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Abstract

The quantum field theory describing the massiveO(2) non-linear sigma-model is investigated
through two non-perturbative constructions: the form factor bootstrap based on integrability and the
lattice formulation as the XY model. The S-matrix, the spin and current two-point functions, as well
as the 4-point coupling are computed and critically compared in both constructions. On the bootstrap
side a new parafermionic super selection sector is found; in the lattice theory a recent prediction for
the (logarithmic) decay of lattice artifacts is probed. 2001 Elsevier Science B.V. All rights reserved.

PACS:11.25.Bt; 11.15.Ha; 75.10.Hk

1. Introduction

The XY model in two dimensions is of prime interest in the field of statistical mechanics,
intriguing in particular because of its unusual phase transition. On general grounds one
expects that a suitable scaling limit in the high temperature phase gives rise to a massive
relativistic quantum field theory (QFT). Though an enormous literature exists on the
statistical mechanics aspects of the system, to the best of our knowledge the nature of this
QFT has never been systematically explored. As part of a long term project on quantum
non-linear sigma models we thus address here the question:

What are the qualitative and quantitative features of the QFT obtained from the XY
model by taking the massive continuum limit?
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The question is of interest, first, in that it highlights the important problem of controlling
the approach to the continuum in the lattice formulation of QFTs, and second, because
the proposed continuum QFT seems to possess a rich, hitherto unknown superselection
structure. The problem of controlling the continuum limit of a lattice system based on
numerical simulations alone is notoriously difficult for several reasons. (i) First, because
one often lacks rigorous knowledge of the phase structure and the position(s) of the critical
points where the correlation length becomes infinite. (ii) Secondly, there are in general
no rigorous results on how a quantity approaches its continuum limit as a function of the
correlation length, even if the existence of the limit is taken for granted.

Knowledge of (i) and (ii) is crucial not only for quantitative aspects but also for matters
of principle, like the status of asymptotic freedom beyond perturbation theory in non-
abelian models, or more generally the physical differences or similarities of the continuum
limits of (spin) systems with abelian and non-abelian symmetries. So far the application
of lattice techniques to the extraction of physical quantities has concentrated on the non-
abelian models. This suffers unfortunately from both of the before-mentioned problems (i)
and (ii). Concerning (ii), the usual working hypothesis, attributed to Symanzik, is that in
(perturbatively) asymptotically free theories, physical quantities approach their continuum
limit rather rapidly with power-like corrections 1/ξp , with p a positive integer (up to
multiplicative logarithmic corrections).

On the other hand, for the XY model we do have rigorous information on point (i). In
particular, the model with standard action is known to have two phases, one massless and
the other massive [14]. The order of the phase transition has been argued by Kosterlitz
and Thouless (KT) [22] to be infinite and this picture has been supported by various
numerical studies [16]. Moreover, concerning point (ii), one of the present authors (J.B.)
[4], has argued that for a certain class of lattice actions and for certain observables (like
the S-matrix or a current two-point function) leading lattice artifacts do not depend on
the choice of lattice action and arecalculable. However, they vanish extremely slowly,
generically as inverse powers of thelogarithmof the correlation lengthξ (e.g.,∼ 1/ ln2 ξ ).
One of the goals of the present paper is to test this proposal through extensive numerical
simulations. Its derivation takes advantage of the sine-Gordon description of the KT
transition introduced by Amit et al. [1]. Applying a series of (not entirely rigorous) steps
invoking universality and making a sequence of mappings their analysis also entails the
tentative identification:

The massive continuum limit of the XY model is related to the sine-Gordon (SG) model
at its extremal fixed pointβSG=

√
8π , in that both systems share subsets of fields with

identical correlation functions.
Examples of shared fields are the Noether current (proportional to the dual of the

gradient of the SG scalar) and the energy momentum tensor. Similar to Coleman’s SG–
Thirring correspondence [11,21] the mapping between the fields does not preserve locality
in general and is likely not to be strictly one-to-one. Nevertheless, the correspondence
is very useful because the SG model is integrable and for such systems a direct non-
perturbative continuum approach exists to construct the QFT, referred to as the form factor
bootstrap. In fact, the SG model is the prototype integrable model and it has played an
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important role in the development of the form factor bootstrap method. Its bootstrap S-
matrix was proposed in [44] and a large part of Smirnov’s book [37] is devoted to the
study of its soliton form factors, where also the form factors of the SG scalar and the
Noether current are given. The second purpose of the present paper is to initiate abootstrap
constructionof the O(2) model along similar lines. Since the form factor approach
is largely blind with respect to the local structure we can borrow many mathematical
techniques from the SG model, but the interpretation as form factors of certain localO(2)
quantum fields requires careful justification, one strategy being the comparison with lattice
simulations. To have a handy terminology we shall refer to the QFT defined through the
massive continuum limit of the lattice XY model as the “XY QFT”, and to the QFT defined
via the form factor bootstrap as the “bootstrapO(2) model”. The basic proposition to be
tested is that both QFTs coincide.

Generally, the problem of operator identification and classification in the bootstrap
framework rests on conserved quantum numbers. By definition theO(2) model has a
manifestO(2) symmetry. Remarkably, on the level of the bootstrap S-matrix and the
scattering states asymmetry enhancementtakes place: they are covariant with respect to a
larger non-abelian quantum group symmetry. It turns out that depending on the nature of
certain statistics phases the functional equations characterizing the form factors only have
the manifestO(2) symmetry or are covariant with respect to the hidden quantum group
symmetry. This implies that the field operators of the bootstrapO(2) QFT fall into two
classes: those that are (trivial)O(2) multiplets and those that are members of a non-trivial
quantum group multiplet. For example, a complete set of scattering states seems to be
generated both by the spin field and alocal parafermion field of Lorentz spin 1/4. Both are
relatively non-local and the latter is quantum group covariant while the former is not. Also
the (one-component) Noether current of theO(2) model is a member of a hidden isospin-
1 quantum group triplet, where however the charge±2 partners can (already classically)
not be expressed as local functions of the spin field. The energy–momentum tensor is a
quantum group singlet. In view of the parafermion theO(2) model possesses at least two
super selection sectors; the full super selection structure and its relation to the quantum
group multiplets remains to be explored.

The lay-out of the paper is as follows. We start by briefly recording the quantities
considered and introduce the bootstrap and the lattice formulation. In Section 3 we describe
in more detail the bootstrapO(2) model and discuss its quantum group invariance. We
proceed with formulating the form factor equations and determine the statistics phases
for which they exhibit the enhanced quantum group symmetry. Next, then � 4 particle
candidate form factors of the spin field and the Noether current are obtained. Some
details on the quantum group structure and the form factor computation are relegated to
appendices.

The subsequent sections all involve lattice simulations, concerning which some general
information is first collected in Section 4. Next, we report on measurements of the XY
phase shifts using a refinement of the finite size technique first employed by Lüscher and
Wolff [25] for the O(3) model. In Section 6 our measurements of the two-point functions
of the spin field and the Noether current, and of the renormalized zero momentum coupling
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gR are presented. There we also compare the results with those obtained by the form factor
computations, improving on our earlier estimate [6]. Finally, in Section 7 we attempt some
conclusions.

2. Bootstrap and lattice O(2) model

One way to approach theO(2) model is as then = 2 member of the family ofO(n)

non-linearσ -models with the classical Lagrangean

(2.1)LO(n) = 1

2g2
∂µS

a∂µS
a, SaSa = 1, a = 1,2, . . . , n.

From the viewpoint of classical field theory it may be surprising that this Lagrangean
should correspond to a non-trivial QFT, since by substitutingS1 = cosφ, S2 = sinφ it
becomes quadratic, corresponding to a free theory. Also perturbatively the beta-function of
the couplingg2 vanishes identically forn = 2, suggesting a trivial scale-invariant theory.
The situation changes, however, when one is trying to non-perturbatively construct a QFT
corresponding to (2.1). In this paper two such approaches are studied, both of which lead
to a non-trivial massive QFT: the lattice approach which allows the construction of a
massive continuum limit and the form factor bootstrap construction based on the indicated
relation to the sine-Gordon theory. These two constructions as well as the comparison of
the resulting theories are the main subject of this investigation.

2.1. Quantities to be investigated

Clearly only physical quantities should be considered in this comparison. We shall study
the S-matrix, the spin and current two-point functions, and the intrinsic coupling. The S-
matrix will be discussed in Sections 2.2 and 5; for the other quantities we collect here
the key definitions. They apply to both formulations, and in fact to anyO(2)-invariant
scalar relativistic QFT with a mass gap. Let thusSa(x), a = 1,2, denote a two-component
(renormalized) scalar field (the “spin field”). For the Fourier transform of its Euclidean
two-point function we write

(2.2)G(k)δa1a2 =
∫

d2x eikx〈Sa1(x)Sa2(0)〉.
Its inverse is supposed to have the usual small momentum expansion

(2.3)G(k)−1=Z−1
R

(
M2

R+ k2+O(k4)
)
.

The coefficients can be expressed in terms of moments of the spectral densityρ(µ) via

(2.4)ZR=Z
γ 2

2

δ2
,

M2
R

M2 =
γ2

δ2
,

whereM is the mass gap andγ2 andδ2 are the moments

(2.5)γ2=M2
∫

dµ
ρ(µ)

µ2 , δ2=M4
∫

dµ
ρ(µ)

µ4 .
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Our normalization for the spectral density is such that

(2.6)G(k)=Z

∞∫
0

dµ
ρ(µ)

µ2+ k2 ,

with the one-particle contribution given byρ(1)(µ) = δ(µ − M). (To avoid irrelevant
complications we assume that the spectrum of the theory contains a doublet of stable
particles of massM.)

The intrinsic or renormalized 4-point coupling is an important measure for the
interaction strength of a QFT. A conventional definition is

(2.7)gR=− M2
R

4G(0)2

∑
a,b

Gaabb(0,0,0,0),

whereGabcd is defined through the Fourier transform of the connected 4-point function:∫ 4∏
j=1

[
d2xje

ikj xj
]〈Sa1(x1)S

a2(x2)S
a3(x3)S

a4(x4)〉conn

(2.8)= (2π)2δ(2)(k1+ k2+ k3+ k4)G
a1a2a3a4(k1, k2, k3, k4).

The couplinggR can then be written as

(2.9)gR=− 2γ4

γ2δ2
,

whereγ4 is defined through

(2.10)Ga1a2a3a4(0,0,0,0)= Z2γ4

M6

(
δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3

)
.

In Ref. [6] we computed the moments and coupling within the form factor approach in a
certain truncation, and in Appendix D we present an improved approximation.

We also consider the two-point function of the Noether currentJµ:

(2.11)
∫

d2x eikx〈Jµ(x)Jν(0)〉 = Cδµν + I (k)

k2

(
kµkν − k2δµν

)
.

HereC is the (regularization-dependent) coefficient of a possible contact term. Only the
coefficientI (k) of the transversal part is physical. It vanishes at zero momentum due to
the assumed mass gap. The infinite momentum limit on the other hand is model-dependent
and can be finite or infinite. For theO(2) model it is determined in Section 2.2.

2.2. Integrability and bootstrap S-matrix

A first hint why theO(2) model (with classical Lagrangian (2.1) forn = 2) might be
quantum integrable stems from the observation that the known bootstrap S-matrix of the
O(n), n � 3, models has a smoothn→ 2 limit [43]. Here we record this limit and also
outline the relation to other integrable models.
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Assuming the spectrum of the model consisted of anO(n) vector multiplet of massive
particles the exact S-matrix of then � 3 models was found by bootstrap methods [44]. For
later use we adopt the projector decomposition

(2.12)Scd
ab(θ)= S0(θ) (P0)

cd
ab + S1(θ) (P1)

cd
ab + S2(θ) (P2)

cd
ab,

where

S0(θ)= θ + iπ

θ − iπ
S1(θ), S1(θ)= (n− 2)θ + 2πi

(n− 2)θ − 2πi
S2(θ),

(2.13)S2(θ)=−exp

{
2i

∞∫
0

dω

ω
sinωθ

[
e−πω + e−2π ω

n−2

1+ e−πω

]}
.

The projectors are those on theO(n) singlet, vector, and symmetric traceless tensors, i.e.,

(P0)
cd
ab=

1

n
δabδcd ,

(P1)
cd
ab=

1

2

(
δacδbd − δbcδad

)
,

(2.14)(P2)
cd
ab=

1

2

(
δacδbd + δbcδad

)− 1

n
δabδcd .

Contact to the Lagrangian (2.1) can be made through quantum conserved charges of higher
spin that prevent particle production. Under mild extra assumptions Polyakov [35] and
Lüscher [27] have shown the existence of such respectively local and non-local higher spin
conserved charges. The latter in particular anticipate [27] a Yangian structure and entail
the factorization equations that dictate the S-matrix.

Much less is known about theO(2) model. A simple observation is that the amplitudes
(2.13) have a smoothn→ 2 limit. This suggests that theO(2) model might likewise be
integrable and that its spectrum consists of a singleO(2) doublet of massive particles
whose scattering is described by then→ 2 limit of the S-matrix (2.12). Although taking
this formaln→ 2 limit is not convincing in itself, the conclusion is corroborated by the
KT theory [22] of the XY model and its reformulation in the context of the sine-Gordon
theory [1]. Before turning to the KT theory we thus briefly digress on the sine-Gordon
(SG) model. Its Lagrangean can be written as

(2.15)LSG= 1

2
∂µφ∂µφ + α

β2

[
1− cos(βφ)

]
,

whereα has mass dimension 2 andβ is the dimensionless SG coupling. It is also integrable
and its spectrum and S-matrix was also found in [44]. The spectrum depends onβ in a
complicated way but it becomes simple for the range 8π > β2 > 4π when it is free of
bound states and consists of a singleO(2) vector of massive particles. In terms ofν =
8π
β2 − 1 this corresponds to 0< ν < 1, and the S-matrix in this range can be written in the
projector form (2.12), withn= 2, where now

S0(θ |ν)= shν
2(iπ + θ)

shν
2(iπ − θ)

S2(θ |ν), S1(θ |ν)=−ch ν
2(iπ + θ)

ch ν
2(iπ − θ)

S2(θ |ν),
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(2.16)S2(θ |ν)=−exp

{
2i

∞∫
0

dω

ω
sinωθ

sinhπω(1−ν)
2ν

2 coshπω
2 sinhπω

2ν

}
.

Note that in theβ2→ 8π (ν→ 0) limit the SG S-matrix coincides with then→ 2 limit of
theO(n) S-matrix.

Finally, in the vicinity of β2 = 8π the SG model can also be related to a fermionic
model [7] formulated in terms of a two-component Dirac fermion. It has a manifestSU(2)
symmetry and is a variant of the chiral Gross–Neveu model with four-fermion interaction.
The existence of this fermionic model sheds some light on the symmetry enhancement in
theO(2) model discussed in Section 3. For the details, however, the difference between
SU−1(2) andSU(2) is crucial; cf. the discussion at the end of Section 3.2.

The relation to these other integrable QFTs can in particular be used to determine the
infinite momentum limit of the current two-point functionI (k) in (2.11). In theO(2) model
the limit is finite and exactly calculable. One way of computingI (∞) is by noting that it
coincides with the coefficient of the Schwinger term in the current–current commutator.
This commutator can be evaluated in the SG language using canonical quantization, and
yields

(2.17)I (∞)= 2

π
.

The same result can be obtained using the relation to the before mentioned two-fermion
model. Here, referring to the asymptotic freedom of the model in the fermion coupling
constant, only a simple free fermion calculation has to be done.

