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Away from Criticality

John L. Cardy
Department of Physics, University of California, Santa Barbara, Santa Barbara, Cattfornia 93106

(Received 25 March 1988)

For a general isotropic two-dimensional theory near criticality, the universal singular free energy per
correlation volume f,( is equal to —(c/12tr)(2 —a)(1 —a) ', where c is the central charge of the
theory at criticality, a is the usual specific-heat exponent, and g is defined (for a) 0) in terms of the
second moment of the energy correlations. Some generalizations of this result are also noted.
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In the past few years, our understanding of two-
dimensional critical behavior has advanced considerably
through the application of the principle of conformal in-

variance. However, as this principle only holds in the
continuum limit exactly at the critical point, progress has
been restricted to those properties of theories which may
be related to their behavior at renormalization-group
(RG) fixed points. A complete understanding of the
universal properties of 2D critical systems should of
course include the correlation functions away from criti-
cality, in the scaling region where the correlation length,
although finite, is much larger than any microscopic
scale. At large distances, such systems are then equiva-
lent to massive renormalizable quantum field theories.

As a first step in this program, one may try to calcu-
late universal combinations of amplitudes of quantities
which become singular as T T, . These amplitudes
generally are related to moments of the scaling forms of
the correlation functions. One of the most fundamental
of these universal numbers is the singular part of the free
energy per correlation volume, f,gz. Here f, is the
singular part of the free energy per unit volume (mea-
sured in units of kBT,), which behaves like 3

~
t

~

where as usual t =(T—T, )/T„and g is the correlation
length, which has' the asymptotic behavior 8

~
t
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Hyperscaling arguments, supported by the RG, ' assert
that the quantity f, g tends to a constant as t 0, and
that the product A8 is universal. The correlation length
may be defined in many different ways, all suitable
definitions giving the same exponent v but different am-
plitudes 8. One definition (although not the most practi-
cal one) is in terms of the second moment of the connect-
ed correlation function of the local energy density e(r):

fr '(e(r) e(0)),d'r
J(e(r)e(0)),d'r '

with use of a continuum notation. In the critical re-

gion, this correlation function has the scaling form
t + 'p(rt'). The denominator in (1) is just the specific
heat per unit volume (measured in units of kaT, ), whose

singular part is equal to -t)'f, /at'- -(2-a)(1 —a)
x t f, . Thus

f,g'- —[(2 —a) (1 —a)]

r'(e(r) e(0)),d'r,

which, from the scaling form above, is independent of t

ast 0.
The main result of this Letter is that the integral on

the right-hand side of (2) may be evaluated in terms of a
and the conformal-anomaly number c of the critical
theory. This is defined as follows. The stress tensor T„„
is defined in terms of the response of the reduced Hamil-
tonian (or action) to an infinitesimal change of coordi-
nates x" x"+a", corresponding to a nonuniform RG
transformation: BS= —(I/2tr) f8"a'T„„d2x. It is con-
venient to use complex coordinates (z,z'). The com-
ponents of the stress tensor are then given in terms of
the Cartesian components by T=T„=—,

' (T,„Tyy-
—2iT„y), 8=4T„.=4T...=T„„+Try, and T*—= T,...= —,

' (T„„—Tyy+2iT„y). These are respectively the spin

2, 0, and —2 components of the stress tensor, and 8 is
its trace. At the critical point, 8=0, and the conserva-
tion of T„, implies that i),.T=r), T* =0. Rotational in-
variance then implies that the two-point function
(T(z) T(0))=(c/2)z, where c is a universal number,
which then plays a fundamental role in the theory at the
critical point. For example, 4 the primary scaling opera-
tors correspond to highest-weight representations of the
Virasoro algebra with central charge c, and the
classification of such representations then leads to for-
mulas for the critical exponents. Finite-size scaling am-
plitudes at criticality in certain geometries are also re-
lated to c.

Zamolodchikov has proved an important theorem
whose significance extends to theories away from criti-
cality: There exists an interpolating function C of the
coupling constants of 2D quantum field theories which is
nonincreasing along RG trajectories, and which, at an
RG fixed point (FP), is equal to the value of c for that
FP. It is now shown that the total change of C from one
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F+ 4 (G —3G) =0,

G —G+ —,
' (H —2H) =0, (4)

where F=zz*F'(zz ), etc. Eliminating G from the
above, and defining C =2F —G —

—,
'

H, one obtains

C= —
4 H.3

Noting that H & 0, one sees that C is a nonincreasing
function of R =(zz*) 't . The RG then implies that C,
evaluated at some fixed value of R, is decreasing along
RG trajectories. Moreover, at a FP, 8 =0 and
C=2F =c. This is then Zamolodchikov's result.

