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Using the exact form factors we calculate the 2 and 4-particle contributions to the current-current 2-point function in the 2- 
dimensional O (3) a-model. The results are consistent with perturbative calculations (including the use of the exact value of the 
mass gap) and Monte Carlo measurements. 

1. The O(N)  a-model in 1 + 1 dimensions is a toy 
model of QCD in 3 + 1 dimensions. It has received a 
lot of attention for nearly two decades and the follow- 
ing properties of the model have been established. It 
is asymptotically free at high energies according to 
perturbation theory [1 ], shows dimensional trans- 
mutation and requires non-perturbative treatment at 
low energies. It is integrable due to the presence of 
infinitely many conserved charges [2]. Its S-matrix 
and 2-particle form factors have been found using the 
bootstrap approach [ 3,4 ]. For the case of N =  4 and 
3 the S-matrix of the model has also been derived dy- 
namically [ 5,6 ] and for N =  3 all the many-particle 
form factors have been computed [ 7 ]. The use of  the 
thermal Bethe ansatz integral equation for the de- 
scription of the ground state of the model in the pres- 
ence of a large chemical potential has allowed the ex- 
act determination of the m/A ratio [ 8 ]. 

Most of these results are based on unproven as- 
sumptions and none of them can be considered to be 
an unambiguous and satisfactory "solution" of  the 
model. The basic unproven assumptions of the ab- 
stract bootstrap approach are: the absence of bound 
states and the absence of CDD factors. It remains to 
be proven that this description really corresponds to 
a relativistic field theory model and that this model 
is the O(N)  a-model. The dynamical calculations in 
refs. [5,6] are based on substantial changes of  the 
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original variables and dynamics and it is not clear 
whether they are really solutions of the original prob- 
lem. In ref. [ 8 ] the ground state of  the system (in the 
presence of a large chemical potential) is assumed to 
be consisting of one type of particles only. Even the 
validity of perturbation theory and hence asymptotic 
freedom has been questioned [ 9 ]. 

Despite of all the logical loopholes, as a result of a 
large number of studies of the model in the 1/N ex- 
pansion and also in the lattice version of the model, 
a picture of overall consistency has emerged. The 
purpose of this paper is to substantiate this picture 
by computing the current-current 2-point function in 
the abstract bootstrap approach and comparing it to 
the perturbative 2-point function and Monte Carlo 
results. 

Our approach is basically the same as that of ref. 
[ 10 ], where the 2-point function of the Ising model 
was studied. We insert a complete set of states into 
the current-current 2-point function and truncate the 
infinite sum by allowing only a finite number of 
physical particles in the intermediate states. The re- 
suits of this preliminary study show that already a 
modest number of intermediate particles give a rea- 
sonable agreement up to relatively high energies. 

2. We restrict ourselves to the case of N =  3, be- 
cause the many-particle form factors are not avail- 
able for N>  3. For N =  3 they are given in principle in 
ref. [7], but unfortunately this paper contains so 
many misprints that forbid the use of its formulae for 
practical calculations. We can, however, compute the 

Elsevier Science Publishers B.V. 145 



Volume 300, number 1,2 PHYSICS LETTERS B 4 February 1993 

necessary form factors by solving the equations of  the 
form factor bootstrap program. This approach was 
initiated in ref. [ 4 ], further developed by the authors 
of  ref. [ 7 ] and it is summarized in ref. [ 10 ]. (See 
also ref. [ 11 ]. ) 

We define the n-particle form factor functions 

f~,...4, (ill,-.. ,ft,) by 

( 0 1 J a ( 0 )  IA~, ill; ...; A,, ft, ) i ,  

(; = -mo9  exp ( - o9flk , . . , , ( i l l ,  . . . , f t , ) ,  
1 

(1) 

where j a  (o9 = +,  a = 1, 2, 3 ) are the O (3) current 
operators, m is the mass of  the physical particles, 
A~= 1, 2, 3 are the particle 0 ( 3 )  quantum numbers 
and fli are the particle rapidities. (Note that current 
conservation is ensured by this representation. ) 

