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Abstract: The absence of Callan-Symanzik coupling-constant renormalization in a massive 
Thirring model is demonstrated to all orders using normal product methods. The deri- 
vation depends crucially on the mildness of the "anomaly" of tile axial-vector Ward iden- 
tity in this model, as well as on the special relationship between vector and axial-vector 
currents in two-dimensional field theory. Application of power-counting arguments 
establishes the asymptotic scale invariance of the vertex functions when the mass m 
tends to zero with the normalization point ~ either fixed (Gell-Mann-Low limit) or van- 
ishing with m (Callan-Symanzik limit). 

1. I N T R O D U C T I O N  

Wilson's conjec ture  [1] that the dominan t  short-distance singularities o f  products  

of  fields are those of  a scale-invariant zero-mass theory has s t imulated considerable 

interest  in the quest ion o f  h o w  quan tum field theories behave in the l imit  o f  van- 

ishing mass. Among  the various models  s tudied in this regard, the massive Thirr ing 

model  [2] of  a self-interacting spinet  field in a space-time of  two dimensions has 

the almost  unique advantage o f  having for its associated zero-mass theory a well 
known,  exact ly  soluble, scale-invariant mode l  [3 5]. The impor tan t  issue here is 

whether  or no t  the Green ' s  funct ions  o f  the massive Thirr ing model ,  which one can 

calculate to arbitrary order in renormalized per turbat ion  theory,  pass over smooth ly  
into the known Green 's  funct ions  [4] o f  the massless theory.  In other  words,  does 

the asympto t ic  short-distance behavior  of  the massive model  coincide with  that of  

the massless case? 
Mueller and Trueman [2] have provided impressive evidence that the conjec tured  

smooth  zero-mass l imit  does indeed occur. They consider  a model  in which the 

Thirr ing field o f  mass m > 0 interacts  via a trilinear coupling with a heavy vector  

boson of  mass M. The zero-mass l imit  is def ined to be that in which rn tends to zero 
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and M becomes infinite, in that order. The authors verify that, at least to fourth 
order in the four-fermion coupling, the renormalization of  the coupling cons tan t  
is finite in the limit, and hence the limiting theory, which should exist [6] provided 
the Green's functions are normalized away from the mass shell, is scale invariant. 
They then conclude that the N-point (proper) vertex functions of  the zero-mass 
limiting theory satisfy the same "anomalous" scaling law (which determines the 
two-point function completely, up to normalization) 

[,(N)(~Ol . . ' ~kpN ) = ~2-N(1/2 + v)p(N)(p 1 . . .  pN ) (1.1) 

as those of the massless Thirring model, and moreover that the vertex functions 
of the original massive theory satisfy (1.1) asymptotically for sufficiently large X. 

In the present article we investigate a massive Thirring model which differs in 
certain essential respects from that of Mueller and Trueman. In particular we shall 
consider from the beginning a four-fermion contact interaction (this corresponds 
to let t ingM-> oo before rn --> 0), and shall avoid ultra-violet divergences by applying 
Zimmermann's version [7] of  the BPH subtraction scheme (without cutoffs). We 
apply powerful normal product techniques [8 -10]  to demonstrate the absence of 
Callan-Symanzik [1 1, 12] coupling constant renormalization to all orders without 
resorting to laborious graphical analysis or to the usual power-counting arguments 
(whose validity is yet  to be established). Power counting is, of course, a necessary 
ingredient in showing the asymptotic scale invariance of  the vertex functions, but 
is not needed to establish the vanishing of  the Callan-Symanzik coefficient/3. The 
latter is rather a direct consequence of the Ward identities of the massive theory, 
and in particular of the remarkably mild form of the "anomaly" [I 3] of the axial- 
vector Ward identity in this model. 