Returning to (5) ones sees that, at some fixed value of
the coupling constants, the total change in C from short
to large distances is given by an integral of the two-point
function of 8. Now consider a noncritical theory with

Hamiltonian H ='H*+t fr(r)d r, where P is the FP
Hamiltonian. Under a dilatation r" r'"=(I+X)r",
with ) ((1, e(r) (1 —Xx,)e(r'), where x, =2 —v ' is

the scaling dimension of e. Thus the total change in S
is —X(2 —x, )tfr(r)d r. However, by the definition of
the stress tensor this change is —(X/2n) f8(r)d r. Thus

8(r) =2nt (2 x,)e(r). -
With this kind of perturbation, the RG trajectory will

fiow from the critical FP with C=c to a trivial high- (or
low-) temperature FP with C=O, i.e., the correlation
functions will fall off exponentially fast at large dis-

tances. Thus, substituting (6) into (5) and noting that
C = —,

' R dC/dR, we have

(2 —x ) R (p(R)p(0)), dR. (7)

The integral is equal (apart from a factor of 2z) to that
in (2). On expressing 2 —x, as 2/(2 —a), one finds the
main result quoted in the abstract.

The integrand in the denominator of (1) behaves like

r "' as r 0, and thus the integral converges only for
x, & 1 (a & 0). When a ~ 0, the integral must be cut off
for r & a (where a is a microscopic distance), and the
denominator then behaves like 2 ~+32 ~

t
~

where A ~ and A2 are constants with A ~
&0. However,

FP to another is related to an integral like that in (2).
Away from the FP, 8e0. Rotational invariance con-
strains the two-point functions of T and 8 to have the
forms

(T(z,z*)T(0,0))=F(zz*)/z',

(T(z,z*)8(0,0)) =(8(z,z*)T(0,0))
(3)

=G(zz*)/z'z*,

(8(z,z*)8(0,0)), =H(zz*)/z'z*'.

Conservation of the stress tensor 8,.T+ —,
' 8,8=0 then

implies that

the numerator remains ultraviolet finite. As a result, g
as defined by (1) does not scale as t ' and f, g is no
longer universal with this definition of g. Nevertheless,
the "sum rule" of Eq. (7) remains valid. The only non-
trivial model for which the energy-energy correlations
are known exactly is the Ising model. For this case
a=0, and so the result must be verified at the level of
Eq. (7). The reduced Hamiltonian' is

S = —Kg, ye(x, y)

where

e(x,y) =s(x,y) [s(x+a,y)+s(x,y+a)],
and t =K, —K. The energy correlations in the scaling
region are"

(E(R)e(0)), =4(tt( ) [K((R/g ) —K$(R/g )1,

where Ko and K~ are modified Bessel functions, and
=(4~t ~)

' is the magnetic correlation length. On
inserting (8) into (7) and performing the integrals, one
finds c = —,', as expected for the Ising model.

Although the main result has been stated in terms of a
thermal perturbation of the FP Hamiltonian, it has obvi-
ous extensions to other relevant scaling fields. For exam-
ple, it applies to the case of a nonzero magnetic field,
with y replacing a, and g defined in terms of the second
moment of the magnetic correlation function. A simple
generalization applies to cases when the relevant pertur-
bation causes crossover to a nontrivial FP. In that case,
the left-hand side of (7) is replaced by the difference of
the values of c at the two FP.

To conclude, a quantitative prediction of conformal in-
variance for noncritical systems has been given. In prin-
ciple, it is amenable to experimental verification, in, for
example, adsorbed systems. The version of the result ap-
plied to magnetic correlations, may, for example, be test-
ed by a scattering experiment near a two-dimensional
liquid-gas critical point. '2 When it is applied to the limit
n 0 of the O(n) model, the universal amplitude in the
radius of gyration of ring polymers may be successfully
predicted. '

It remains to be seen whether this is an isolated result,
or the tip of an iceberg. The recent result of Zamolod-
chikov' that for certain perturbations in some theories
there exists an infinite number of conserved quantities
suggests the second possibility.

The author thanks P. Kleban for useful comments.
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~The amplitudes A and B are in general diff'erent for T & T,
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and T ( T,. However, my result shows that the product AB is

independent of the sign of T—T, in two dimensions, with my
definition of (.
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