2.3. Standard lattice action and KT theory

The standard lattice action of the XY model is

(2.18)SXY =K
∑
x,µ

[
1− cos

(
ϕ(x)− ϕ(x + µ̂)

)]
.

We denote the inverse temperature (inverse of the bare coupling) of the XY model byK to
avoid confusion with the SG couplingβ .

This model has a high temperature phase at smallK with exponential decay of
correlations; it has been shown rigorously [14] that at low temperature (largeK) the
correlations decay only like a power of the distance. The exponential decay disappears
therefore at a finite critical valueKc ; this is the famous KT transition predicted by
Kosterlitz and Thouless [22]. They argued that at not too small values ofK typical
configurations of the model can be described as a combination of ‘smooth’, topologically
trivial configurations (spin waves) and a gas of vortices (of integer topological charge). The
vortices have a logarithmic interaction and therefore form essentially a two-dimensional
Coulomb gas, which has a transition from a high temperature phase with Debye screening
to a low temperature dipole phase without screening. In the KT picture the transition
is therefore described as ‘vortex condensation’. A different perspective of this kind of
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phase transition was proposed in [32] according to which it is driven by the change from
instanton-like defects (vortices) to super-instantons dominating at low temperatures.

Fröhlich and Spencer [14] established a rigorous version of the correspondence between
the XY model and a type of Coulomb gas and used rigorous arguments inspired by the
renormalization group (grouping of charges into neutral ‘molecules’) to show the absence
of screening in this gas at low temperature.

Kosterlitz and Thouless employed heuristic energy–entropy considerations to show that
in the transition region only vortices of topological charge±1 are important and higher
vortices can be neglected. It is easy to see that this system (spin waves and Coulomb gas
with unit charge vortices only) is exactly equivalent to the SG model. In Ref. [1] it was
argued that the extremal SG fixed pointβ∗ = √8π , α∗ = 0 is appropriate to describe the
KT phase transition. The renormalizability of the SG model around this point was explicitly

demonstrated up to two-loop order in a double expansion inα andδ = β2−8π
8π .

3. Bootstrap description and symmetry enhancement

Here we detail on the proposed bootstrap S-matrix, the associated quantum group
structure and its implications for the form factors and the operator classification.

3.1. SU−1(2) invariance of the S-matrix

The candidate S-matrix for the XY QFT can be rewritten as

Scd
ab(θ)= S2(θ)

[
δda δ

c
b +

θ

iπ − θ
δabδ

cd

]
,

(3.1)S2(θ)=
-
( 1

2 + θ
2πi

)
-
(− θ

2πi

)
-
( 1

2 − θ
2πi

)
-
(

θ
2πi

) .

The S-matrix (3.1) satisfies the usual S-matrix postulates with the charge conjugation
matrixCab = δab and normalizationScd

ab(0)=−δda δcb. Note the non-trivial limit

(3.2)Scd
ab(±∞)= δda δ

c
b − δabδ

cd , S(±∞)2= 1.

The symmetry group of the massiveO(2) model is of courseO(2), as far as the Lagrangian
and the functional measure is concerned. The proposal (3.1) however entails that on the
level of the S-matrix and the scattering states a symmetry enhancement takes place, in that
on them a non-abelian symmetry operates. In view of the knownUq(su(2)) quantum group

symmetry of the sine-Gordon S-matrix [36] and the identificationq =−eiπ(−1+8π/β2), one
expects the symmetry to beU−1(su(2)). As a Lie algebra this is the same asU1(su(2))=
su(2), but the comultiplication inU−1(su(2)) differs from that insu(2). We refer to
Appendix A for some basic definitions and our conventions onUq(su(2)). To simplify
the notation we shall writeSU−1(2) for U−1(su(2)) from now on.
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The easiest way to see theSU−1(2) invariance of the S-matrix (3.1) is to perform a
projector decomposition. DefininǧScd

ab(θ) := Sdc
ab(θ) (so thatŠ(0)=−1) it takes the form

Š(θ)= S2(θ)

[
iπ + θ

iπ − θ
P0+ P1

]
,

(3.3)with (P0)
cd
ab =

1

2
δabδ

cd , (P1)
cd
ab = δcaδ

d
b −

1

2
δabδ

cd .

HereP0P1= 0= P1P0 andP0+ P1= 1. MoreoverP0 andP1 are the projectors onto the
irreducible singlet and triplet representation ofSU−1(2), respectively. For comparison let
us note that theSU(2)-invariant S-matrix can likewise be written in the form (3.3), but the
projectors are given by

(3.4)SU(2): (P0)
cd
ab =

1

2

(
δcaδ

d
b − δda δ

c
b

)
, (P1)

cd
ab =

1

2

(
δcaδ

d
b + δda δ

c
b

)
.

The S-matrices (3.1) and (3.4) are of course also invariant under the usual realO(2)
transformations. It is often advantageous to diagonalize this action by means of a unitary
basis transformation

(3.5)U = 1√
2

(
1 i

1 −i
)
=Uα

a,

where we use Greek lettersα,β, . . . ∈ {±} to label the components in the new basis.
Explicitly, S

γ δ
αβ (θ) := Ua

αU
b
βS

cd
ab(θ)U

γ
c Uδ

d , which now hasCαβ = δα+β,0 as its charge
conjugation matrix. Written in matrix form one finds the familiar pattern for (3.3)

S(θ)=


S2 0 0 0

0 ST SR 0

0 SR ST 0

0 0 0 S2

 ,

(3.6)ST (θ)= θ

iπ − θ
S2(θ), SR(θ)= iπ

iπ − θ
S2(θ),

where the rows and columns refer to the(++,+−,−+,−−) ordering. For theSU(2)-
invariant S-matrix only the sign ofST would be flipped, which in view of the previous
discussion however indicates a very different group theoretical structure. Concretely, the
SU−1(2) invariance of (3.6) amounts to

(3.7)Σ±Š(θ)= Š(θ)Σ±, with Σ+ =ΣT− = i


0

−1 0
1

0 −1 1 0

 ,

andΣ± representing the ‘raising and lowering’ operators ofSU−1(2).
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3.2. Form factors:O(2) versus SU−1(2) covariance

Form factors in this context are matrix elements of some local quantum field between
the vacuum and a multi-particle scattering state. They can in principle be computed from a
recursive system of functional equations defined largely in terms of the given bootstrap
S-matrix. Since the S-matrix has the enhancedSU−1(2) symmetry it is natural to ask
whether the associated functional equations are likewise covariant. Unlike the situation
in other models this turns out to benot the caseautomatically, but it rather hinges on
the values of certain statistics phases. Since this is a novel feature we briefly outline the
general structure of the form factor equations in theO(2) bootstrap theory here. Details
are relegated to Appendix A. Explicit results for some operators of interest are given in the
next section and Appendices B and C.

The form factors are tensors with respect to the obvious (real) action ofO(2)
rotations. As with the S-matrix it is convenient to diagonalize this action by the unitary
transformation (3.5). We writefαn...α1(θn, . . . , θ1) for the components of somen-particle
form factor in this “charged basis”. The terminology is motivated by the fact that under a
U(1) transformation a form factor picks up a phaseeieϕ , wheree := αn+· · ·+α1 plays the
role of theU(1) charge. Equivalently,e is the weight with respect to the Cartan subalgebra
generator ofSU−1(2). A form factor (of an operator) of Lorentz spins should also have
the homogeneity property

(3.8)fαn...α1(θn + u, . . . , θ1+ u)= esu fαn...α1(θn, . . . , θ1).

For a fixed particle numbern a form factor then has to satisfy the functional equations

(3.9a)fαn...α1(θn, . . . , θ2, θ1)= Sδγ
α2α1

(θ21)fαn...α3γ δ(θn, . . . , θ1, θ2),

(3.9b)fαn...α1(θn + 2πi, θn−1, . . . , θ2, θ1)= Γ δ
αn
fαn−1...α1δ(θn−1, . . . , θ1, θn).

In the second equation the shift by 2πi is to be understood in the sense of analytical
continuation andΓ β

α is a constant matrix on whose role we elucidate below. First note
that the system (3.9) decomposes into decoupled sectors with fixedU(1) chargee ∈
{n,n − 2, . . . ,−n + 2,−n} and dimensionn!/(n−!(n − n−)!), wheren− = (n− e)/2 is
the number of ‘−’ labels in(αn, . . . , α1). Correspondingly, the matrixΓ is diagonal in this
basis but may be different in different charge sectors

(3.10)Γ β
α = ηα(e)δ

β
α .

The phasesηα(e) can be thought of as statistics phases describing the relative statistics
of the (quasilocal) operator whose form factors are considered and the field that generates
the scattering states in a Haag–Ruelle type scattering theory [30]. See, e.g., [23] for some
simple examples. Iterating (3.9b) and employing the analyticity inu of (3.8) one finds the
following spin–statisticsrelation

(3.11)η−(e)n−η+(e)n−n− = e2πis .

A further condition arises if the underlying operator is hermitian. From

fαn...α1(θn, . . . , θ1)
∗ = f−α1...−αn(θ

∗
1 + iπ, . . . , θ∗n + iπ)
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one obtains

(3.12)ηα(e)η−α(−e)∗ = 1.

If only O(2) invariance is assumed no further constraints exist and the phasesηα(e)

are part of the specification of a field operator in the bootstrap framework. Collectively
they encode the information about the super selection structure of the theory. Since the
first equation in (3.9) is covariant also with respect to the larger non-abelianSU−1(2)
symmetry, it is natural to ask whether or not also the second equation is covariant for a
suitable choice of the phases. The covariance requirement links the chargee sector with
thee± 2 sectors. It can be seen to entail an overdetermined set of relations for the phases
ηα(e), which turn out to be self-consistent. The requirement of quantum group covariance
thus determines all phasesηα(e) essentially uniquely; cf. Appendix A. Forn � 4 one finds
explicitly:

n= 2: η+(2)=−η±(0)= η−(−2),

n= 3: η+(3)=∓η±(1)=±η±(−1)= η−(−3),

(3.13)n= 4: η+(4)=−η±(2)= η±(0)=−η±(−2)= η−(−4).

Generally, for fixedn, the relative signs are given byηα(e)∼ exp iπ
2 (e− nα). Of course,

the actual phases solving (3.13) must be chosenn-independent.
Let us illustrate the use of these relations in the chargee= 1 sector (where only the odd

particle form factors are nonzero). We can takeη±(1)= e±2πis as the solution of (3.11).
Then (3.12) fixesη±(−1)= e∓2πis . If we now in addition require that the field underlying
these form factors is quantum group covariant, thee=±1 sectors are linked by (3.13), e.g.,
for n= 3. This yields the conditione∓4πis =−1, and we conclude:s = 1

4 mod1
2. In words,

an O(2) doublet field that is in addition quantum group covariant can only have Lorentz
spin s = 1

4 mod1
2. If we had started from theSU(2)-invariant S-matrix (3.4) instead, no

relative signs in (3.13) would have occurred, and anSU(2) doublet ofO(2) chargee=±1
was forced to have Lorentz spins = 1

2 mod1
2, as expected.

Next, we proceed to the residue equations which link ann-particle form factor to ann−2
particle form factor. Consistency requires that the inverse of the matrixΓ

β
α appears on the

right hand side, irrespective of its concrete form. In the charged basis the precise formula
is given in (A.9). For generic phases (A.9) will only beO(2)-covariant. Concretely, this
means that ann-particle form factor ofU(1) chargee is linked to ann− 2 particle form
factor with the sameU(1) charge. For the choice (3.13) ensuring theSU−1(2) covariance of
(3.9) one expects that also (A.9) is quantum group covariant, which indeed turns out to be
the case. Since all form factor equations then are covariant a quantum group transformation
will map one solution into another solution, where “solution” actually means a sequence of
functions whose members are linked by the (A.9). Suitable sequences should correspond to
(local) quantum fields in theO(2) model. We thus find that field operators whose statistics
phases enjoy the specific relation (3.13) form multiplets with respect to the quantum
group action. Clearly, one can concentrate on the multiplets transforming irreducibly; the
multiplet and the associated form factor sequence will then be characterized by an isospin
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quantum number stemming from the representation theory ofSU−1(2). In Appendix A we
list the irreducible multiplets forn � 4.

We can summarize the situation as follows. The functional equations characterizing the
form factors areO(2)-invariant and decompose into decoupled sectors with fixedU(1)
chargee. In each sector statistics phasesηα(e) enter that are part of the specification of a
field operator (or of anO(2) multiplet thereof ) in the bootstrap framework. In addition,
operators fromdifferentcharge sectors whose statistics phases enjoy the particular relation
(3.13) are members of an (irreducible) multiplet with respect to the non-abelian quantum
groupSU−1(2). The existence of these multiplets is a non-trivial prediction of the bootstrap
formulation.

As remarked earlier there exists a (non-rigorous) transformation of theO(2) model into
a fermionic model with a manifestSU(2) invariance, for which the natural candidate S-
matrix is (3.4), i.e., that of theSU(2) chiral Gross–Neveu model. As with theO(2)–sine-
Gordon correspondence we expect that both systems sharesubsetsof fields with identical
correlation functions. An interesting one-to-one correspondence of the fields, however, is
unlikely. To see this let us discuss the relation between the bootstrap systems based on
the SU−1(2)-invariant S-matrix (3.1) and theSU(2) S-matrix (3.4) in more detail. In the
charged basis the mapping

(3.14)|θn, . . . , θ1〉αn...α1 −→
n∏

j=1

(αj )
j |θn, . . . , θ1〉αn...α1

maps states whose exchange relations are governed by theSU(2) S-matrix (3.4) onto
those whose exchange relations are governed by theSU−1(2) S-matrix (3.1), and also
‘untwists’ the non-trivial comultiplication ofSU−1(2) [37]. However, (3.14) does not
induce an interesting correspondence of the form factor sequences. For example, if the
SU(2) statistics phases are taken to be unity, the mapping (3.14) inducesηinduced

α (e) =
eiπ(e−nα)/2 for theSU−1(2) bootstrap system. This flips sign undern→ n− 2 while the
statistics phases of a sequence acceptable for describing aSU−1(2)-covariant field operator
of course must ben-independent. Mathematically one can set up a correspondence between
solutions of the form factor equations based on theSU(2) and theSU−1(2) S-matrix. One
way of doing this is to substitute the respective S-matrices into the Bethe ansatz inspired
integral formulae of [3,37]. However, this correspondence will in generalnot preservethe
spin, the statistics phases, or even the covariance under the global symmetry group. One
must conclude that there is no physically interesting one-to-one correspondence between
the field content of the bootstrap systems based on theSU(2) and on theSU−1(2) S-matrix.

3.3. Spin, parafermion and current form factors forn � 4

With these preparations at hand we now seek to determine the form factors of the
Noether currentJµ = 1

g2 (S
1∂µS

2 − S2∂µS
1) and the basic spin fieldSa, a = 1,2. The

latter is anO(2) doublet and carries Lorentz spins = 0. From the discussion following
(3.13) we conclude that it cannot be a quantum group doublet as well. We thus also search
for the form factors of an additionallocal “parafermion” field that is aSU−1(2) doublet
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with Lorentz spin 1/4. (We shall comment on the relation to Smirnov’s parafermion in
the SG model [38] below.) Technically the construction of form factors for the spin and
the parafermion field is very similar. In order to treat both cases simultaneously we write
Φa

s (x) for the renormalized field operators, withs = 0,1/4, corresponding to the spin and
the parafermion field, respectively. The objects of interest then are

〈0|Jµ(0)|θn,αn; . . . ; θ1, α1〉

(3.15)=−iεµν

(
n∑

j=1

pν(θj )

)
fαn...α1(θn, . . . , θ1), n even,

(3.16)〈0|Φα
s (0)|θn,αn; . . . ; θ1, α1〉 = f α

αn...α1
(θn, . . . , θ1), n odd.