2. THE MASSIVE THIRRING MODEL 

2.1. Specification o f  the Green "s functions 
We consider a two-dimensional spinor field theory whose effective Lagrangian 

density (Zimmermann's terminology [8]) is given by 

LEFF = 1 i ( l+b)  ~yu<~t~ - (m a ) ~ d  - ½(g-c) ( ~ T  u ~) ( ~ / u  t~) -~ L 0 + L1, 

L o - ~ i ~ 7 u 3  u (2.1) 

where the finite renormalization constants a, b and c are power series-in the cou- 
pling constant g to be determined by the normalization conditions of  the theory. 
The Green's functions of the model are unambiguously defined by the modified 
Ge l l -Mann-Low formula [8], 
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in D1 

<OtT[] g,(xi) V[ ~ (y/)lO> 
i=t /=l 

m m 

= finite part o f ( 0 ) ( 0 l T  ~ ~(O)(xi) [I ~(O)(y/) 
i = 1  / = 1  

(2.2) 

X exp{ifd2x : L I [~(0), ~ (0)] :}t 0)(0) , 

where ~(0) is the free field whose propagator is specified by L 0 and the finite part 
prescription is that of  Bogoliubov, Parasiuk, Hepp and Zimmermann (BPHZ) [8]. 

Before making the BPHZ subtractions, the right-hand side of  (2.2) is the usual 
sum over contributions from Feynman diagrams. I f l  G is the Feynman integrand 
(in momentum space, before integrating over the independent internal momenta)  
corresponding to the diagram G, then the BPHZ subtracted integrand is given by 

R G = ~ ~ ( tT ) IG ,  (2.3) 
U ~ : G T ~ U  

where F is the set of  forests (families of non-overlapping, one particle irreducible 
subdiagrams) of  G, and t 7 is the Taylor series to order 6 (7) in the independent 
external momenta  o f %  taken about the point where all such momenta  are zero. 
The degree function 6(7) which determines the number of  subtractions of  the sub- 
diagram "y is given in this model by 

6(y ) = 2 LN , 2 "r (2.4) 

where N. r is the number of external lines ofT.  
Normal products [8] are introduced by a slight modification of the above for- 

mulas. If Oa, a = 1, 2 , . . .  are formal products of the basic fields and their derivatives 
we define 

l m rt 

(OLT [-I N6a[Oa](Xa) ~I ~(.V i) ~ ~(z/) lO)  = finite part of  
a = l  i = 1  / = 1  

1 m n 

(O)(oIT l~oa(O):(Xa) ]-[ 4a(0)(yi) [ 7  ~(O)(z/) 
a = l  i = 1  / = l  

Z exp { i f d Z x  " L l [if(0), ~ (0) 1 . } iO)m), (2.5t 
where again the finite part is that of  BPHZ, but with 
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1N ~ (2 . (2.6) 6(3') = 2 - ~  "r - 6 a )  
V ~ - r  

a 

Here V a is the special vertex associated with O a and 8 a is an integer or half-integer 
greater than or equal to the dimension of O a. 

Defining the 2N-point vertex functions I '(2N) by 
N N 

( . i~l  ~= l q i )F(2N)(p l  " " "PN;q l  " " "qN ) (2zr)28 Pi + i 

=f.l-I d2.xid2yiexp (Pi.xi+qi'Yi) <OIT [7 W(xt) l I ~%)10> "R°~' 
z = l  i = 1  / = l  

¢ p ( 2 ) ( p , _ p ) = _ S F  l (p ) ,  

s~.(p) -- fax  e*' X<OIT~(x)~(O)JO>, (2.7) 

where the superscript PROP indicates that only proper (amputated, one-particle 
irreducible) diagrams are included, we impose the normalization conditions 

I'(2)(P' - P )  1¢~ = m = 0 ,  

r(2)(P , - P )  ~r= u = i(~ - m) ,  

8cq c~2a3c~ 4 P ~ 2 ~ 3 ~ 4 ( P l P 2 ; P 3 P 4  ) 
[ P i  Pj= ~-u2(48ij- 1) 

= - / g ,  

with 

= , , - 8  ) 8~1c~2c~3c~ 4 --3'~1~4T~c~2c~ 3 -T~la3T~c~2a 4 = 2(8cqa38c~2c~4 c~1c~46~2a3 . 

(2.8) 
The finite renormalization constants appearing in (2. I) are determined implicitly 
by (2.8). 