The form factor functions are originally defined by 
( 1 ) for the ordered set of  real rapidities//1 >... > ft,, 
corresponding to the physical " in"  state, but they can 
be analytically extended to the complex 0 plane in all 
rapidity variables. They are meromorphic  functions 
with first order poles only, the residues of  which are 
explicitly given. (See below. ) They satisfy the follow- 
ing requirements: 

f~,...A.(OI +A, ..., O,+A)=f], . . .A,(Ol,  ..., 0,) , (2) 

f a.xy... ( ...O, 0'...)=Sxr;vv(O-O')f~.uv...(...O', 0.. .),  
(3)  

f~tA2...A.(OI +2hi,  02 ..... 0,)  

- -  a --fA2...A,A, (02, ..., 0,, 01 ) , (4)  

f ~su~...v,( a, fl, 01, ..., 0,) 

i 
[ 5Asfau,...v,( Ol, ..., 0,) 

- 2 n ( a - f l - i n )  

--SBu,...u.; v,...v,A( O~ ..... O, l f l ) f  %,...v,( O~ ..... 0,)] 

+ terms regular at a - -  fl+ in .  ( 5 ) 

The O (3) S-matrix entering (3)  is given by [ 3 ] 

S AB;cD ( O ) ,~. S 1 ( O )(~AB(~CD "P S2 ( O ) ~AC(~BD 

+ S3( O)OAO~nC , (6)  

where 

2qO O(O-q) 
s , ( o )  = & ( o )  = 

(O+q) ( 0 - 2 q )  ' (O+q) ( 0 - 2 q )  ' 

2q(q-O)  
$3(0) = ( O + q ) ( O - 2 q ) '  (7)  

and q=  in. 
The coefficient SBu,...u.; V,...V.A (0b ..., 0, [ fl) in ( 5 ) 

is a product of 2-particle S-matrices corresponding to 
the scattering of  panicle (B, fl) through the set of  
particles ( U~, 01; ...; U,, On) into the set of  ( V1, 01; ...; 
V,, 0,)  and the panicle (A, fl). (For  details, see ref. 
[ 1 1 ].) Note that (5) determines the residue of  the 
pole of  the (n+2)-par t ic le  form factor function in 
terms of  the n-particle form factor functions. 

The lowest form factor function corresponds to 2 
particles and is given by [ 4 ] 

f~4s(Ol, 0 2 )  ---- - -  ~in e°AB~(01 - - 0 2 )  , ( 8 )  

where 

O-q  th20  (9) 
~u(0) = O(2q-O~) 2" 

Using the properties 

~ t ( - 0 ) = a ( 0 ) ¢ t ( 0 )  with a ( 0 ) - -  
O+ q 2q-O 
O-q  2q+O' 

(10) 

and 

~,(2q+ 0) = - q/( - 0 ) ,  ( 11 ) 

it is easy to see that ( 8 ) indeed satisfies ( 2 ) -  (4).  In- 
stead of  (5) ,  which applies only for n >/2, the overall 
normalization in (8)  is determined by requiring that 
the integrated O (3) charges satisfy the O (3) algebra 

[Qa, Qb]=iEabcQc ' Qa= i d x l j ~ ( x ° ' x l ) "  
-oo 

(12) 

Now we turn to the determination of  the 4-particle 
form factor function. (This is the next non-trivial case 
since the currents have non-vanishing matrix ele- 
ments only between the vacuum and an even number 
of  particles.) Using O (3) symmetry, we can para- 
metrize it as 
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f ]aco = FI ~. aAB~cD + F2 ~" aAD~Bc + F3 ~ aCDt~AB 

dr- F4 tf.aBC t~ AD d I- Fs ~aAC t~ BD -~- F6 ~aBD (~ AC " 

It is determined by the equations 

(13) 

f(1234)=Mo(34)f(1243), 

f(|234)=Qof(2341), 

R e s f ( 2 2 3 4 ) = F o ( 2 3 4 ) .  

( 3 ' )  

(4') 

(5') 

Here we introduced a compact notation to make the 
formulae more transparent. The particle symbols 1, 
2, 3, 4 represent both internal symmetry quantum 
numbers and rapidity variables, f i n  ( 3 ' ) - ( 5 ' )  is a 
6-vector corresponding to the basis (13), whose 
components, because of (2), are functions of the rap- 
idity differences. Mo and Qo are 6 × 6 matrices, the 
entries of which can be computed by applying (3) 
and (4) to the special case of  4 particles. (Q0 is a 
constant matrix, whereas the entries of Mo are S-ma- 
trix elements.) Moreover, the bar and dot over the 
particle symbol represent a shift of the rapidity vari- 
able by 2ni and in, respectively. Finally, Fo on the 
right-hand side of  (5 ' )  stands for a known 6-vector, 
constructed from S-matrix elements and 2-particle 
form factors according to the right-hand side of (5). 