Here all components refer to the charged basis. The current form factors have charge
e = 0 while that ofΦ±s (x) have chargee = ±1. The prefactor in the current form factor
ensures current conservation; the on-shell momenta arep0(θ)=M chθ , p1(θ)=M shθ .
As always in the form factor bootstrap Eqs. (3.15), (3.16) must be regarded as a “statement
of intent”. That is, the right hand is computed through the functional equation while the
interpretation as the matrix elements aimed at on the left hand side has to be justified by
additional considerations.

As input for the recursive functional equations the normalization of the starting members
has to be fixed. For the current a preferred normalization stems from the fact that the
associated Noether chargeQ should induceO(2) rotations on the spins, i.e.,[Q,Sa] =
iεabS

b. For the 2-particle form factor this converts into

(3.17)f+−(θ2, θ1)=−f−+(θ2, θ1)= 2i

θ2− θ1− iπ
+ · · · , θ2→ θ1+ iπ,

where the dots denote regular terms. Writingf+−(θ2, θ1)= f (θ2− θ1) the functionf (θ)

has to satisfy the functional equationsf (θ) = S2(θ)f (−θ) andf (θ + 2πi)= −f (−θ),
with S2(θ) from (3.1). They can be solved in terms of the function

y(θ) := sh
θ

2
e∆(θ),

(3.18)∆(θ) :=
∞∫

0

dt

t

cht (1+ iθ/π)− 1

(1+ et )sht
,

which enjoys the following properties

y(θ)= S2(θ)y(−θ), y(θ + 2πi)= y(−θ),
(3.19)y(θ)y(θ + iπ)=− π3/2e∆(0)

-
(1

2 − θ
2πi

)
-
(

θ
2πi

) , y(iπ)= i.

We also note

(3.20)∆(0)= 0.304637, ∆(θ) −→ −1

4
|θ | + iπ

4
sign(θ) for θ→±∞.
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Taking into account the residue condition (3.17) one obtains

(3.21)f+−(θ2, θ1)=−f−+(θ2, θ1)= i
y(θ2− θ1)

ch θ2−θ1
2

.

With the 2-particle form factor explicitly known one can proceed to the 4-particle form
factor. The formulas now get more involved and we defer the details to Appendix B.
The Lorentz spins = 1 is readily checked to be compatible withSU−1(2) covariance
via (3.11)–(3.13). The (one-component) Noether current in theO(2) model is the neutral
member of a hidden quantum group triplet [37], although the chargee =±2 partners are
non-local in the spin field.

For theΦα
s (x) fields a natural normalization is

(3.22)〈0|Φα
s (0)|θ,β〉 = f α

β (θ)= δβα e
αsθ .

Proceeding to the 3-particle form factor we note that because of charge conservation and
hermiticity there are only three independent components

f+++−(θ3, θ2, θ1)= f1(θ1, θ2, θ3)= f−−−+(θ3, θ2, θ1),

f++−+(θ3, θ2, θ1)= f2(θ1, θ2, θ3)= f−−+−(θ3, θ2, θ1),

(3.23)f+−++(θ3, θ2, θ1)= f3(θ1, θ2, θ3)= f−+−−(θ3, θ2, θ1).

The general 3-particle residue equation (A.9) in the chargee=±1 sectors

(3.24)
i

2
resθ3,2=iπ f α

α3α2α1
(θ)= δα3+γ

[
ηγ (e)

−1Sβγ
α2α1

(θ21)− δγα2
δβα1

]
f α
β (θ1),

thus translates into

(3.25)fk(u, v, θ)≈ 2i

u− v − iπ
Wk(v − θ), u→ v+ iπ,

where withη := η+(1)= e2πis and the notation from (3.6)

(3.26)W1(θ)=−ηSR(θ), W2(θ)= 1− ηST (θ), W3(θ)= 1− η−1S2(θ).

These functional equations can be solved for generics, the solution is described in
Appendix C. For the spin fields = 0 fixes our candidate form factors. For the parafermion
field we know thatSU−1(2) covariance (regardless of irreducibility) requiress = 1/4.
(The specific construction used in Appendix C removes the additive mod 1/2 ambiguities.)
As explained in Appendix A the condition that the parafermion field (and hence its form
factors) transform irreducibly as a isospin 1/2 doublet requires in addition

(3.27)ζ(θ3, θ2, θ1) := f1(θ3, θ2, θ1)− f2(θ3, θ2, θ1)+ f3(θ3, θ2, θ1)
!= 0.

For the solution constructed in Appendix C,ζ(θ3, θ2, θ1) can be shown to be proportional
to η2+ 1, so thats = 1/4 also entails the desired irreducible transformation law.

So far we didn’t say anything about the local structure of the parafermion fieldΦα
1/4(x)

supposed to underly the above solution of the form factor equations. We can address this
point by employing a result by Smirnov [38] on the existence of parafermionic fields
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in the sine-Gordon model. Smirnov’s fields have well defined exchange relations of the
form Ψa(x)Ψb(y) = Scd

ab(±∞)Ψd(y)Ψc(x), for ±x1 > ±y1, wherex1, y1 are the space
components ofx, y in a fixed Lorentz frame. For generic sine-Gordon couplingβ these
fields are non-local because the two limiting S-matrices are distinct. From the analysis of
the form factors of the energy momentum tensor one can see that our parafermion field is
theβ2→ 8π limit of Smirnov’s field. But thanks to (3.2) it is now alocal field. Indeed, for
the charged components the exchange relations assume the simple form

Φ±1/4(x)Φ
±
1/4(y)=Φ±1/4(y)Φ

±
1/4(x),

(3.28)Φ+1/4(x)Φ
−
1/4(y)=−Φ−1/4(y)Φ

+
1/4(x),

for all spacelike separated pointsx, y. Likewise the transformation properties under the
quantum group change qualitatively. As analyzed by several authors [13,24,38] in general
a dynamical quantum group symmetry of the S-matrix acts in a non-local way on the
field operators. In contrast the fieldΦα

1/4(x) transforms nicely as an irreducibleSU−1(2)
doublet. The situation is thus reminiscent of the Ising model, which can be viewed as
the n = 1 case of (2.1). There both the spin and the fermion are local fields of Lorentz
spin 0 and 1/2, respectively. Both are relatively non-local but generate equivalent sets
of scattering states. Though in the absence of a field theoretical construction of the
parafermion field it is difficult to examine this point, we expect the interplay between the
spin and the parafermion field in the XY QFT to be analogous.

4. Lattice computations

4.1. General setup

For the lattice regularization we consider a square lattice with action

(4.1)S =−K
∑
x,µ

S(x) · S(x + µ̂),

whereS(x) · S(x) =∑
a S

a(x)Sa(x) = 1. Solving the constraint withS1(x) = cosϕ(x),
S2(x) = sinϕ(x) the action reduces to the standard XY lattice action Eq. (2.18). The
correlation functions are defined as in the continuum theory except that the spatial
integrals are replaced by discrete sums. There is an enormous literature, both on numerical
simulations of the XY model [16] and on its high temperature expansion [8,34]. Presently
the best numerical estimate of the critical point for the standard action is [17]

(4.2)Kc = 1.1199(1).

Previous numerical investigations mostly concentrated on the comparison with the KT
theory. We will outline the aspects relevant here and some refinements in Section 6.1. Our
main goal however is to compare the continuum limit of the XY model with theO(2)
bootstrap theory.

In the rest of this section we collect some general information on our simulations and
continue with detailed discussions of the measurement of various observables in Sections 5
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and 6. All numerical simulations were done on anL× T lattice with periodic boundary
conditions in each direction. During the entire investigation two independently written
programs were employed and many cross checks were made. Both used multi-cluster
updating. The Ising spins are embedded like in Wolff’s single cluster algorithm [42]; the
resulting Ising model is then updated with a generalization of the Swendson–Wang [39]
multi-cluster algorithm. In one application of the program each run started from a random
configuration and consisted of a large number of sweeps of which a large initial proportion
were used solely for equilibration. In another application after initial equilibration the final
configuration of the run was stored and read in for the starting configuration of the next
run. In most cases the observables were measured using improved (cluster) estimators.
The final data sample of the many runs was averaged and the error was computed using the
jack-knife method.

Since we aim at achieving high precision, for many quantities to an accuracy of< 1%, a
considerable source of concern to us was the random number generator (RNG). Indeed at
an initial stage of this project we found that results obtained by various RNGs could differ
by many standard deviations. We thus subjected the RNGs to several tests, specific to the
model and the quantities considered here. The results are reported in Appendix E.

Numerical simulations of course are restricted to work in finite volume. In the next two
subsections we therefore discuss finite volume effects, first in the continuum and then on
the lattice.

4.2. Finite volume effects in the continuum

If a continuum QFT is confined in a box the physical observables will depend on the
geometry and boundary conditions. Consider first the massm(L) of the 1-particle state
on a cylinder of circumferenceL. Lüscher [26] has shown that in a theory without a
“three–point coupling” of this particle to itself or to any other single-particle state, for
large physical volumesz=ML� 1 the finite volume dependence of the mass is given by:

(4.3)D(z)≡ m(L)−M

M
= 1

π

∞∫
0

dt e−zcosht cosh(t)f (t)+ · · · ,

wheref (t) is the forward scattering amplitude at an off-shell point. Thus in these models
the infinite volume limit is approached rapidly at a rate∼ exp(−z) (from above if
f (0) > 0).

More explicitly in theO(n) sigma-models the amplitudef is given by

(4.4)f (t)= n− 1

2n

[
2S0(θ)+ n(n− 1)S1(θ)+ (n+ 2)(n− 1)S2(θ)

]
θ=t+iπ/2.

With the proposed S-matrix (2.12), (3.1) of theO(2) model one obtains

(4.5)f (t)= 2+ 2π2

t2+ π2/4

∣∣∣∣∣-
( 3

4 − it
2π

)
-
( 1

4 − it
2π

) ∣∣∣∣∣
2

,
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in which case Eq. (4.3) results in

(4.6)D(z)∼ 1.162475182
e−z√
z

[
1+ 0.36432/z+O

(
1/z2)].

Next, we consider the zero-momentum coupling in a square box of lengthL in each
direction. To get a feeling of the finite volume effects consider the expression forgR(L) in
the leading order 1/n expansion [10]. One obtains

(4.7)gR(L)= gR(∞)
[
1−√8πzA4e−z

(
1+O(1/z)

)+ · · ·],
with A4= 1/2. Although the 1/n expansion is not expected to be quantitatively applicable
to n = 2, one might hope that the qualitative features are correct, in particular, that the
finite volume effects are exponentially suppressed and secondly that the exponentA4 of
the multiplicative power correction is independent ofn. Some corroboration of this might
come from investigating the finite volume effects in a square box in an effective Lagrangean
framework similar to [26].

4.3. Finite volume effects in the lattice regularization

The particular lattice sizes used will be specified later, but they were generally selected
to enable studies of finite size effects at fixed correlation length and vice versa, subject of
course to restrictions due to the CPU power available to us.

For a couplinggR(K,L) depending on the bare couplingK and sizeL×L which tends
to gR in the continuum and infinite volume limits, we adopted theO(n) definition

(4.8)gR(K,L)=
(
L

ξ

)2[
1+ 2

n
− 〈(Σ

2)2〉
〈Σ2〉2

]
,

for n= 2, whereΣa =∑x S
a(x). In Eq. (4.8) and throughout Section 6,ξ is taken to be

(4.9)ξ = 1

2 sin(π/L)

√
G(0)

G(k0)
− 1,

wherek0 = (2π/L,0); cf. Ref. [12]. This correlation length converges in the thermody-
namic limit to the second moment correlation length 1/MR. In this connection we would
like to draw the reader’s attention to a subtlety which is discussed at the end of Section 4
in Ref. [6].

The Noether current on the lattice is defined by

(4.10)Jµ(x)=K
{
S1(x)∂µS

2(x)− S2(x)∂µS
1(x)

}
,

where∂µf (x)= f (x + µ̂)− f (x). Introducing its two point function as

(4.11)Jµν(q|K,L)=
∑
x

eiqx〈Jµ(x)Jν(0)〉,

with q = (q1, q2), the well-known Ward identity (for the standard action) reads

(4.12)
∑
µ

(
1− eiqµ

)
Jµν(q|K,L)= K

2

(
1− eiqν

)
E(K,L),
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where the energy expectationE is

(4.13)E(K,L)=
∑
µ

〈S(x) · S(x + µ̂)〉.

Next, we wish to define for a finite periodic lattice the counterpart of the transverse
current correlation functionI (k2) in (2.11).Jµν can naturally be decomposed into 3 pieces
(‘transverse’, ‘longitudinal’ and ‘harmonic’), as discussed in [33]. The harmonic piece is
concentrated at the origin in momentum space and has the valueJ11(0|K,L).

In the thermodynamic limit, because of the presence of a mass gap,Jµν(q|K,L) will
be a real analytic function; so it cannot contain any remnant of the harmonic piece (which
would be proportional to aδ function). The longitudinal and the transverse parts have to go
to the same limit asq→ 0 to avoid any non-analyticity at zero momentum. Being a contact
term the value ofJµν(0|K,L) has no physical meaning. For this reason, as explained
already in Section 2.1, we define the transverse part in such a way that it vanishes at zero
momentum in the thermodynamic limit. This suggests the definition

(4.14)I ((0, q2)|K,L) := J11((0,0)|K,L)− J11((0, q2)|K,L),

to which we shall refer as the SUB definition. It ensuresI (0)= 0 at finiteL andξ .
Another possible definition is suggested by the Ward identity, which for momenta of the

form q = (0, q2) reads

(4.15)I ((0, q2)|K,L) := K

2
E(K,L)− J11((0, q2)|K,L).

We can use (4.15) as an alternative definition for a lattice counterpart ofI (k2) in (2.11), to
which we shall refer to as the WARD definition. The normalizationI (0)= 0 is then only
restored in the thermodynamic limit, but for numerical purposes the WARD version often
is advantageous. To verify that (4.15) vanishes atq = 0 in the thermodynamic limit note
that Eq. (4.12) also entails

(4.16)J11((q1,0)|K,L)= K

2
E(K,L), ∀q1 �= 0.

SinceJ11((q1,0)|K,L) becomes a real analytic function ofq1 ∈ [−π,π] for L→∞
Eq. (4.16) remains valid also forq1 = 0 [33]. In the thermodynamic limit therefore the
WARD and the SUB definitions are equivalent. In Section 6 we shall consider both options.

Unfortunately few rigorous results exist on finite size effects forz= L/ξ(K,L)� 1 on
the lattice. In general we expect in theO(n) models, for a large class of observablesO and
for fixed bare couplingK, the finite size effects to be either of the form

(4.17)O(K,L)=O(K,∞)+ zA
O
e−z

[
CO

0 (K)+CO
1 (K)

1

z
+O(1/z2)

]
+ · · · ,

or the same withCO
i (K) replaced byO(K,∞)CO

i (K). Here either the amplitudesCO
i (K)

or O(K,∞)CO
i (K) are hoped to be almost constant for large correlation lengths. Further,

the dynamical assumption enters that the fall-off ise−αz with α = 1, as expected in the
absence of two-particle bound states. Further it seems reasonable to expectAO to depend
only on the form of the observable and not on the dynamics, e.g., not onn.
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As mentioned earlier one can probably, for certain correlation functions, better justify
these assumptions by performing a Feynman diagram analysis in the framework of an
effective massive lattice field theory analogous Lüscher’s in the continuum theory [26].
Here we only indicate some plausibility considerations based on the leading order in the
lattice 1/n expansion (viewed as a summation of bubble diagrams). For the coupling this
gives

ngR(K,L)= 2H(0)/m2
0+O(1/n),

(4.18)with H(0)−1= 1

L2

∑
p

(
Ep +m2

0

)−2
, K = n

L2

∑
p

(
Ep +m2

0

)−1
.