2.2. Callan-Symanzik and renormalization group equations 
The Callan-Symanzik [11, 12] and renormalization group [6, 14] equations 

of the massive Thirfing model are most easily derived using differential ~,ertex oper- 
ations (DVO) [10] defined by 

N N 
A8 ~ (2N)( . . . .  = (d2z(0[TN8 [ ]  ~I 0 v V ' l '  " X N ; Y l "  "YN)  j [O](z) i= 1 ~(x i ) /=  ! ~o,j) lo> 

(2.9) 
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with corresponding formulas for the vertex functions. Clearly a DVO corresponds 
to the presence of a special internal vertex in each Feynman diagram. We shall need 
only four of  the DVO's, namely the ones closely associated with the Lagrangian 
(2.1). They are, symbolically, 

A o = i / d 2 x N  1 [ re ]  (x ) ,  

A 1 = i / d 2 x N  2 [ ~ ]  (x ) ,  

A2 = - ~ f d 2 x X 2  [~Y"~2 ~1 (x ) ,  

A 3 = ~ i f d 2 x N  2 [~3'*' ~)(~7uff)]  (x ) .  (2.10) 

Note that ~ has dimension one, so that A 1 is defined with one more subtraction 
than is necessary to avoid ultraviolet divergences. This will be very useful, however, 
for making mass insertions without disturbing the BPHZ subtraction scheme. Re- 
ferring to ref. [10], we may write down the following identities for theN-point  
vertex functions (in momentum space): 

()m = ~ m - -  l A 1 +~mmA2 +0~nA3 p(N) 

a r{x)=[-aaa ab ac~x]p (x) 

paa 
ag - -LV 1 +~g-g A2 + ( ~ - - I ) A 3 1 F f N ) "  

N F  (N)= [2(a m)A 1 +2(1 +b)A 2 +4(c  g ) A 3 ] P  (N),  

AoF(N) = [A 1 + rA 2 + sA3] F(N) , 

whe re 

r = -¼iTr7 u 3 AOr(2)(p, __p ) 
3pU p = 0 

A r (4) (00,00) S=~66 i6~1~2~3~  4 0 a1~2~3~ 4 

The first of  these are simple consequences of the structure of Feynman diagrams 
and the nature of  the BPHZ subtraction scheme. The last is an identity relating 
normal products of  different degree of the type derived by Zimmermann [8]. 

(2.1 1) 
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Eqs. (2.11) express five quantities as linear combinations of  the three (linearly 
independent) Aft "(N), i = 1, 2, 3. Thus there must be two independent linear rela- 
tions among the quantities on the lefthand side. These are conveniently taken to 
be [10] the Callan-Symanzik and renormalization group equations, 

[ m ~ m  +/a ~u-u +/3 , - N T  , r (N) , (2.12) 

ola3 +°(m ) 3g ( ~  [U~  Nr ]P(N) = 0 .  (2.13) 

Here c~, ~3, % o and r may be determined from (2.11) by equating to zero the co- 
efficient of each AiI'(N): 

3 3 3 
[m ~.~=+/a ~ +/3 a~_ - 23'] (a - m) = a m ,  u/a og 

~m 3 [m +/a ~u-/a + 13 ~-gg 23'](1 +b):o~rnr, 

3 3 O 
[ m ~ + / J ~  +/3 ~-gg 43"](c-g)=oo~zs , (2.14) 

(# ~.. + o ~- -- 2~)(a - m) = 0 ,  
o/.L og 

3 
( ~ . .  + O ~ - 2 r ) ( l  + b ) = 0 ,  og 

3 
(/1 ~ + o T 2  - 4 r ) ( c  - g )  = O .  ( 2 . 1 5 )  

u/a og 

To arrive at (2.13) 
and then verifies the remaining equation using (2.11) and the relation 

O 
[(/a ~-fi +Cr~gg - 2 r ) U ( 2 ) ( p , - p ) ]  p" = m  = 0 .  (2.16) 

Subtracting (2.13) from (2.12) yields 

a 3@-- N~:] 1 -'(N) (2.17) [m ~ +  r? = ~rnA0 P(N) ,  

one chooses o and r to satisfy the last two equations of(2 .15)  

where r/=/3 o and ~ = 3' - r may be determined from (2.14) and (2.15) or, alter- 
natively, from the normalization conditions at/~ applied to (2.17): 