To find a solution of ( 3 ' ) - ( 5 '  ), we take the fol- 
lowing ansatz: 

f ( 1 2 3 4 ) =  - - ~ i n  3 ~ ( 1 2 ) ~ ( 1 3 ) ~ ( 1 4 )  

× ~ ( 2 3 ) ~ ( 2 4 ) ~ ( 3 4 ) g ( 1 2 3 4 ) ,  (14) 

where g(1234) is a new function. (Note that the 6- 
vectors f and g only differ by an overall scalar fac- 
tor. ) Using (10) and ( 11 ), which are satisfied by the 
2-particle function ~, we can rewrite (3 ' )  and (4 ' )  
as 

g(1234)=M(34)g(1243), M(O)=a(O)Mo(O), 

(3")  

g ( i 2 3 4 ) = Q g ( 2 3 4 1 ) ,  Q = - Q o .  (4")  

Now we make use of the following additional prop- 
erties of the 2-particle function ~' 

~(0)= 
4 1 
n 20--q - -  +terms regular at 0 = q ,  (15) 

1 
q/(O)~t(O+q) = E(O-----~' E(O) = (O+q)(0-2q) , 

(16) 

and rewrite (5 ' )  as 

g(2234) = F ( 2 3 4 ) .  (5") 

Note that while (3") and (4")  are of the same form 
as ( Y )  and (4 ' )  (with modified coefficient matri- 
ces), there is a difference between (5 ' )  and (5"):  
( 5 ' )  prescribes the residue of f a t  01 = 02 + q, whereas 
(5")  gives the value o f g  at this point. More impor- 
tantly, the right-hand side of (5")  turns out to be a 
(cubic) polynomial in the rapidity differences. This 
is a consequence of the fact that the function E(O) 
defined by ( 16 ) is not only a polynomial in 0, but it 
is the same expression as the denominator of  the S- 
matrix elements (7). We think that this wonderful 
coincidence (which happens only for N =  3) explains 
why all the form factor functions of the O(3)  a-model 
can be explicitly given in terms of elementary 
functions. 

Since we know that g is a (cubic) polynomial of  
the remaining rapidity differences if 01 - 02 = q, it is 
natural to take the following ansatz for g:. 

g( 01, 02, 03, 0 4 ) = F ( 0 2 - 0 3 ,  02--04) 

+ (01 --02 -q)P(02 -03 ,  02 -04)  

+ (01 --02 - q ) 2 R ( 0 2  --03, 02 - 0 4 )  • (17) 

Written in a basis analogous to ( 13 ) ,  F is given as 

2q(q-x)y  
xy(3q-y) 

- q ( x 2 - q x  + y 2 - q y -  2q 2) 
F(x,y)= (18) 

( x -q ) ( x+2q) (q -y )  
x ( x - q ) y  

(x--q)y(y--q) 

After some algebra, we find that (17) is really a so- 
lution of (3")  and (4")  if we take 

2q 2 + q(x -  3y) 

-2q2 +q(x+ 2y) -2xy  
4q2--q(x+y)- (x - -y )  2 

P(x,y)= 4q2+q(x_2y)_x2 , (19) 

- q ( 2 x + y )  + 2xy 
2q2- 3qy+ y 2 
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R ( x , y ) =  

y~2~ 

( 19 cont'd) 

In the case of the higher n-particle form factor func- 
tions, we take 

f(12...n ) = ( l-~I<j ~u( ij) ) g(12...n ) . (20) 

It is easy to see that the analogue of ( 5" ) for the gen- 
eral case is always of the form 

g(22...n)=F(2...n), (21) 

where F is a polynomial, provided the g function for 
the (n - 2 ) particle case was a polynomial. 

We conjecture that the analogues of ( 3" ) and ( 4" ) 
have polynomial solutions for all n. 