Hereξ = 1/m0 and the sums range over momentapµ = 2πnµ/L, with 0� nµ � L− 1,
µ= 1,2, andEp = 4

∑
µ sin2pµ/2. For the current two point function the leading term is

(4.19)Jµν(q|K,L)= n(n− 1)

2

1

L2

∑
p

[
eipµ − e−iPµ

][
e−ipν − eiPν

][
Ep +m2

0

][
EP +m2

0

] ,

whereP = p+ q , and for the energy expectation it is

(4.20)E(K,L)= n

K

1

L2

∑
p

∑
µ cospµ

Ep +m2
0

.

Starting from these formulae one can study separately the finite volume effects and lattice
artifacts in this approximation; the results confirm the before mentioned assumptions. We
stress again the big qualitative difference between the finite volume effects and the lattice
artifacts. Whereas the finite volume effects represent continuum physics and hence are
expected to be structurally universal, the lattice artifacts are in general non-universal. In
particular, for the spin 2-point function one finds in this frameworkAO = A2=−1/2 for
the exponent in (4.17), whereas for the current andgR we getAO = A4= 1/2. (Both the
current 2-point function andgR depend linearly on spin 4-point functions and perhaps this
accounts for the same exponentA4.) If one does not wish to adopt this framework the
exponents can be kept as fit parameters; cf. Section 6.

4.4. Lattice artifacts

After the extrapolation to infinite volume has been performed, the results can be regarded
as corresponding to a latticeO(2) action in infinite volume. The extrapolation to infinite
correlation length is usually hampered by the lack of information about the rate of
approach. Based on the sine-Gordon description of the KT transition [1] one of us [4] has
argued that for the XY model, say with standard action (4.1), the leading lattice artifacts are
calculablefrom the continuum sine-Gordon theory. This applies to observables like the S-
matrix or the two-point function of the Noether current, where already at finite correlation
length a preferred normalization exists. Implicit in this proposal is a certain degree of
action-independence of the leading lattice artifacts, but at present it is not clear to which
class of actions it applies. Later on we test this proposal for the standard action and the two
observables mentioned.
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Let UXY (ξ) denote such an observable, whereξ is the correlation length in lattice units
and the dependence on other variables is suppressed. ThenUXY (ξ), computed, e.g., with
the standard action is predicted to be of the form [4]

(4.21)UXY (ξ)= u0− u1π
2

4(lnξ + u)2
+O

(
(ln ξ)−4).

Here u0 is the continuum value andu1 is the leading correction. The parameteru is
action-dependent but should not depend on the physical quantity considered. Note the
extremely slow decay∼ 1/(lnξ)2. As explained in [4] the peculiar structure of the KT
phase diagram allows one to relate bothu0 andu1 to the continuum SG theory. Namely if
USG(ν) denotes the counterpart of the physical quantity considered in the continuum SG
theory with couplingν close toν = 0, then

(4.22)USG(ν)= u0+ u1ν
2+O

(
ν4).

The equality of the leadingu0 term in (4.21) and (4.22) simply reexpresses the link between
the XY model and the SG QFT alluded to in the introduction. Remarkably the coefficient
u1 of the first correction is likewise the same in both cases.

Our first application of these formulae is to the scattering phase shifts. Recall the
SG model S-matrix (2.12) with (2.16). Introducing the phase shifts bySI (θ |ν) =
exp(2iδI (θ |ν)), I = 0,1,2, and expanding inν at fixedθ yields

(4.23)δI (θ |ν)= δI (θ)+ ν2δ′I (θ)+O
(
ν4).

By constructionδI (θ) are the phase shifts of the proposedO(2) S-matrix (3.1). The O(ν2)

coefficients can be related to the lattice artifacts by the relations (4.22), (4.21). They come
out as

(4.24)δ′0(θ)= 0, δ′1(θ)=
πθ

6
, δ′2(θ)=−

πθ

12
.

This is used to predict the leading lattice artifacts in the phase shift analysis of Section 5.
It is also feasible to calculate the leading lattice artifacts for the two-point function of the

Noether current. In [4] this was done in two-loop perturbation theory. Alternatively, using
the current form factors of the SG model, the leading artifacts can also be calculated non-
perturbatively via the form factor bootstrap. We worked out the two-particle contribution
to this correction. The comparison with numerical data is presented in Section 6.

5. MC results for the phase shifts

We begin by numerically investigating the S-matrix. It is the prime input for the
bootstrap formulation and an appreciable discrepancy to the bootstrap result (3.1) would
immediately rule out that theO(2) bootstrap theory describes the continuum limit of the
XY model. The technique to numerically determine the S-matrix takes advantage of the
fact that the large volume dependence of the spectrum in a periodic (spatial box) encodes
information on the infinite volume S-matrix. For example, the volume dependence of
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the (stable) 1-particle mass is governed by the forward scattering amplitude [26], and
a determination of the low-lying two-particle spectrum gives a measurement of the low
energy two-particle phase shifts [25]. Here we restrict the discussion to a field theory in
1+ 1 dimensions, i.e., the “spatial box” in this case is just a circle of circumferenceL.
To our knowledge the first attempt to determine the phase shifts of the XY model was by
Vohwinkel [41], and we record his results in Appendix F.

5.1. 1-particle masses

We chose to measure on the same lattices as Vohwinkel, firstly since they are
practical and secondly for having the advantage of being able to compare independent
measurements. These lattices are listed in Table 1 together with the measured 1-particle
masses. In each case the “time” extent of the lattice isT = 2L and periodic boundary
conditions are imposed in each direction.

What is quoted are the results for the single particle masses obtained by fitting the zero-
momentum spin 2-point function with a 2-mass formula, with the second mass constrained
to bem2= 3m1. (The 1-mass fit and the unconstrained 2-mass fit give the same values for
m1 within the errors.) The three different values ofK correspond to correlation lengths
∼ 6,11,22. In all cases there is good agreement with the results of Vohwinkel.

All the lattices are chosen to havem(L)L > 10, so that finite volume effects on the
1-particle masses are expected to be very small according to Eq. (4.6). We denote the
resulting 1-particle mass bym.

In order to quantitatively test the latter expectation we measured the 1-particle masses on
lattices with the same three bare couplingsK as those in Table 1 but with half the previous
spatial extent. Our results are listed in Table 2. Also shown are the measured values of

Table 1
Values ofK and L used in the measurements, with the 1-particle massm(L) [41] obtained by
Vohwinkel [41] and our measurements,m(L)

K L m(L) [41] m(L)

0.86 64 0.1711(1) 0.17096(4)
0.92 128 0.09465(3) 0.09461(6)
0.97 256 0.04620(1) 0.04603(14)

Table 2
1-particle masses and finite volume effects

K L m(L) D Dtheor

0.86 32 0.17135(3) 0.0023(4) 0.0022
0.92 64 0.09478(3) 0.0018(10) 0.0012
0.97 128 0.04622(4) 0.0041(39) 0.0014
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the finite volume mass shiftsD = (m(L) − m(2L))/m(2L) andDtheor computed from
Eq. (4.6). At the smallest correlation length the measured shift is completely consistent
with our ansatz for the candidate S-matrix. However, lattice artifacts are to be expected
and unfortunately our measurements at the larger correlation lengths are too imprecise to
study these effects.

5.2. Phase shifts

For a numerical test of the proposed S-matrix (3.1) it is useful not to presuppose the
symmetry enhancement. That is we adopt the genericO(2)-invariant parameterization
(2.12) withn= 2. In terms of theSI (θ) the phase shifts are defined as

(5.1)SI (θ)= exp
{
2iδI (θ)

}
,

and can simplified to

(5.2a)δ0(θ)= δ1(θ)+ π

2
− arctan

θ

π
,

(5.2b)δ1(θ)=
∞∫

0

dw

w

sinwθ

(1+ eπw)
,

(5.2c)δ2(θ)= δ1(θ)− π

2
.

The last relation is responsible for the symmetry enhancement discussed in Section 3.1.
To measure the phase shifts on the lattice one sets out to determine the center-of-mass

momenta of 2-particle eigenstates of the transfer matrix, since due to the periodic boundary
condition in the spatial direction these momenta are quantized according to

(5.3)pnL+ 2δ(θn)= 2πn, pn =msinh
1

2
θn.

To accomplish this one measures correlators

(5.4)C(I)
xy (t)= 〈OI (x,0)OI (y, t)〉,

where theO(I) are 2-spin operators with zero total momentum in the isospin channels
I = 0,1,2:

(5.5)OI (x, t)= 1

L

L−1∑
z=0

(PI )
cd
1bI S

c(z, t)Sd (z+ x, t), b0= 1, b1= b2= 2,

thePI being the projectors in Eq. (2.14). TakingT large enough so that terms proportional
to e−2mT can be neglected, one has

(5.6)C(I)
xy (t)=

∑
n

e−Entψ(I)
n (x)ψ(I)

n (y),

where

(5.7)ψ(I)
n (x)= 〈vac|OI (x,0)|n〉,
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is the “wave function” of the corresponding state. In theI = 0 channel the vacuum also
contributes as an intermediate state. In this case one can subtract this contribution from the
beginning, i.e., consider the connected correlator. Alternatively, one can take the fullI = 0
correlator, keeping in mind that in this case the vacuum is the lowest energy intermediate
state.

Now there are at least two ways to proceed. The first is to extract the energiesEn of the
2-particle states which dominate the correlation function Eq. (5.6) for sufficiently larget ,
and then compute the corresponding center of mass momenta via

(5.8)En = 2E(1)(pn)= 2
√
p2
n +m2.

This was the strategy used in the pioneering paper of Lüscher and Wolff [25] and adopted
by Vohwinkel in his studies [41]. In Eq. (5.8) lattice artifacts have been neglected and the
physical volume is taken so large that the finite volume dependence of the single particle
masses is negligible.

In Ref. [5] an alternative was suggested which starts from the observation that the
relative momentum 2pn of the two particles is also encoded in the wave function: in the
symmetric channels (I = 0,2) one should have

(5.9)ψn(x)=Acospn(x −L/2), for R < x < L−R,

and similarly with sinpn(x − L/2) for the I = 1 channel. HereR is the “interaction
range” characterized by the requirement that for a relative distancex > R the two particles
propagate essentially freely. Note that Eq. (5.3) assumes that the box is large enough to
accommodate the two particles without “squeezing” them, i.e.,L/2>R.

The rankN of the matrixC(t) in Eq. (5.6) isL/2,L/2−1 andL/2+1 in theI = 0,1,2
channels, respectively. (This is when the connected correlation function is considered in
theI = 0 channel, otherwiseN = L/2+ 1 also in this channel.) We assume that fort � t0

(with somet0) no more thanN states contribute toC(I)
xy (t), i.e., that the contribution from

the statesn >N can be neglected completely.
Lüscher and Wolff [25] suggested to determine the energiesEn from the generalized

eigenvalue problem2

(5.10)C(t)vn = λn(t, t0)C(t0)vn.

Provided the sum in Eq. (5.6) is restricted toN terms, 1� n � N , the eigenvalues of
Eq. (5.10) are givenexactlyby

(5.11)λn(t, t0)= e−En(t−t0).

It is easy to show that (apart from the normalization)

(5.12)ψn(x)=
∑
y

Cxy(t0)vn(y).

2 This equation was considered already earlier by Michael [29], in connection with a variational approach
evaluating the static potential in lattice gauge theory.
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A problematic feature of the generalized eigenvalue equation (5.10) is that its solutions
become unstable ifC(t0) has very small eigenvalues. This can be seen by observing
that λn(t, t0) are the eigenvalues of the ordinary eigenvalue equation for the matrix
C(t0)

−1/2C(t)C(t0)
−1/2. Of course, the exact correlation matrixC(t0) is positive definite,

but the statistical noise will spoil this property, and the measured matrix can have even
negative eigenvalues, especially for larger values oft0 and for large number of operators
N . For this reason in Ref. [25]N ∼ L/4 operators were used (actually, in momentum space
rather then inx-space) and the values oft0 were restricted to 0 and 1.

To avoid the instability, we restrict first the correlation matrix to anM-dimensional
subspace (M < N ) spanned by the firstM eigenvectors ofC(t0) with the largest
eigenvalues (still stable against the statistical fluctuations) [5,31]. The generalized
eigenvalue problem is then written for the new correlation matrixC(t) in this reduced
basis. Of course, to read off the momenta, the wave functions have to be transformed back
into the original basis labeled by the relative distancex.

Following Refs. [25,29] one can obtainEn from the plateau of the “effective energy”

(5.13)Eeff
n (t)= ln

λn(t, t0)

λn(t + 1, t0)
,

and determine the corresponding momentumpn from Eq. (5.8).
The alternative way is to fit the wave functionψn(x) by the ansatz in Eq. (5.9) forx0 �

x � L/2. We have verified that it is safe to takex0 � 3/m. There is also a large window
where the results are not sensitive to the variation ofM, for different choices oft0. For
the largest correlation lengthξexp≈ 21.6 we could taket0 as large as 10, which would be
impossible without the preceding truncation.

In [5] we concluded that the wave function method has somewhat smaller errors and is
more stable. In particular the smallest momentum obtained from the 2-particle energy is
quite sensitive to the error in the single particle mass, while in the wave function method
the value of this mass is not used at all. Although we measured the phase shifts by both
methods and checked their consistency, only our results from the wave function method
will be presented here. Vohwinkel’s results on the energy levels are recorded in Table 15.

Fig. 1 shows the wave functions of the first six 2-particle states in theI = 0 channel
obtained using Eqs. (5.10), (5.12). Fig. 2 displays the deviations of the first three wave
functions from the corresponding free one,Acosp(x − L/2) in the I = 0 channel. As
expected, the true wave functions deviate from the free ones only for small relative
distances of O(ξexp). The plots illustrate that the momentump can be determined quite
precisely by fitting the wave function in some properly chosen rangex0 � x � L/2.
Note, however, that in Eq. (5.3) the momentumpn is multiplied byL, hence it has to be
determined to good precision in order to yield a reasonable error for the phase shift. In our
simulations therefore only the phase shifts at the first 3–4 momenta could be determined
with a reasonable error.

A summary of our measurements of the phase shifts is given in Table 3. Figs. 3 to 5
compare these results with the theoretical curves of Eqs. (5.2a)–(5.2c). The leading lattice
artifacts according to Eq. (4.24) for the largest correlation lengthξexp= 21.645(5) are also
shown. The present overall results are certainly consistent with the theoretical expectations.
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Fig. 1. The first six wave functions〈vac|OI (x)|n〉 in theI = 0 channel forK = 0.97,L= 256.

Fig. 2. Deviations of the first 3 wave functions from the ansatzAcosp(x −L/2).

6. MC results for correlation functions and 4-point coupling

Here we describe our MC results for the intrinsic 4-point couplinggR and for the current
and spin 2-point correlation functions in Fourier space. In addition we reconsider some
aspects of the Kosterlitz–Thouless (KT) theory.