~_= im ~=~ 
/~-m (c~AoP(2)(P' - p) + i ) ,  (2.18) 
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= 4 g ~ + ~ i m 6  ,5 F (4) (p p p3p4 ) 
c~1c~2~3c~ 4 0 O~lC~2~3~ 4 1 2' 1 2 

Pi" Pj=~g (46 i f l )  

(2.19) 

Analogues of (2.12) and (2.13) may be derived for the proper functions of  the 
current operator, 

N N 

(2~')26(P + ~ "  Pi + ~ qi)Fi 2N)(p' P l ' ' "  PN' ql "'" qN) 
i=1 ]=1 

N 
= fd2x [~ d2xi d2y i exp {ipx + i ~ ( p j  x~ + q/" y/)} 

i=1 / 
N N 

X (01TN 1 I~3`X¢](X ) [1 ~(xi) [ ]  ~(vj)[0) PROI' 
i=1 j = l  

in a similar way. P(a N) satisfies the first three of the eqs. (2.1 i), and in addition 

( N - 2 ) p I N )  = [ 2 ( a -  m)A 1 + 2 ( I + b ) A  2 +4(c  g)A3]F(X N) , 

(A 0 t)FIN) = [A 1 + r/X 2 + SAg] V(x N) ' (2.20) 

where 

t =  ~1 Tr@ AoF(x2) (0, 0, 0) 

The presence of the term tp(N) in the second equation is due to the BPHZ sub- 
tractions for proper subdiagrams which contain both the f~k and ~3`xf  normal 
product vertices. By the same reasoning as before, we obtain 

a ~ (X) = am(A 0 t)FIN) [rn ~mm + u ~ + f3 ~ (N - 2)3']F~, 

O a F(xN ) [ U ~ + O S g  (N 2)r ]  = 0 ,  

(2.21) 

(2.22) 

0 ~ v(N) = _ t)FIN) [m ~ + 77 ~ -- (X - 2)~] - x  urn(A0 • (2.23) 

2.3. Equations of  motion and Ward identities 
Equations of motion for the massive Thirring model may be derived in a straight- 

forward manner using the methods of refs. [8] and [9]. In particular 
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( i7" aXl m) (0 lT~(Xl ) . . .  ~(XN)~(yl ) . . .  ~ (FN)10) 

= <0 [T{(g - c)N3/2 [(~3,u~)3,  ~,1 ( x l )  a ¢ ( x l )  - ib#~,(x l)}¢(x2) . . .  ~(yU)10)  
N 

÷ i ~ (--1)k+Na(x I -- yk)<0 IT¢(x2). . .  f0ek_ 1)f(Yk+ 1 ) ' "  " ~('VN) 10>, 
k = l  

<0 IT N 2 l~(i~ m ) ¢ ]  (x)X Lo> 

= (0 IT{(g-c)N 2 I f7  u ~)(f7  u ~)] (x) - aN 2 [ ~ l  (x) bN 2 [~(i~5¢1 (x)}X 10> 
N 

+ i ~ 6(x yk) (OITXIO) .  (2..24) 
k= l  

where X is an arbitrary product of the basic fields, 
N N 

X = [ ]  @(x].) k N  1 ~ {..Vk) . 
j = l  = 

As in ref. [9]. eq. (2.24) may be used to derive Ward identities for the vector and 
axial-vector currents: 

(l+b)Ox~ <0~T N 1 [~7,@] (x)Xl0> = (l+b)<01T N 2 [O'u(~3,uff)] ( x ) X  [0) 

= ( l+b)i(0 IT{N 2 [f( - i ,~  rn)~] (x) - N 2 [ff(i~ rn)ff] (x)}X 10) 

N 
= ~ [a (x-Yk)  ~(x Xk)l<orrxlo) ; 

k = l  
(2.25) 

(l+b)OUx (0IT N 1 [~3,u3,5 ~] (x)XI0) = (1+b)(OlTN2[O~(~7~75q;)](x)XlO) 