3. Having computed the form factor functions, we 
can construct the (euclidean) time-ordered 2-point 
function: 

(0[J~(0)  In) (n l Jb (0 )10 )  e x p ( - i e ~ )  
n 

× [0(~2) exp ( -E .~2)  

+ ( - 1 )u+"O(-~2) exp (E.~2) ] . (22) 

Here P. and E.  are the total momentum and energy 
of the intermediate state n, and the summation over 
n indicates a summation over the number of particles 
as well as summation over the internal indices and 
integration over the particle rapidities. 

Because of short distance singularities, the Fourier 
transform of (22) does not exist. We can neverthe- 
less represent it as 

( J ~ ( ~ ) J b ( 0 ) ) =  f d2p exp(--ip~) 

[ I (p)(PuP"-5~, , , )]5 ab , (23) x 

where C is an undetermined (divergent) constant, but 
the physically interesting transversal part is unam- 
biguously defined and is given by 

l ( p ) =  ~ I, ,(Q), 
r i m 2  

oo oo 

0 0 

i Q2 X du._lp.(u) Q2+M](u) , 
0 

where Q= p / m, 

u, = # ,  - # 2 .  

u2 = #2 - # 3 ,  

u . _ ,  = f t . _ ,  -# . ,  

p . (u ) - -  Z If3,..~.(#, .... ,#.)12, 
AI...An 

2 n 2 

(24) 

(25) 

(26) 

4. Now we turn to the perturbative computation of 
the current-current 2-point function. We will work 
in the dimensional regularization scheme and con- 
sider the case of general N. The calculation is rather 
standard, the only difficulty is caused by infrared di- 
vergences. We will use the method of Lfischer [ 12 ] 
to solve this problem. 

We start from the infrared regularized action 

S ~  ~ dDx(~'~oOl'tSaOt"sa- ~2 ] 

S'~Sa=I, D = 2 - e  (27) 

and define the currents as 

j ~ =  1 
g--~O (Sa o'ugb--sb o'uga) " (28) 

The mass term is introduced to make the pertur- 
bative expansion around the classical ground state 
S i=0  ( i= 1 ..... N -  1 ); sN= 1 well-defined. It breaks 
the O(N) symmetry, but if we compute O(N) invar- 
iant quantities like 
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a b  a b  f dDp . <Ju (~)J ,  ( 0 ) > = ( N - I )  (--~-~)D exp t - i p~ )  

×[ C6u~+ I(P---~)(PuP"n \ p 2  - 6 ~ ) ] ,  (29) 

they are expected to remain finite in the m 2 ~ 0  limit, 
in accordance with Elitzur's theorem. 

Indeed, in an explicit 2-loop calculation we find (in 
the m 2 ~ 0  limit): 

2 
C= g~ + o ( g g ) ,  (30) 

I(p)  =2n{~2o +p-'[-flo( 2 + 7 + 2 ) ]  

+p-2~g2[-fll(1 + 7 +  3 ) ] + 0 ( g 4 ) } ,  (31) 

where 

N - 2  
'80= 4n 

N - 2  
- - - ,  i l l -  8n2 , 7 = F ' ( 1 ) + l n 4 n .  

(32) 

( (30)  is actually true to all orders, due to a Ward 
identity. ) 

Using the renormalization group, we can translate 
the bare results (31 ) into an expansion in terms of 
the running coupling o~(p) defined by 

1 + ~ l n  o~=lnA (33) 
o/ 

where x =  ] ~ 1 / 2 ~ o  2 = 1 / ( N -  2 ) and A is the A-param- 
eter in the MS scheme. We obtain 

I(p)=(N--2)(1-1-Kot+O(o~Z)). (34) 

(To obtain (34), the 2-loop RG improved perturba- 
tire result, we needed in addition to the bare 2-loop 
expression (31 ) also the 3-loop fl-function coeffi- 
cient BE. This is a scheme dependent quantity, but 
fortunately it is known in the minimal dimensional 
regularization scheme [ 13 ]: f12 = (N 2 _ 4 ) /64n 3. ) 

Using the results of ref. [ 8 ], we can define a new, 
scheme independent (inverse) running coupling by 

x - x l n x = l n  -p (35) 
m 

and rewrite (34) as a scheme independent expansion: 

l(p)= ( N - 2 ) I x +  ( ~ -  1)+ - -  

where [ 8 ] 