A list of the lattices considered together with some of the MC results is given in
Table 4. We group the lattices into families labeled 1 to 12. Members of a given family
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Table 3
The phase shiftsδI (p) for the first 3 states (n= 1,2,3) in different isospin channels, with the values
of p/m determined from the wave function. The continuum results[p/m]ex and[δI (p)]ex calculated
from the S-matrix are also given

K L I n p/m [p/m]ex δ(I )(p) [δ(I )(p)]ex

0.86 64 0 1 0.297(3) 0.2976 1.517(15) 1.5138
2 0.885(2) 0.8895 1.446(12) 1.4186
3 1.468(4) 1.4760 1.397(20) 1.3529

0.92 128 0 1 0.269(1) 0.2677 1.512(8) 1.5193
2 0.804(1) 0.8007 1.413(6) 1.4307
3 1.330(2) 1.3297 1.366(11) 1.3669

0.97 256 0 1 0.272(7) 0.2745 1.535(43) 1.5180
2 0.825(5) 0.8210 1.408(27) 1.4279
3 1.367(8) 1.3632 1.342(47) 1.3180

0.86 64 1 1 0.548(6) 0.5349 0.146(34) 0.2161
2 1.108(3) 1.0828 0.223(16) 0.3616
3 1.684(4) 1.6416 0.218(19) 0.4474

0.92 128 1 1 0.495(2) 0.4855 0.140(15) 0.1992
2 0.999(1) 0.9806 0.231(7) 0.3405
3 1.511(1) 1.4846 0.265(7) 0.4280

0.97 256 1 1 0.491(16) 0.4969 0.237(94) 0.2031
2 1.024(7) 1.0041 0.230(42) 0.3455
3 1.535(6) 1.5205 0.350(36) 0.4328

0.86 64 2 1 0.260(2) 0.2663 −1.423(11) −1.4562
2 0.790(1) 0.8072 −1.179(6) −1.2726
3 1.334(2) 1.3612 −1.014(10) −1.1607

0.92 128 2 1 0.236(1) 0.2419 −1.433(7) −1.4660
2 0.721(1) 0.7318 −1.228(5) −1.2930
3 1.213(1) 1.2317 −1.067(7) −1.1812

0.97 256 2 1 0.242(6) 0.2475 −1.432(38) −1.4638
2 0.739(4) 0.7491 −1.230(21) −1.2881
3 1.262(7) 1.2614 −1.181(41) −1.1763

correspond to the same couplingK but different sizeL. Throughout this sectionξ denotes
the second moment correlation length (4.9), which is a function ofK andL. We denote
the ‘apparent’ physical size of the lattice byz′ = L/ξ(K,L). For most lattices we made
200k measurements where we measured all the physical quantities above supplemented
by an additional 2M measurements for the “bulk” quantities (ξ , χ andgR) only. We also
took data on ‘thermodynamic’ lattices (L/ξ ≈ 14). These are reported in Appendix E.
We did not use them in our analysis because there were some not completely understood
inconsistencies between data taken on different machines, with different random number
generators and different programs.
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Fig. 3. I = 0 phase shifts. Points denoted by circle, square and diamond correspond to correlation
length≈ 6, 11 and 22, respectively. The solid line is the continuum result, Eq. (5.2a).

Fig. 4.I = 1 phase shifts. The notations for data points are the same as in Fig. 3. The solid line is the
continuum result, the other two lines include leading corrections due to finiteξexp of Eq. (4.24) with
u= 1.46 (see [17]): the dashed line forξexp≈ 22, the dot-dashed line forξexp≈ 11.

6.1. KT theory

We begin by studying the dependence of the correlation lengthξ and the susceptibility
χ on the couplingK and compare our MC results to the predictions of the KT theory. For
this purpose we first need to extrapolate the measured values ofξ andχ to infinite volume.
This is done by a finite size scaling analysis.
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Fig. 5.I = 2 phase shifts. The notations are the same as in Fig. 4.

For fixed coupling the size dependence of the correlation length is assumed to be given
by

(6.1)ln ξ(K,L)= ln ξ(K,∞)+ zA2e−z
[
C

ξ
0(K)+C

ξ
1(K)

1

z
+ · · ·

]
.

Here z := L/ξexp(K,∞) whereξexp is the true (“exponential”) correlation length.ξexp

is expected to be very close to the second moment correlation length: the form factor
bootstrap predictsξexp/ξ = √γ2/δ2 = 1.00089 and the lattice models are certainly not
very far from the form factor construction; therefore at our≈ 0.001 accuracy the distinction
between the two correlation lengths can be neglected. For the exponent in (6.1) we expect
Aξ =A2=−1/2 on account of the considerations outlined in Section 4.3, but we also tried
different values of that exponent in order to see if the data indeed support this expectation.

We produce a global fit of the finite size effects by fitting all the data in Table 4 to the
form (6.1) truncating after theCξ

0 term and takingCξ
0 to be independent ofK. The values

of ξ(K,∞) are fit parameters, one for each of the twelve families. Since initially we do
not know the values ofL/ξ(K,∞) we first replace it byL/ξ(K,L); this leads to a first
estimate ofξ(K,∞) which is then used in the fit ansatz. Iterating this procedure about 5
times leads to convergence of our extrapolated values ofξ(K,∞). It turns out that this
type of fit favors a value ofA2 near−1/2 in agreement with expectation; for this value of
the exponent we obtain chi2/dof= 0.9 with 19 degrees of freedom.

Furthermore, including aCξ
1 term makes the fit very insensitive to the value of the

exponentA2, both as far as the fit quality and the extrapolated values ofξ(K,∞) are
concerned. ForA2=−1/2 the coefficientCξ

1 comes out consistent with zero. Therefore in
Table 5 we only report the values obtained with the simplest fit withA2=−1/2 and only
one finite size correction term.

Fig. 6 illustrates thez dependence of the correlation length forK = 0.97.
The FS analysis of the susceptibility is analogous, but we don’t need any iteration, since

we start already with the rightz values. Again the data favor a value near−1/2 if we



J. Balog et al. / Nuclear Physics B 618 [FS] (2001) 315–370 343

Table 4
Lattice parameters and results

Label K L ξ χ gR z′

1 0.86 24 5.728(1) 57.07(11) 7.533(3) 4.2
1 0.86 29 5.795(1) 58.82(12) 8.147(4) 5.0
1 0.86 32 5.815(2) 59.33(2) 8.357(8) 5.5
1 0.86 40 5.833(1) 59.814(9) 8.672(7) 6.9
1 0.86 64 5.839(1) 59.956(7) 8.774(14) 11.0

2 0.92 42 10.314(2) 153.76(4) 7.484(3) 4.1
2 0.92 52 10.466(2) 159.58(4) 8.201(5) 5.0
2 0.92 68 10.536(2) 162.28(4) 8.690(8) 6.5
2 0.92 94 10.548(5) 162.79(7) 8.855(27) 8.9

3 0.93 64 11.861(4) 198.05(7) 8.436(10) 5.4
3 0.93 80 11.905(2) 199.95(3) 8.755(7) 6.7

4 0.97 86 21.146(4) 525.11(11) 7.539(2) 4.1
4 0.97 108 21.467(6) 545.85(17) 8.313(6) 5.0
4 0.97 136 21.589(9) 553.88(28) 8.745(21) 6.3
4 0.97 194 21.633(11) 556.33(29) 8.934(26) 9.0

5 0.975 128 23.546(6) 641.53(19) 8.514(9) 5.4

6 1.00 160 39.219(8) 1522.2(4) 7.585(3) 4.1
6 1.00 200 39.801(7) 1581.2(4) 8.345(4) 5.0
6 1.00 256 40.025(11) 1605.0(5) 8.798(10) 6.4
6 1.00 360 40.104(15) 1611.2(7) 8.955(22) 9.0

7 1.005 256 45.247(13) 1980.7(6) 8.618(9) 5.7

8 1.0174 360 63.889(22) 3596.4(1.2) 8.631(10) 5.6
8 1.0174 500 64.314(91) 3639.2(6.2) 9.05(12) 7.8

9 1.02 276 67.934(45) 3936.7(3.1) 7.587(7) 4.1
9 1.02 344 68.942(47) 4091.1(3.0) 8.375(13) 5.0
9 1.02 560 69.500(25) 4170.6(1.8) 8.997(18) 8.1

10 1.04 578 142.09(15) 14164.0(20.0) 7.600(15) 4.1
10 1.04 726 144.43(12) 14743.0(15.0) 8.404(18) 5.0

11 1.05 930 230.10(29) 32589.0(46.0) 7.586(19) 4.0
11 1.05 1160 232.83(22) 33800.0(37.0) 8.392(19) 5.0

12 1.06 2100 418.0(1.6) 93724.0(428.0) 8.410(79) 5.0

truncate with theCχ
0 term, and if we include the next term, the fit becomes insensitive

to A2. In Table 5 we present the results from the simplest fit assumingA2=−1/2, which
has a chi2/dof of 0.7 with 19 degrees of freedom.

Next, we study theK-dependence of the infinite volume quantities. One of the best
known predictions of KT theory [22] is the unusual coupling dependence of the correlation
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Table 5
Correlation length and susceptibility extrapolated to infinite volume using a global fit

K 0.86 0.92 0.93 0.97 0.975 1.00
ξ(K,∞) 5.8391(5) 10.549(1) 11.918(2) 21.627(4) 23.655(6) 40.096(5)
χ(K,∞) 59.962(5) 162.86(26) 200.52(28) 556.32(11) 649.15(19) 1611.4(3)

K 1.005 1.0174 1.02 1.04 1.05 1.06
ξ(K,∞) 45.410(13) 64.137(22) 69.505(20) 145.424(95) 234.93(18) 421.1(1.6)
χ(K,∞) 1999.1(6) 3631.1(1.2) 4173.0(1.4) 15017.0(13.0) 34512.0(30.0) 95502.0(436.0)

Fig. 6.ξ(K,L) vs. exp(−z)/√z atK = 0.97.

length. Close to the critical pointKc , ξ is predicted to diverge asξ ∼ exp(b/
√
τ ), where

τ =Kc −K is the reduced coupling andb is a non-universal constant. In more detail, the
sine-Gordon description of the KT transition entails (using Eqs. (8.13) and (8.14) of [1]3)

(6.2)ln ξ(K,∞)= b√
τ
− u+ c

√
τ + · · · ,

whereu andc are again non-universal constants and the dots stand for higher powers inτ .
We fitted theξ(K,∞) data to the form (6.2) without higher terms, leaving out different
numbersnskip of the lowξ families to see how stable the fit parameters are. The results are
presented in Table 6. Note that some of the fits have an unacceptable chi2. In any case, the
determination ofu is not very stable. This situation could be a sign of the inappropriateness
of the ansatz (6.2), or of some problem with our data or it could mean that we are still too
far from the critical point, so that asymptotic formulae cannot yet be applied reliably. In
further fits below that do involveu, we use the value appropriate to the number of discarded
families. A visual illustration of thenskip= 1 fit is shown in Fig. 7(a).

We should mention that Hasenbusch and Pinn [17] have determined the constantsb and
u by their method of matching to the exactly solvable BCSOS model; their values are
u= 1.46(1) andb = 1.879(4), in rough agreement at least with some of our estimates. It

3 Note that Eq. (8.15) of [1] contains a misprint.
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Table 6
Fit of the infinite volume correlation length to the ansatz (6.2);nskip denotes the number of lowξ
families discarded

nskip b u chi2/dof

1 1.865(1) 1.280(8) 27/8
2 1.866(2) 1.286(9) 27/7
3 1.875(3) 1.340(16) 11/6
4 1.873(4) 1.332(21) 11/5
5 1.886(1) 1.414(40) 4.9/4
6 1.885(9) 1.406(58) 4.9/3
7 1.86(2) 1.22(15) 3.3/2
8 1.86(3) 1.21(18) 2.2/1

(a)

(b)

Fig. 7. Illustration of KT scenario. (a) lnξ versusτ and a fit to (6.2); (b) lnχ versus lnξ and a linear
fit.

should be noted, however, that their method avoids the problem of controlling subleading
corrections like the third term in Eq. (6.2).

KT theory also predicts the asymptotics ofχ(ξ) for large ξ (at least up to possible
logarithmic corrections),

(6.3)χ ∼ ξ2−η, with η= 1/4.
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Fig. 8. lnχ − 1.75 lnξ versusQ and a linear fit on the data from theξ � 39 lattices.

Table 7
Fits of lnχ − 1.75 lnξ to linear function ofQ; nskip denotes the number of lowξ families discarded

nskip 1 2 3 4 5 6 7 8

chi2/dof 44/9 32/8 8.2/7 5.4/6 2.9/5 0.6/4 0.5/3 0.5/2

A linear fit of lnχ versus lnξ is shown in Fig. 7(b). The slope is 1.73, which is very close
to the expected result. The fit is visually good, but even if we omit families 1, 2 and 3 we
get a huge value of chi2/dof≈ 288/7, indicating the presence of non-negligible subleading
terms. Irving and Kenna [20], following Butera and Comi [9] (see also [18]) argued that
the Kosterlitz–Thouless theory implies the following refinement of (6.3):

(6.4)χ ∼ ξ2−η(ln ξ)−2r ,

with r =−1/16. This would in particular mean thatχ grows faster thanξ1.75, whereas the
data on the contrary indicate a slower increase.

On the other hand one of us [4] has argued that the Kosterlitz–Thouless theory implies
r = 0, with a specific additive correction to (6.3): the renormalization group invariant
quantityQ was introduced, which for largeξ behaves as

(6.5)Q= π2

2(lnξ + u)2
+O

{
(ln ξ)−5}.

It was then argued that the correct asymptotic formula, instead of (6.4), is

(6.6)lnχ ∼ 7

4
ln ξ +O(Q).

Taking u from Table 6 the relation (6.6) can again be tested against the data. We fitted
lnχ − 1.75 lnξ againstQ, discarding successively more and more lowξ families; in the
fits we used the best value ofu corresponding to the same number of discarded families.
The results are given in Table 7 and plotted in Fig. 8.
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Starting withnskip= 3 the fits are acceptable, but of course it should be remembered that
we are not quite sure which value ofu should be used. We do not list the fit parameters,
but they are quite stable. So one can say the data support the prediction (6.6).

We will use the variableQ as the quantity characterizing the distance from the
continuum limit.

6.2. Determination ofgR

Lattice determinations ofgR can be based either on the high temperature expansion or
on numerical simulations. The results obtained via the high temperature expansion and the
standard action (4.1) are

(6.7)gR= 9.15(10) [8], gR= 9.10(5) [34].

In the numerical simulations we again aimed at achieving a precision of better than
one percent. For the necessary extrapolation to the infinite volume we use the procedure
outlined before, i.e., we fit the data to the ansatz

(6.8)lngR(K,L)= lngR(K,∞)+ zA4e−z
[
C

gR
0 (K)+C

gR
1 (K)

1

z
+ · · ·

]
,

where, as described in Section 4.3, there are arguments suggestingAgR = A4 = 1/2. As
opposed to the situation withξ andχ , with this value, the leading finite size correction
alone does not properly describe the FS dependence. If we instead use the optimized
valueA4 = 0.8, a subleading finite size correction is not needed. It is gratifying that the
extrapolated values are almost independent of which of the two options we choose. We
report the infinite volume values obtained withA4= 1/2 and two FS correction terms as
well as those with only the leading FS correction andA4= 0.8 in Table 8. Both fits have a
chi2/dof around 1.

