,5)123 + v(I,6)123 +O(κ), (C.29)

where

v
(I,5)
123 (κ1, κ2, κ3, κ4)∼ i

512π2

∫
d2β

δ(β1, β2, κ1, κ2)

chβ1+ chβ2

×
∫

d2α
δ(β1, α1, α2,−κ4)

chβ1+∑2
i=1 chαi

g(I)(−κ1+ iπ,β1, β2, β1, α1, α2)

× T (β1− β2)T
2(α1− α2)

∏
i

P
T (κ1+ βi)

∏
j

T (β1− αj ) P
T (β2− αj ) , (C.30)

v
(I,6)
123 (κ1, κ2, κ3, κ4)∼− 1

128π

∫
d2β

δ(β1, β2, κ1, κ2)∑
i chβi[1+∑j chβj ]

× g(I)(−κ1+ iπ,β1, β2, β1,−β2,−κ3)

× T 2(β1− β2)
∏
i

T (βi + κ3)
P

T (βi + κ1)
. (C.31)

In the latter we can do theβ2 integral and set theκi to zero to obtain

v
(I,6)
123 (0,0,0,0)

∼− 1

256π

∞∫
−∞

dβ
T 2(2β)

ch2β[1+ 2 chβ] g
(I)(iπ,β,−β,β,−β,0). (C.32)

Finally
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v
(I,3)
123 (0,0,0,0)=−

1

256π

∞∫
−∞

dα
T 2(2α)

chα[1+ 2 chα] g
(I)(iπ,0,0, α,−α,0). (C.33)

Summarizing the results we have

v123(0,0,0,0)=
5∑
j=1

V (j), (C.34)

where the five terms are as follows:

V (1) = v(I,1)123 (0,0,0,0), (C.35)

given in Eq. (C.28). Further

V (2) = v(III )123 (0,0,0,0)+ v(IV)123 (0,0,0,0)

= 1

128π

∞∫
−∞

dβ
T 2(2β)

ch2β
g(2)(β), (C.36)

where

g(2)(β)= g
(III )(iπ,β,−β,0)− ig(IV)(iπ, iπ,0, β,−β)chβ

1+ 2 chβ
. (C.37)

Next

V (3) = v(I,5)123 (0,0,0,0)+ v(II,1)123 (0,0,0,0)

=− 1

512π2

∞∫
−∞

dβ
ch2(β/2)

ch3β

P
T (β)

∫
d2α

δ(β,α1, α2)

chβ +∑2
i=1 chαi

g(3)(β,α1, α2)

× T 2(α1− α2)
∏
j

T (αj − β) P
T (αj + β), (C.38)

where

g(3)(β,α1, α2)= 2g(II )(iπ,β,−β,α1, α2)+ ig(I )(iπ,β,−β,β,α1, α2). (C.39)

Further

V (4) = v(I,3)123 (0,0,0,0)+ v(II ,3)123 (0,0,0,0)

=− 1

256π

∞∫
−∞

dα
T 2(2α)

chα[1+ 2 chα] g
(4)(α), (C.40)

where

g(4)(α)=−ig(3)(0, α,−α). (C.41)

Finally
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V (5) = v(I,6)123 (0,0,0,0)+ v(II ,2)123 (0,0,0,0)

=− 1

256π

∞∫
−∞

dβ
T 2(2β)

ch2β[1+ 2 chβ] g
(5)(β), (C.42)

where

g(5)(β)=−ig(3)(β,−β,0). (C.43)

Casen= 1:
Here we have simply

g(I)(A)=−16, g(II )(B)= 8i,

g(III )(C)= 4, g(IV)(D)= 8i, (C.44)

and so

g(2)(β)= 4, g(r) = 0, r = 3,4,5. (C.45)

Thus

V (2) = 1

32π

∞∫
−∞

dβ
sh2β

ch4β
= 1

48π
,

V (1) =− 1

128π3

∞∫
0

d2uT 2(u1)T
2(u2)T

2(u1+ u2)
S(u1, u2)