(36) 

m 
~= ln~- =~  (ln 8 -  1 ) - l n  F(1 +x )  . (37) 

If we now specialize (36) to the N = 3  case, we find 
that the 1 and 2-loop corrections to the leading term 
are extremely small: 

I(p)=x+ (In 8 - 2 ) +  In 8 - 2  + O ( 1 ~  
x kx'/ 

= x + 0 . 0 8 +  0.08 + O ( L ~ .  (38) 
x \x~/ 

Finally we note that the normalization of the cur- 
rent operators (28) is consistent with (12). More 
importantly, due to current conservation, no integra- 
tion constant enters the solution of the RG equa- 
tions. This made it possible to obtain the absolute 
magnitude of the current-current 2-point function in 
the asymptotic expansion (38). 

5. Using the exact form factors, we computed the 2 
and 4-particle contributions to (24) numerically. Our 
results are shown in figs. 1, 2. Fig. 1 shows that the 2- 
point function is strongly dominated by the 2-parti- 
cle contribution for low and medium energies. Also 
shown in fig. 1 are the 2-loop perturbative curve (38) 
and Monte Carlo measurements of the 2-point func- 
tion. The MC data were obtained [ 14 ] on a 262 X 262 
lattice at (inverse) bare coupling r =  1.7. This corre- 
sponds to a correlation length ~= 34.5 in lattice units. 
Finite size effects are expected to be correspondingly 
small. Cutoff effects are also expected to be small, 
since the wavelength of the lattice Fourier mode, even 
for the largest energies considered here, is larger than 
13 lattice units. The good agreement between the MC 
results and the analytic curve based on the exact form 
factors seems to indicate that the bootstrap method 
really represents a description of the same lagrangian 
theory. It remains to be understood, however, why 
the agreement here is much better than in previous 
studies [ 15 ], where the 2-particle form factor was di- 
rectly measured on the lattice. 
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2.5 5 7.5 i0 12.5 15 17.5 

Fig. 1. The transversal part of the current-current 2-point function for low energy. The dotted line is the 2-particle contribution, the solid 
line is the sum of the 2- and 4-particle contributions and the dashed line is the 2-loop perturbative result. The data points are the Monte 
Carlo measurements of ref. [ 14 ]. 
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Fig. 2. The transversal part of the current-current 2-point function for high energy. The notation is the same as for fig. 1. 

Fig. 1 also contains a warning. If we did not have 
the exact result of ref. [ 8 ] and tried to find the value 
of the mass gap m/A by fitting the perturbative curve 
to the MC data in this low and medium energy range, 
we would miss the exact value by about 20% (from 
below). This illustrates the fact that it is difficult to 
obtain a value for the A parameter which is correct 

within a few percent. 

There is no real discrepancy between our results and 
perturbation theory ( including the use of the exact 
mass gap). If  we go to higher energies (fig. 2), where 
perturbation theory is supposed to be more reliable, 
we find that the agreement is better than 2% (be- 
tween Q =  50 and Q =  500). Note that the deviation 
at even higher energies is positive so we can assume 
that it can be accounted for by the contr ibut ions of 6 
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and  m o r e  par t ic le  i n t e r m e d i a t e  states. 

It  is c lear  tha t  we need  a be t t e r  u n d e r s t a n d i n g  o f  

the  genera l  s t ruc ture  o f  the  n-par t ic le  f o r m  factors  be-  

fore we can e s t ima te  the i r  con t r i bu t ion  and  draw 

quan t i t a t i ve  conclus ions .  T h e  results  o f  these  p re l im-  

inary  inves t iga t ions  are, however ,  encouraging.  
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and  E. Sei ler  for  the i r  con t i nuous  interest ,  H. Leh-  

m a n n  and  F. N i e d e r m a y e r  for  m a n y  useful  discus- 

s ions and  suggestions.  I a m  indeb t ed  to A. Patras-  

c io iu  and  E. Sei ler  for  a l lowing me  to use the i r  M o n t e  

Car lo  results  p r io r  to publ ica t ion .  T h e  au tho r  wou ld  

also l ike to t hank  the  A l e x a n d e r  yon  H u m b o l d t - S t i f -  

tung for  f inanc ia l  suppor t .  
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