Finally we turn to the continuum limit ofgR. One of us [4] has argued that the leading
lattice artifacts are proportional to the quantityQ, which in turn depends on the para-
meteru extracted from the fits in Table 6. We present in Table 9 the results of fits of the
infinite volumegR values to a linear function ofQ; we are reporting the results obtained
by discarding different numbers of lowξ values, obtained with the correspondingu value.

Table 8
Fits togR with A4 = 1/2 using 2 finite size parameters (upper line) and withA4 = 0.8 using only
the leading finite size parameter (lower line)

K 0.86 0.92 0.93 0.97 0.975 1.00
gR(K,∞) 8.790(6) 8.877(6) 8.900(7) 8.952(6) 8.967(11) 8.989(6)
gR(K,∞) 8.794(3) 8.882(4) 8.906(6) 8.958(4) 8.973(10) 8.995(4)

K 1.005 1.0174 1.02 1.04 1.05 1.06
gR(K,∞) 8.993(10) 9.015(11) 9.026(8) 9.039(14) 9.053(16) 9.062(9)
gR(K,∞) 8.999(9) 9.022(10) 9.031(7) 9.044(13) 9.058(15) 9.067(9)
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Table 9
Fits of gR(K,∞) to a linear function ofQ; nskip denotes the number of lowξ families discarded.
The two columns correspond to the two rows of Table 8

nskip gR(Kc,∞) chi2/dof gR(Kc,∞) chi2/dof

1 9.124(8) 2.2/9 9.129(7) 4.4/9
2 9.120(10) 2.4/8 9.124(9) 3.5/8
3 9.127(15) 2.1/7 9.132(12) 3.0/7
4 9.125(20) 2.1/6 9.131(18) 3.0/6
5 9.140(25) 1.4/5 9.148(22) 1.6/5
6 9.134(33) 1.3/4 9.138(31) 1.4/4
7 9.108(40) 0.4/3 9.112(38) 0.3/3
8 9.099(43) 0.8/2 9.105(41) 0.9/2

The fits are generally of good quality, but the resulting continuum values ofgR depend
noticeably on the number of skipped values.

Our MC results are to be compared with the result of the form factor computation from
Appendix D

(6.9)gR= 9.10(4).

6.3. The current correlation function

Here we compare the bootstrap result for the current two-point function (2.11) with the
lattice measurements. The extrapolation of the lattice data to the continuum is done by
means of a two-step procedure, which is a variant of the method used forgR. We first
perform a FS analysis for those relatively short correlation lengths for which we could
afford to measure the correlation function on lattices of large physical size. Using the
FS scaling coefficients determined this way we are able to extrapolate the results of our
measurements, corresponding to moderately large physical size, to infinite size. In the
second step we take the continuum limit by extrapolating our results for infinite correlation
length.

For the first step we adopt an additive form of the FS scaling hypothesis:

(6.10)I (q;K,L)= I (q;K,∞)+ zA
I

e−z
[
CI

0(q;K)+CI
1(q;K)

1

z
+ · · ·

]
.

We note that for the WARD case the subtracted correlation function is a linear combination
of a 2-point function and a 4-point function; therefore, by the arguments used before one
expectsAI =A4= 1/2.

Compared to the case ofgR, the analysis here is complicated by momentum dependence
and also the fact that we have used two alternative definitions (SUB and WARD) of the
current correlation function. To be able to compare the results with each other and with the
bootstrap calculation we used the dimensionless momentum variableq := p/MR , where
MR is the second moment mass. We interpolated our lattice results to integerq values
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Fig. 9. Test of FS scaling:I (25) in SUB and WARD definition versus
√
ze−z. The three

(approximately) parallel lines with negative slope correspond to the SUB data; increasing values
correspond to families 2, 4 and 6, respectively. The two (approximately) parallel lines with positive
slope are the WARD data for families 2 and 4. There are no WARD data available for family 6.

q = 1,2, . . . ,50 by fitting the measured values with the 8-parameter formula

(6.11)I (q)=
10∑
k=3

mk
q2

k2+ q2
.

This formula is motivated by the spectral representation and with the 8 parameters{mk} it
gives excellent representation of the current correlation function for all our lattices in the
rangeq < 50.

We fitted the leading coefficientCI
0(q) (ignoring itsK dependence and any subleading

terms) using the four data points of families 2, 4 and 6 for the SUB case and families 2 and
4 for the WARD case. (Unfortunately, the WARD data are not available for family 6, except
for the lattice 6 withL= 200.) The results of these fits forq = 25 are shown in Fig. 9. The
fact that the linear fits are nearly parallel shows that our assumption of FS scaling works
here. More importantly, one sees that the difference between the two definitions disappears
at largez, as it should.4 We also note that FS corrections have opposite signs for the SUB
and WARD cases and that the latter are much smaller. These qualitative features remain
valid also for otherq-values, although for small momenta the FS corrections for WARD
data are no longer minute compared to the SUB ones at the sameq . On the other hand for
larger momenta the difference is even more pronounced.

Before turning to the infinite volume extrapolation let us briefly digress on the relative
size of the statistical errors in the WARD and SUB data. In Fig. 10 these errors are shown
as a function of the momentumq for both methods, for lattice 12. One sees that, with the
exception of the first few points, the WARD data have much smaller statistical errors, for
large momenta by about an order of magnitude! This remains true for all other lattices.
The explanation is that before subtraction, the zero momentum component of the Fourier
transform of the current correlation function has the largest fluctuation and its fluctuations

4 Note that in this analysis we replacedz by z′.
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Fig. 10. Absolute statistical errors for SUB (increasing) and WARD (decreasing) current data as a
function ofq, for ξ = 421,L= 2100. The continuous lines are fitted for convenience.

decrease with momentum. Already atq ∼ 4–5 the fluctuations are much smaller. If we
subtract the zero momentum component, all the SUB points inherit its large error and
beyondq > 5 the errors are practically constant. On the other hand, since the action density
is known with a very good precision the errors of the WARD data points are almost the
same as the unsubtracted ones and rapidly decrease with increasing momentum. Forq less
than 3∼ 4, the SUB data have smaller errors since the fluctuations ofI (q) andI (0) cancel
due to their strong correlation. Because of these two advantages of the WARD method (for
not too low momenta), from now on we will use the WARD data exclusively.

Let us now address the extrapolation to infinite lattice size. This is done by determining
the FS coefficients in (6.10) from a small reference lattice and then use them to do the
extrapolation for all other lattices. We used lattice family 4 to determine the coefficients,
which is the family with four sizes and the largest coupling. Using family 2 instead leads to
slightly different results that allow one to estimate the systematic error in the extrapolation
procedure. For illustration let us quote the (absolute) statistical error stat(q) and the
(absolute) systematic error sys(q) obtained thereby atq = 5,15,25: stat(5) = 0.0002,
sys(5) = 0.0006, stat(15) = 0.0001, sys(15) = 0.0003, stat(25) = 0.0001, sys(25) =
0.0001. One sees that the errors are small and the infinite volume extrapolation is under
control.

In the final step the extrapolation to infinite correlation length has to be performed.
Since the largest lattice 12 already corresponds to a correlation length ofξ = 418 one
might be tempted to regard this as superfluous. However, if one were to take these data
as representing the continuum limit one would have to conclude that the XY QFT does
not coincide with theO(2) bootstrap theory! This is because, in contrast to thegR

measurement, the statistical errors here are very small and the data differ significantly from
the bootstrap result. Moreover, as explained below, the truncation error in the bootstrap
computation is under good control. The situation is illustrated in Fig. 11.

In general, it is difficult to strictly control the systematic error in a form factor
computation caused by the truncation in the number of intermediate particles. One only
knows that the truncated result provides a strict lower bound on the exact answer, since
(for a two-point function) all multi-particle contributions are positive. In theO(2) model,
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Fig. 11. Thermodynamic values of the current two-point function atξ = 418 versusq. The solid line
is the 2+ 4 particle form factor result and the dashed line is the absolute upper limit.

however, we also have a strict upper bound. This is because the exactI (q) is known to be
increasing and to approach the value 2/π ≈ 0.637 at infinite momentum; cf. (2.17). On the
other hand the 2+ 4 particle approximation is likewise increasing and approaches 0.621
at infinity; the difference 0.016 is an upper bound on the error made by the truncation,
because also the higher particle contributions are monotonically increasing. The true value
of the bootstrap functionI (q) is somewhere between the 2+ 4 approximation and this
approximation+0.016, shown as a dashed line in Fig. 11. For the relatively low momentum
range we are interested in, the true value is probably closer to the 2+ 4 value than to the
upper limit.

If we use all our data to perform an extrapolation to infinite correlation length, the
situation changes drastically. We assume a cutoff dependence asymptotically linear inQ

(6.12)I (q;K,∞)= I (q)+ I ′(q)Q+O
(
Q2),

and extrapolate our measurements to infinite correlation length by means of a linear fit
to the data points corresponding to families 10, 11 and 12. Our thermodynamic data
(for families 2,4,6,9,10,11,12) together with this fit is shown in Figs. 12 and 13 forq =
5,15,25. For concreteness we usedu= 1.33, corresponding tonskip= 4 in Table 6, in all
our fits. Varyingu around this value we observed that our results are rather insensitive to
the precise choice ofu in the range 1.2–1.5.

From these figures one infers that the approach to the continuum limit, forq > 10,
is non-monotonic. While this is not unusual in itself, it is most remarkable that for the
momentum rangeq > 20, the turning point is aroundξ ∼ 40, a rather large value. Beyond
the turning point the data behave as expected and follow a curve that is approximately
linear inQ. If we extrapolate our measurements to the continuum limit using the linear
fit, the extrapolated points agree reasonably well with the form factor calculation. This is
shown in Fig. 14, which is one of the main results of this paper. According to this figure
the current two point function of the XY QFT is very close to that of theO(2) bootstrap
theory. The absolute difference between the extrapolated points and the 2+4 FF result is in
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Fig. 12. Thermodynamic values of the current correlation function for lattice families
2,4,6,9,10,11,12 for q = 5 versusQ. The solid horizontal line shows the 2+ 4 form factor re-
sult and the dashed horizontal line is the absolute upper limit. The linear fit is based on the three
biggest lattices, corresponding to families 10, 11 and 12.

(a)

(b)

Fig. 13. (a) same as Fig. 12 forq = 15; (b) same as Fig. 12 forq = 25.

the range[0.0003,0.0032]. This difference is positive and much less than 0.016, consistent
with the hypothesis that it is due to higher particle contributions.

Not only the extrapolated continuum valuesI (q) but also the coefficientI ′(q) governing
the rate of approach can be compared to theory. In the theoretical framework presented in
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Fig. 14. Thermodynamic values of the current two-point function extrapolated to the continuum limit
versusq. The solid line is the 2+ 4 particle form factor result and the dashed line is the absolute
upper limit.

Fig. 15. Fitted values of the coefficientsI ′(q) versusq. The solid curve is the perturbative result of
[4] and the dashed curve is the leading (2-particle) form factor contribution.

Ref. [4] (and recalled in Section 4) this coefficient can be calculated from the continuum
SG theory. In [4] this was done in asymptotically free perturbation theory at two-loop order.
This is expected to be valid for large momenta subject to the additional constraint [4]
logq  √3/(2Q). Taking Q ∼ 0.1 our data for 10< q < 50 are just in the window
of validity. Here we calculated the leading 2-particle contribution to the first correction
coefficients using the known [19] 2-particle form factor of the Noether current in the SG
theory. In the lattice theory we defineI ′(q) as the slope of the linear fit on the data for the
3 largest lattice families, 10,11,12. (Recall that all our results correspond to the choice
u= 1.33.) The comparison with the theoretical results is shown in Fig. 15. The agreement
is quite remarkable (for the value ofu chosen). In particular both analytical computations
predict a change of sign inI ′(q) betweenq = 10 andq = 20, which is indeed observed for
the fitted numbers obtained from the MC measurements.
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6.4. The spin correlation function

Finally we consider the two-point correlation function of the spin operator in Fourier
space. While the current correlator had to be subtracted, the spin correlator has to be
normalized (multiplicatively) before it can be compared to analytical calculations. We
define

(6.13)G(µ)(q)= G0(q)

G0(µ)
,

whereG0(q) is the bare spin correlator. Traditionally one takesµ = 0, which amounts
to normalizing the spin correlator with the susceptibilityχ . A problematic feature of this
definition is that, just like with the current defined by the SUB method, the statistical errors
are big, dominated by the large error ofχ . We thus introduced̂G(µ)(q) := (q/µ)2G(µ)(q),
whose values are closer to unity, and decided to takeµ= 5. Forq > 5 this leads to much
smaller errors, in many cases smaller by a factor 3–4. We adopted this unusual choice of
normalization because in this paper we focus our attention to the rangeq > 5. The reason
for concentrating on this range is that it is here the cutoff effects show interesting non-
monotonic behaviour. (For the low momentum rangeq < 5 it would be better to take the
normalization atµ= 0, but this is not investigated here.)

Adopting the normalization atq = 5 the FS analysis is analogous to the current
case. The FS scaling hypothesis is applicable and allows one to extrapolateĜ(5)(q) to
thermodynamic lattices. The results are shown in Figs. 16, 17 and 18 forq = 15, 25 and
35, respectively. Again, similarly to the current case, one sees a non-monotonic approach
to the continuum limit, with a turning point which is forq > 20 aroundξ ∼ 100. The
actual points are still significantly away from the analytical prediction, but beyond the
turning point they move into the right direction. We did not attempt to fit a linear function
to the data but our results for the spin correlator are not inconsistent with the form factor
bootstrap.

Fig. 16. Thermodynamic values of the spin correlation functionĜ(5)(15) for lattice families 2, 4, 6,
9, 10, 11 and 12 versusQ. The dashed line shows the 1+ 3 form factor result.
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Fig. 17. Thermodynamic values of the spin correlation functionĜ(5)(25) for lattice families 4, 6, 9,
10, 11 and 12 versusQ. The dashed line shows the 1+ 3 form factor result.

Fig. 18. Thermodynamic values of the spin correlation functionĜ(5)(35) for lattice families 6, 9, 10,
11 and 12 versusQ. The dashed line shows the 1+ 3 form factor result.

7. Conclusion

Since we already surveyed our motivation and some of the theoretical issues involved
in the introduction, let us return here to the question raised in the title. Screening the
comparison between bootstrap and lattice theory for the various quantities considered,
we would tend to answer the question in the affirmative. Probably the strongest Pro
argument stems from the intrinsic couplinggR. The final results in both approaches have
an estimated (systematic) error of less than one percent, so that the good agreement is
remarkable. For the two-point function of the Noether current the prediction [4] for the
lattice artifacts could be tested. After, and only after, the lattice artifacts are taken into
account a good and non-trivial agreement with the form factor result emerges. A final
decision whether the remaining small differences are due to the neglected higher particle
contributions or signify in fact a true difference of the two constructions cannot be reached
at this stage. Quantitatively, the least convincing are the phase shift results. However, in the
lattice framework measurements of the phase shifts are technically difficult and here, as in
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other models, mainly the qualitative features at low energies can be probed. But the latter
do agree with the bootstrap prediction. Each comparison considered separately certainly
leaves room for doubt, but collectively they do suggest that the continuum limit of the XY
model and theO(2) bootstrap theory are the same QFT.