M(3)(u)2
, (C.46)

with

S(u1, u2)=
+∞+iφ∫
−∞+iφ

dβ
[1+ chβ]2

ch4β

3∏
k=1

(
chαk + chβ

chαk − chβ

)
. (C.47)

Numerically we find

V (1) =−0.000842721(1). (C.48)

Casen= 3:
First we have

V (1) = π9

32768

∞∫
0

d2u
∣∣ψ(u1)ψ(u2)ψ(u1+ u2)

∣∣2M(3)(u)−2S(u1, u2), (C.49)

where∣∣ψ(u)∣∣2= u2+ π2

u2(u2+ 4π2)
T 4(u), (C.50)

and
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S(u1, u2)=
+∞+iφ∫
−∞+iφ

dβ
(1+ chβ)4

ch6β
h(I)(iπ,β,−β,α1, α2, α3)

× (4β
2+ π2)

(β2+ π2)3

∏
k

α2
k − β2

(α2
k − β2)2+ 2π2(α2

k + β2)+ π4

(
chαk + chβ

chαk − chβ

)2

.

(C.51)

Numerically this gives

V (1) =−0.000844527(1). (C.52)

Doing the contractions yields

g(III )(iπ,β,−β,0)= π
6

4

(2β2+ π2)

(β2+ π2)2

T 2(2β)

β2
,

g(IV)(iπ, iπ,0, β,−β)= 2ig(III )(iπ,β,−β,0). (C.53)

Thus

g(2)(β)= g(III )(iπ,β,−β,0), (C.54)

and

V (2) = π5

512

∞∫
−∞

dβ
sh4β

β2 ch6β

(2β2+ π2)(4β2+ π2)

(β2+ π2)2(β2+ 4π2)
= 0.0074380765. (C.55)

Next by explicit computation one verifies

g(4)(α)= 0, g(5)(β)=−g(5)(−β), (C.56)

and thus4

V (4) = V (5) = 0. (C.57)

It remains to computeV (3). Shifting theα1 integral we obtain the representation

V (3) = 1

256π2

∞∫
−∞

dβ

∞∫
−∞

dα
P

sh(β/2)

ch2(β/2)

ch3β

P
T (α)

× g(3)(β,α1, α2)ch(α1/2)ch((α2+ β)/2)
chα2 ch((α1− α2)/2)[chβ + chα1+ chα2]
× T (α1− α2)T (α1− β)T (α2− β)ch

α1

2
, (C.58)

where

α1= α− β, (C.59)

andα2 is determined by

shα2=−shβ − shα1. (C.60)

4 Eq. (C.57) is perhaps true for alln but we have not verified this conjecture.
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Numerically this gives

V (3) =−0.000125112(1). (C.61)

Appendix D. Building blocks of form factors

In form factor calculations one often encounters the problem of finding an analytic
functionf (θ) satisfying

f (θ)= σ(θ)f (−θ),
f (iπ − θ)= f (iπ + θ), (D.1)

for givenσ(θ). If σ(θ) has the Fourier representation

σ(θ)= eiδ(θ), δ(θ)= 2

∞∫
0

dω

ω
sin(θω) k̃(ω), (D.2)

with some kernel functioñk(ω) then the ‘minimal’ solution of (D.1) is given by [4]

f (θ)= e∆(θ), ∆(θ)=
∞∫

0

dω

ω

chω(π + iθ)− 1

shπω
k̃(ω). (D.3)

The function∆(θ) has the following properties. If̃k(ω)∼ e−zω (z > 0) for ω→∞ then
∆(θ) is analytic for−z < Im θ < 2π + z and for realθ→∞

Re∆(θ)∼∆(iπ + θ)∼−θ
2
k̃(0)− ln θ

π
k̃′(0)+ const. (D.4)

We encountered in Section 6 the following special case: for some (positive, real)
parameterα

σα(θ)= eiδα(θ) = (1+ α)iπ + θ
(1+ α)iπ − θ , (D.5)

corresponding to the kernel

k̃α(ω)=−e−πω(1+α). (D.6)

We denote the corresponding solution by∆α(θ).
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