Concerning future work, a more detailed exploration of the superselection structure
should be interesting. The new parafermionic superselection sector found here is probably
accompanied by a third (‘disorder-like’) sector. Their interplay, e.g., on the level of the
operator product expansion as well as an explicit field theoretical construction remains to
be found. Finally, as a test case for other sigma-models, it would be important to understand
which quantities in the XY QFT can be understood, qualitatively or quantitatively, in terms
of a perturbed conformal field theory description.

Acknowledgements

We wish to thank M. Karowski and K.H. Rehren for helpful discussions as well as
P. Butera and M. Hasenbusch for useful correspondences. This investigation was supported
in part by the Hungarian National Science Fund OTKA (under T030099, T029802 and
T034299) and by Schweizerischer Nationalfonds.

Appendix A. Quantum group covariant form factors

Here we derive the necessary and sufficient conditions (3.13) on the statistics phases that
ensure the quantum group covariance of the form factors. The additional conditions like
(3.27) required for multiplets transforming irreducibly are also detailed.

To fix our conventions we begin by recalling a few definitions for the action of
Uq(su(2)) on some irreducible representation. Background material on quantum groups
in 2-dimensional physics can be found in the book [15]. The Hopf algebraUq(su(2)) is
generated byX±,H that act for genericq on an irreducible spinj module according to

X±|j,m〉 =
√[j ∓m]q[j ±m+ 1]q |j,m± 1〉,

(A.1)H |j,m〉 = 2m|j,m〉.
Here|j,m〉, m ∈ {−j,−j + 1, . . . , j − 1, j } denotes a basis of the(2j + 1)-dimensional
irreducible module2j+ 1, and[n]q = (qn − q−n)/(q − q−1). For q = −e−iπ/p, p � 3,
an upper bound on the allowed isospinsj exists. It readsj � p/2− 1 and is related to an
enlarged center; see, e.g., [2]. To the best of our knowledge the caseq =−1 has not been
studied explicitly in the literature, but it is not hard to work out the aspects needed here.
First, as a Lie algebraU−1(su(2)) is isomorphic tosu(2), but the co-multiplication differs
by signs. Guided by the sample computations presented below and the formalp→∞
limit of the above relation, we expect that forq =−1 no truncation of the allowed isospins
occurs. For definiteness we fix the rootsq1/2= i, q−1/2=−i.
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For genericq the comultiplication ofUq(su(2)) is

HX±=X± ⊗ qH/2+ q−H/2⊗X±,
(A.2)HH =H ⊗ 1+ 1⊗H,

for q →−1 we define it with the above choice of roots. Forj = 1/2 we write |±〉 =
|1/2,±1/2〉 for the basis of the defining representation2. In then-fold tensor product2⊗n

we write |αn, . . . , α1〉 := |αn〉 ⊗ · · · ⊗ |α1〉, αj ∈ {±}, for the natural basis. The ‘charged’
components of a form factor are introduced as the coefficients with respect to this basis,
i.e.,

(A.3)|f 〉 =
∑

αn,...,α1

fαn...α1|αn . . . α1〉.

By construction the quantum group generatorH⊗n is diagonal on this basis and its
eigenvaluese := αn + · · · + α1 are theU(1) charges used in Section 2. The raising and
lowering operatorsH(n)X± act as a 2n × 2n matrix Σ± on the basis|αn, . . . , α1〉. We
choose a lexicographical ordering of the basis vectors that is symmetric under the flip
αj →−αj . ThenΣ− =ΣT+ . Further, there is an induced action on the coefficientsfαn...α1

in (A.3) which is implemented byΣ− for H(n)X+ and byΣ+ for H(n)X−. The 2n × 2n

matricesΣ± are triangular and ‘sparse’ with only a few blocks different from zero. The
block structure arises because evidentlyH(n)X± maps the chargee sector into the charge
e± 2 sector. Explicitly, the matrixΣ− acts on the form factor components as

(A.4)Σ−: fαn...α1 −→ ei
π
2 (e−1)

n∑
j=1

(
1+ αj

2

)
(−1)n−j fαn···−αj ···α1,

and similarly forΣ+. The mapping (3.14) could be used to ‘untwist’ theSU−1(2) co-
multiplication, i.e., to remove the phases in (A.4). We refrain from doing so because the
‘untwisting’ does not induce a physically interesting correspondence between the form
factor sequences of theSU(2) and theSU−1(2) bootstrap theories.

As usual, then-particle form factors carry a representation of the permutation groupSn.
Its representation matrices are 2n × 2n matricesLs(θ), s ∈ Sn. The quantum group
invariance of the S-matrix (3.7) generalizes to

(A.5)Σ±Ls(θ)= Ls(θ)Σ±, ∀s ∈ Sn.

For completeness let us note the explicit definition. One sets

(A.6)Lsj (θ)
βn···β1
αn···α1

= δβn
αn
· · ·Sβjβj+1

αj+1αj (θj+1,j ) · · ·δβ1
α1

, j = 1, . . . , n− 1,

for the generatorss1, . . . , sn−1, acting bysj (θn, . . . , θ1) = (θn, . . . , θj , θj+1, . . . , θ1) on
the rapiditiesθ := (θn, . . . , θ1). By means ofLss ′(θ) = Ls(θ)Ls ′(s−1θ) this extends to
all s, s′ ∈ Sn. The invariance (A.5) clearly entails that the form factor Eq. (3.9a) (and its
generalization to generics ∈ Sn) are covariant under the quantum group action.

It is natural to ask whether the same can be achieved for the cyclic form factor
equations (3.9b). In that case the cyclic equations in the chargee sector

(A.7)fαn...α1(θn + 2πi, θn−1, . . . , θ1)= ηαn(e)fαn−1...α1αn(θn−1, . . . , θ1, θn),
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with e = αn + · · · + α1 and those in the chargee ± 2 sector would again be compatible
with the quantum group symmetry. Explicitly this means that starting from (A.7) and
performing, e.g., the substitutions (A.4) the result should be an identity by virtue of
the cyclic equation in the chargee ± 2 sectors. This condition gives rise to a set of
overdetermined relations among the phasesηα(e), which turn out to be self-consistent.
Using (A.4) the solution (3.13) can be verified.

Finally, we turn to the residue equations. Consistency requires that the inverse of the
matrixΓ

β
α in (3.9b) appears on the right hand side, irrespective of its concrete form. In the

charged basis and forn � 3 one has:

i

2
resθn=θn−1+iπ fαn...α1(θn, . . . , θ1)

= δαn+γ
[
ηγ (e)

−1Lsn−2...s1(θ)
βn−2βn−3...β1γ
αn−1αn−2...α2α1 − δγαn−1

δ
βn−2
αn−2 · · · δβ1

α1

]
(A.8)× fβn−2...β1(θn − 2, . . . , θ1).

Heree= αn+· · ·+α1= βn−2+· · ·+β1 refers to the charge sector. For the specific choice
of phases (3.13) these equations can be seen to be likewise quantum group covariant.

In summary there exists a preferred (and up a normalization uniquely determined) choice
of the statistics phasesηα(e) for which the form factor equations (3.9), (A.9) are covariant
with respect to the quantum groupU−1(su(2)). This means its solutions can be grouped
into multiplets that transform covariantly under the symmetry group, and one can restrict
attention to those transforming irreducibly. Technically the irreducibility condition can be
encoded into a parameterization of the form factors that is adapted to the embedding of the
irreducible spinj module2j+ 1 into 2⊗n, including multiplicities. Essentially it amounts
to determining the generalized Clebsch–Gordon coefficients.

To facilitate the comparison with the familiarU1(su(2))= su(2) case we first consider
the decomposition for genericq and specialize toq = −1 only at the end. Thus let2
again denote the defining two-dimensional representation ofUq(su(2)) and consider the
decomposition of2⊗n into irreducible representations. It assumes the familiar form

(A.9)2⊗n =
⊕

j0�j�n/2

mj(n)(2j+ 1),

wheremj(n) is the multiplicity with which2j+ 1 occurs andj0= 0,1/2 for n even, odd,
respectively. For genericq these multiplicities are the same as forsu(2), only the Clebsch–
Gordon coefficients differ. As outlined before we expect the limitq→−1 to be regular in
the sense that no truncation of the isospins occurs and that the multiplicitiesmj(n) are the
same as in the undeformed case. The multiplicities then are conveniently computed from a
generalized ‘Pascal triangle’ described by the recursion relations

mn/2(n)= 1, mj (n)= 0, j < 0,

(A.10)mj(n)=mj−1/2(n− 1)+mj+1/2(n− 1), j = j0, . . . , n/2.

The highest weight conditionsH(n)X+v = 0, v ∈ 2⊗n, are readily solved and yieldmj (n)

linearly independent solutions on each of which a spinj multiplet can be based.
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Below we list forn= 2,3,4 a basis for the spinj sector in2⊗n. The multiplicities are
taken into account by displaying amj (n)-dimensional family of highest weight vectors.

n= 2:

j = 0: q1/2| +−〉− q−1/2| −+〉;
j = 1: | ++〉, Σ−| ++〉 ∼ q1/2| −+〉+ q−1/2| +−〉, Σ2−| ++〉 ∼ | −−〉.

n= 3:

j = 1/2: v1/2= λ1| −++〉+ λ2| +−+〉+ λ3| ++−〉, q2λ1+ qλ2+ λ3= 0,

Σ−v1/2= (λ2+ q−1λ1)| +−−〉+ (λ1+ λ3)| −+−〉
+ (qλ1+ λ2)| −−+〉;

j = 3/2: Σk−| +++〉, k = 0,1,2,3.

n= 4:

j = 0: v0= |−−++〉− (q − q−1)| −+−+〉− | −++−〉
− |+−−+〉+ q2| ++−−〉,
v′0= q−1| −+−+〉+ | −++−〉+ | +−−+〉− q| +−+−〉;

j = 1: v1= λ1| −+++〉+ λ2| +−++〉+ λ3| ++−+〉+ λ4| +++−〉,
q3λ1+ q2λ2+ qλ3+ λ4= 0,

Σ−v1∼ q(qλ1+ λ2)| −−++〉+ q(λ1+ λ3)| −+−+〉
+ (λ3+ qλ4)| −++−〉+ (qλ2+ λ3)| +−−+〉
+ (λ2+ λ4)| +−+−〉+ (λ1+ q−1λ4)| ++−−〉,

Σ2−v1= q2λ1| +−−−〉+ q2[λ2+
(
q − q−1)λ1

]| −+−−〉
+ [λ3−

(
q − q−1)λ4

]| −−+−〉+ λ4| −−−+〉;
j = 2: Σk−| ++++〉, k = 0,1,2,3,4.

To illustrate the use of this table let us look at then= 3, j = 1/2 entry. The form factor
componentsf1, f2, f3 in (3.23) play the role of theλ’s and forq =−1 one obtains (3.27).

Appendix B. 3-particle form factors

Here we construct the 3-particle form factors of the spin and the parafermion field by an
adaptation of the technique of [3]. From the SG viewpoint these fields are non-local which
is why they have not been considered in [3]. All even particle form factors of the SG fields
were constructed by Smirnov [37] where also the Bethe ansatz technique instrumental in
[3] is implicit; see also [40] for related results in the mathematical literature.
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Adapting Theorem 4.1 of [3] the 3-particle FF can be represented as the contour integral

f α
ε3ε2ε1

(θ3, θ2, θ1)= Y (θ3, θ2, θ1)

∫
C

duγ α
α1α2

(θ3, θ2, θ1;u)vβ3β2β1

(B.1)× Sβ1γ1
ε1α1

(θ1− u)Sβ2γ2
ε2γ1

(θ2− u)Sβ3α2
ε3γ2

(θ3− u).

Here

(B.2)Y (θ3, θ2, θ1)= y(θ3− θ2)y(θ3− θ1)y(θ2− θ1),

and the only non-vanishing component ofγ α
α1α2

is

(B.3)γ++−(θ3, θ2, θ1;u)=N es(θ1+θ2+θ3−2u)
3∏

m=1

φ(θm − u)

S2(θm − u)
,

where

(B.4)N = i

4π11/2
e−∆(0)e−iπs , φ(θ) := -

(
1

2
+ x

2πi

)
-

(
− x

2πi

)
.

Finally the “pseudo-vacuum” vector is

(B.5)vβ3β2β1 = δβ3+δβ2+δβ1+.

The integration contourC consists of several pieces. First, there are three small clockwise
circles around the three pointsθ1, θ2 and θ3. In additionC also contains a line integral
parallel to the real axis such that the integration path goes betweenθm − iπ andθm − 2iπ
for all the threeθm.

SinceC is defined relative to the argumentsθm, when we analytically continue (B.1)
it is best to deform the contour parallel to the arguments. This way it is trivial to see
that the solution satisfies (3.8). It is also relatively easy to see that the Bethe ansatz like
construction (B.1) ensures that (3.9a) is also satisfied, independently of the contourC. (To
show this one has to use the Yang–Baxter equation satisfied by the S-matrix.) It is more
difficult to verify (3.9b) because here one has to take into account that the contours are
different on the two sides of the equation. Similarly, for the residue equations (3.25) the
contour is different from the originalC.

Inserting the S-matrix (3.1), Eq. (B.1) can be rewritten as

fm(θ3, θ2, θ1)=NY (θ3, θ2, θ1)

∫
C

du es(θ1+θ2+θ3−2u)

(B.6)×
[

3∏
k=1

φ(θk − u)

]
tm(θ3, θ2, θ1;u),

where

t1(θ3, θ2, θ1;u)= θ3− u

iπ − θ3+ u

θ2− u

iπ − θ2+ u

iπ

iπ − θ1+ u
,

t2(θ3, θ2, θ1;u)= θ3− u

iπ − θ3+ u

iπ

iπ − θ2+ u
,
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(B.7)t3(θ3, θ2, θ1;u)= iπ

iπ − θ3+ u
.

Next we examine whether the solution (B.7) is compatible withSU−1(2) symmetry,
which requires the vanishing of the linear combination (3.27). This can be written as

(B.8)ζ(θ3, θ2, θ1)=NY (θ3, θ2, θ1)
[
z1(θ3, θ2, θ1)+ z2(θ3, θ2, θ1)

]
,

where

(B.9)z1(θ3, θ2, θ1)=
∫
C

es(θ1+θ2+θ3−2u)

[
3∏

k=1

θk − u

iπ − θk + u
φ(θk − u)

]
,

(B.10)z2(θ3, θ2, θ1)=
∫
C

es(θ1+θ2+θ3−2u)

[
3∏

k=1

φ(θk − u)

]
.

Using the identity

(B.11)
z

iπ − z
φ(z)= φ(z− 2πi)

(B.9) can be rewritten as

(B.12)z1(θ3, θ2, θ1)= e4πis

∫
C+

es(θ1+θ2+θ3−2u)

[
3∏

k=1

φ(θk − u)

]
,

where the contourC+ is shifted by 2πi, i.e., it consists of three small circles around
θm + 2πi and the line integral goes betweenθm + iπ and θm. From (B.4) we can see
that the small circles do not contribute here since the integrand is regular there. The only
relevant singularities are those atθm and it is easy to see that the contribution of the shifted
line integral is precisely the same as that ofC. We thus have

(B.13)ζ(θ3, θ2, θ1)= (η2+ 1)NY (θ3, θ2, θ1)z2(θ3, θ2, θ1).

This proves the assertion after (3.27). Remarkably, the quantum group invariance is not
visible on the level of the integrand in (B.1) but only after the integral has been performed.
In addition, this fixes the value of the spin to bes =±1/4, without mod(1/2) ambiguities.
This is because the integral in (B.1) exists for|s|< 3/4 only.

Appendix C. 4-particle form factors of the Noether current

The form factors of the Noether current can be found in Smirnov’s book [37]. We have
adapted this result to our notations and conventions for the 4-particle case.

Let us introduce the reduced form factorsg that are defined by

(C.1)fε1ε2ε3ε4(θ1, θ2, θ3, θ4)= Y (θ1, θ2, θ3, θ4)gε1ε2ε3ε4(θ1, θ2, θ3, θ4),

where

(C.2)Y (θ1, θ2, θ3, θ4)=
∏
i<j

y(θi − θj ).
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Using the O(2) symmetry and charge conjugation, we need only the following
components:

g++−−(θ1, θ2, θ3, θ4)=−g−−++(θ1, θ2, θ3, θ4),

g+−−+(θ1, θ2, θ3, θ4)=−g−++−(θ1, θ2, θ3, θ4),

(C.3)g+−+−(θ1, θ2, θ3, θ4)=−g−+−+(θ1, θ2, θ3, θ4).

Further, using the axioms, we can express everything in terms of a single function
A(θ1, θ2, θ3, θ4) as follows.

g++−−(θ1, θ2, θ3, θ4)=A(θ1, θ2, θ3, θ4),

(C.4)g+−−+(θ1, θ2, θ3, θ4)=A(θ4+ 2πi, θ1, θ2, θ3)

and

g+−+−(θ1, θ2, θ3, θ4)= iπ + θ3− θ4

θ4− θ3

[
A(θ1, θ3+ 2πi, θ4, θ2)

(C.5)− iπ

iπ − θ4+ θ3
A(θ1, θ4+ 2πi, θ3, θ2)

]
.

This function is given by

(C.6)

A(β1, β2, β3, β4)= 2ie−2∆(0)

π4

e−
1
2
(∑4

j=1 βj

)(∑4
j=1 e

−βj
)p(β1, β2, β3, β4)I (β1, β2, β3, β4),

where

(C.7)p(β1, β2, β3, β4)= (β1+ β2− β3− β4− 2πi)

[
2∏

i=1

4∏
j=3

1

βi − βj − iπ

]

and

I (β1, β2, β3, β4)=
∞∫

−∞
dα eα

{
q(α,β1)q(α,β2)x(α,β3)x(α,β4)

(C.8)+ x(α,β1)x(α,β2)q(α,β3+ 2πi)q(α,β4+ 2πi)
}
.

Here we defined

x(α,β)= -

(
1

4
− α− β

2πi

)
-

(
1

4
+ α − β

2πi

)
= φ

(
β − α− iπ

2

)
,

(C.9)q(α,β)= -

(
1

4
− α− β

2πi

)
-

(
5

4
+ α − β

2πi

)
.
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Appendix D. Calculation of the subleading correction to gR

The leading contribution to the intrinsic couplinggR in theO(2) model was calculated
in [6]. Here we present the calculation of the most important subleading term reducing the
theoretical uncertainty in this quantity to a few per mille. This appendix relies heavily on
[6], especially Sections 3, 6 and Appendix C. We use the notations and conventions of that
paper.

The first few contributions toγ4 for the Ising model and for theO(3) model were also
calculated in [6]. Let us compare the results (see Table 10).

The pattern is strikingly similar for the two models. For the XY model we so far only
have the 121 contribution, which is somewhere inbetween the corresponding values for the
Ising and theO(3) model. If we assume that the corrections follow the same pattern also
for theO(2) model, already the calculation of the 123/2 term yieldsγ4 with a precision
better than one percent. We will see that we have all the ingredients necessary for this
calculation.

Using the FF axioms and some of the expressions in Appendix C of [6] we have

g(3)(β,α1, α2)= G1
1bb(iπ,β,−β)G1

bx1x2
(iπ − β,α1, α2)G∗1bx1x2

(β,α1, α2)

(D.1)− G1
1bb(iπ,−β,β)G1

bx1x2
(iπ − β,α1, α2)G∗1x1x2b

(α1, α2, β).

Now it is easy to see thatg(3)(0, α,−α)= 0, so

(D.2)V (4) = 0

in general. Further, using (D.1) in (C.43) of [6] we get

g(5)(β)= G1
1bb(iπ,β,−β)

{
G∗1bb1(β,−β,0)+ G∗1b1b(β,0,−β)}

(D.3)− G1
1bb(iπ,−β,β)

{
G∗1b1b(−β,0, β)+ G∗11bb(0,−β,β)

}
.

We see that

(D.4)g(5)(β)+ g(5)(−β)= 0,

so also for genericn

(D.5)V (5) = 0.

Table 10
The first few contributions toγ4. 123/i stand for the contribution of the integralsV (i) for i = 1, 2
and 3

Contribution Ising model O(3) model

121 −4.99343 −4.16835
123/1 −0.01348 −0.01351
123/2 0.10610 0.11901
123/3 0.00000 −0.00200
141 −0.00265 −0.00407
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(D.2) and (D.5) together imply that the conjecture (C.57) of [6] is true.
Similarly simplifying (C.37) of [6] gives

(D.6)g(2)(β)= G1
1bb(iπ,β,−β)G∗1bb1(β,−β,0)

and using this in (C.36) of [6] we have

(D.7)F1
1bb(iπ, v,−v)F1

bb1(−v, v,0).

It is easy to see that we already have everything that is necessary to compute (D.7) since

(D.8)F1
xy1(−v, v,0)= Sy1;qp(v)f 1

pqx(iπ + v).

Putting everything together we have

(D.9)V (2) = 1

64π

∞∫
0

dv
sinh2v

cosh4v
eH(v)M(v),

where

H(v)=∆(iπ + v)+∆(iπ − v)+∆(2v)+∆(−2v)

(D.10)+∆(v)+∆(−v)− 2∆(0)

and

M(v)= 1

(iπ − v)[(n− 2)v− 2πi]

(D.11)

×
{
K(v)K(iπ + v)

[
2π2+ n(n− 2)v(iπ − v)

]
+ 2K(v)L(iπ + v)

[
(n+ 1)π2+ (n− 2)v(iπ − v)

]
+ 2L(v)K(iπ + v)

[
2π2+ (n− 2)v(iπ − v)

]
+ 4L(v)L(iπ + v)

[
2π2− iπv + (2− n)v2]}.

To summarize, using the results of [6], (D.9) in then= 2 case can be represented as

V (2) = 1

3600π7

∞∫
0

dθ
sinh3 θ

cosh4 θ

×
{
eH+D3+D1

√
(4θ2+ 25π2)(4θ2+ 49π2)

[
A1

θ
+ πA2

2(θ2+ π2)

]
(D.12)+ eH+D5+D1

(
4θ2+ 9π2)[A1

θ
+ 3πA2

2(θ2+ π2)

]}
,

where

(D.13a)H(θ)= 2

∞∫
0

dω

ω

cosωθ + coshπω(cos 2ωθ + cosωθ − 1)− 2

sinhπω(1+ eπω)
,
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Table 11
The first few contributions toγ4. 123/i stand for the contribution of the integralsV (i) for i = 1, 2
and 3

Contribution Ising model O(2) model O(3) model

121 −4.99343 −4.65718 −4.16835
123/1 −0.01348 ∗ −0.01351
123/2 0.10610 0.11592 0.11901
123/3 0.00000 ∗ −0.00200
141 −0.00265 ∗ −0.00407

(D.13b)D1(θ)=
∞∫

0

dω

ω

cosωθ
2 − 1

2 sinhπω
2

k(ω),

(D.13c)D3(θ)=
∞∫

0

dω

ω

coshπω cosωθ
2 − coshπω

2

sinhπω
k(ω),

(D.13d)D5(θ)=
∞∫

0

dω

ω

cosωθ
2 − coshπω

2

sinhπω
k(ω).

Further

(D.14)k(ω)=−e− 5
4πω − e−

7
4πω,

and finally

(D.15)A1+ iA2= i(iπ − 2θ)(3iπ + 2θ)(5iπ + 2θ)eiD2(θ),

where

(D.16)D2(θ)=−
∞∫

0

dω

ω

sinωθ
2

2 coshπω
2

k(ω).

Numerically we find

(D.17)V (2) = 0.00724518.

Now we are in a position to be able to fill in someO(2) entries in Table 11.
As expected, the availableO(2) data follow the same pattern as before. Furthermore, the

O(2) numbers are in between theO(1) andO(3) ones. So (with some confidence) we can
predict the uncalculated(∗) contributions to be close to the avarage of the corresponding
Ising andO(3) entries. In this way we get

(D.18)(∗)=−0.01786± 0.00893,

where (generously) we allowed for 50% error here. This gives a totalk + l + m = 6
contribution of

(D.19)0.09806± 0.00893.
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Estimating thek + l +m � 8 contributions, as usual, to be less than 10% of (D.19) our
final estimate is

(D.20)γ4=−4.559± 0.019.

We also need the productγ2δ2. We have computed numerically the 3-particle contribu-
tion to bothγ2 andδ2 using the 3-particle form factors constructed in Appendix B. We
found

(D.21)γ2;3= 0.001813(1) and δ2;3= 0.00003016(2).

Thusγ2δ2= 1.00184 and finally we getgR with an error of a few per mille:

(D.22)gR= 9.10(4).

Appendix E. Test of random number generators

Since we are interested in achieving numerical precision for many quantities to an
accuracy of< 1%, a considerable source of concern to us was the random number
generator (RNG). Indeed, at an initial stage of this project we found large standard
deviations between results obtained by various generators.

Our first test concerned comparison of computations using various RNGs, with exact
results on small lattices. The (practically) exact result on a 3× 3 lattice is obtained by
discretizing the spins, takingO(2)→ Z(N) and summing over allNV−1 terms5 in the
partition function. The convergence to theO(2) case is extremely (exponentially) fast.
As illustration in Table 12 we give the values of the susceptibility forK = 0.25,L = 3
andN = 6, . . . ,10. Some generators already failed this test. The exact numbers were also
useful to check our programs.

As a next step we compared results obtained by different RNGs on larger lattices, see,
e.g., Table 13 where we tabulated our results for the susceptibility atK = 1.0, L = 256.
Hererand is the RNG listed inLanguage ReferenceXL Fortran for AIX (Version 3
Release 2) andSGI is the RNG provided by Silicon Graphics for the SGI 2000 machine.

Table 12
The susceptibility of theZ(N) model on
a 3× 3 lattice atK = 0.25

N χ

6 1.7619848372
7 1.7619804581
8 1.7619803546
9 1.7619803525
10 1.7619803524

5 Due to the global symmetry one spin can be fixed.
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Table 13
The susceptibility atK = 1.0 andL= 256 using different RNGs and two different programs

Program RNG χ

1 rand 1609.5(9)
1 SGI 1607.3(9)
1 nag 1604.7(8)

2 nag 1605.5(9)
2 rlxd_2 1604.1(9)

Table 14
The correlation length and susceptibility forz≈ 14 for different RNGs and the corresponding value
obtained by finite size (FS) extrapolation taken from Table 5

K L ξ χ gR RNG

0.92 150 10.559(3) 163.110(36) 8.879(25) rand
10.5508(9) 162.843(13) 8.864(8) nag
10.5499(7) 162.829(10) 8.869(6) rlxs_0
10.5507(9) 162.835(12) 8.871(8) rlxd_1
10.5510(11) 162.840(16) 8.881(10) rlxd_2
10.549(1) 162.86(26) 8.877(6) FS fit

0.97 300 21.659(6) 557.41(15) 8.958(25) SGI
21.627(4) 556.32(11) 8.952(6) FS fit

1.0 560 40.168(13) 1615.68(48) 9.037(29) SGI
40.107(12) 1611.78(43) 9.010(28) rlxd_2
40.096(5) 1611.4(3) 8.989(6) FS fits

1.02 1000 69.647(23) 4184.5(1.2) 9.066(34) SGI
69.533(24) 4174.5(1.3) 8.962(33) rlxd_2
69.505(20) 4173.0(1.4) 9.026(8) FS fits

The nag (the g05caf RNG by Numerical Algorithms Group) andranlux [28] are
portable RNGs. The latter has a single- and a double precision version, both with an extra
choice, a “luxury parameter”. The notationsrlxs_0, rlxd_1 andrlxd_2 refer to the
precision and the value of the luxury level parameter.

To our knowledgeranlux is the only generator known with proven randomness
qualities. Unfortunately, for “historical reasons” we used it only in the later stages of
the project, while most of other runs were usingnag. Reassuringly we found in all our
tests, that thenag generator produced results consistent withranlux. The combined
nag result (same RNG but different programs) in Table 13 is 1605.1(6), which is only
1-sigma away from rlxd_2. Note however, therand result is 4.2-sigma away from
rlxd_2 while theSGI result is 2.5-sigma away.

Although the latter deviation is still not too serious, theSGI RNG gave also suspicious
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results on lattices with very large physical size,z≈ 14: the data obtained by this RNG were
several sigma too high above the FS scaling lines. Since thez > 10 data were not needed
in the extrapolations anyhow, we simply omitted these data points from Table 4 and did
not use them in our fits. Nevertheless, to make sure that the discrepancy was indeed due to
the failure of the RNG we remeasured a few of these points withranlux. Table 14 shows
the results for these two RNGs, together with the fits of Table 5. Note that theSGI results
show large deviations from bothranlux and the FS fit, especially for the susceptibility,
which is always too high, by 5.6 to 7.6 standard deviations.

The onlySGI data present in Table 4 are the 4 points atK = 1.04 and 1.05 for z =
4 and 5. These data, in contrast to thez = 14 points, agree with the FS fits. We have
also rechecked theK = 1.04,L = 578 point withrlxs_0 and gotξ = 142.10(9), χ =
14142(12), gR = 7.604(9), in good agreement with theSGI results6 in Table 4 therefore
we did not repeat all these measurements withranlux.

In one of the programs we measured the quantities with the standard estimator along
with the improved one, and checked that they agree within the errors. The other program
used a Ward identity for checking. Note, however, that the agreement in these quantities
does not guarantee yet the correctness of the results: the error of the standard estimator is
usually much larger than that of the improved estimator, while even the badz= 14 results
passed the WI test.

Appendix F. Vohwinkel’s results for the 2-particle energies

We here reproduce the original data table of Vohwinkel, giving the 2-particle energies
obtained nearly 10 years ago [41]. We do not know the reason why Vohwinkel did not

Table 15
Masses and energies obtained by Claus Vohwinkel in 1992

K 0.97 0.97 0.92 0.86
L 128 256 128 64

m 0.04633(2) 0.04620(1) 0.09465(3) 0.1711(1)

2 0.1019(2) 0.0956(2) 0.1949(3) 0.353(1)
0.1612(3) 0.1149(3) 0.2334(4) 0.435(2)

0.1481(6) 0.2982(7) 0.566(3)
0.1872(8) 0.3760(10)

1 0.1298(1) 0.1038(4) 0.2116(4) 0.389(1)
0.1324(4) 0.2676(7) 0.510(2)
0.1705(6) 0.3440(20)

0 0.1081(15) 0.0967(3) 0.1966(10)
0.1220(8) 0.2431(20)
0.1614(14) 0.3143(40)

6 Note, however, that at these very large correlation length our relative errors are much larger than those at
smallerξ .
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publish his results, but it could be that he just confused the assignment of quantum
numbers, and so could not match his results with the proposed S-matrix. With the correct
identification his data are listed in Table 15.

As mentioned in Section 5, his values for the single particle masses on the lattices with
z � 10 are in good agreement with ours. It is only on the lattice withK = 0.97 andL= 128
that our values differ by∼ 4 standard deviations.
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