= ( 1 +b)i(O IT{N 2 [~(-i~- m)@ ~] (x)+N 2 [~-rs(i~ m)ff] (x)+2mN 2 [~@ ~] (x)}Xl 0) 
N 

= - ~ (6 (x -Xk)@k+6 (X-Yk)75y~ (0 ITXI 0)+ 2i (m-  a)( 01TN 2 [ ~75 ff ] (x )X 10 ). 
k.=l 

(2.26) 
For a justif ication of our bringing the derivative inside the time-ordering and nor- 
mal product symbols, the reader is referred to the appendix of ref. [9]. 

The fact that the right-hand side of (2.26) involves N 2 [~3, 5 ~] rather than 
N 1 [~3,5~k] is the two-dimensional analogue of the well-known "anomaly" of the 
axial-vector Ward identity in quantum electrodynamics and other four-dimensional 
models [13]. In our case, however, the "anomaly" is less drastic in its consequences, 
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since it merely produces a change of  normalization of  the axial-vector current and 
hence does not prevent it from being conserved in the zero-mass limit (see sect.3). 
This is because Zimmermann's identity relating normal products of different de- 
gree is severely restricted by the requirements of P-, C- and Lorentz invariance, 
as well as Fermi statistics, and assumes the particularly simple form, 

N 2 [fV5~] = N 1 [~75@] + e N  2 [3u(~T~'y5@)] , 

where 

e ') '3 '5 = i ~ (01TN 1 [~3,5 @] (O)~(½q)~(½q)10) PROP 
3q u 

Thus we may rewrite (2.26) as 

(1 + b)(1 - h)~x~ (0 ITN 1 [@,),,,),5 @] (x )XI0)  

N 
= -  ~ [6(x X x ) 7 5 X k + 6 ( x  ST -- yk )7 .vk  ] (01TXI0) 

k = l  

+ 2i(m - a ) ( O I T N  1 [~75@](x)  Y l 0 ) ,  

where 

m - a  
h = 2 i ~  e .  

q=O 

(2.27) 

(2.28) 

2.4. Vanishing o f  fl( rn/ #, g) 
The Ward identities of the massive Thirring model may be used to demonstrate 

that the coefficient of the coupling-constant derivative in the Callan-Symanzik 
equation vanishes to all orders. This property, which we shall prove without ref- 
erence to the asymptotic behavior of  vertex functions, will be employed in sect. 3 
to show the scale invariance of the theory in the limit of vanishing mass. 

We shall need the following Ward identities, which may be proved using methods 
analogous to those which led to (2.25) and (2.28), 

(1 + b)pX [ ' 7  ) (p, Pl • " • PN' q l  " • " qN ) 

N 

= i  ~ {F ' (2N)(pl . . .pN,  ql " ' ' q k + P ' ' ' q N )  
k = l  

-- F~2N)(pl " ' "  Pk + P" " " PN' ql  "'" q u ) }  ' (2.29) 
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(1 + b)(1 - h ) p v e V X F i  2N) (p,  Pl" " " P N '  q l  " • • qN)  

N 

=i  ~ {F(2N)(p 1 . .  "PN'  q l  qk  + p  q N  ) 7 5  
k = l  . . . . . .  qk 

5 (2N) 
+~'pk r (Pl" " " Pk  +p" " " PN'  q l  " " qN )} 

- 2 ( r n - a ) F ~  2N) (p, p l . . . p N ,  q l .  " q N ) '  (2.30) 

(1 + b)p~" A 0 r~xZU)(p, P l . . .  PN ,  q l " ' "  q N )  

N 

= i  ~ {AoF(2N) (p l . . . pN ,  q l . . . q k  + P ' ' ' q N  ) 
k = l  

--AoF(2N)(pl " ' ' P k  + P" " " PN '  qi" " " q N ) }  ' (2.31) 

vX (2N) 
(1 +b)(1 - h ) P v e  A0F x ( P ' P l  " ' ' P N ' q l  " ' ' q N )  

N 

i f :__  5 Z...z ~.AoF(2N)tp 1 . . . p N , q l  " " "qk  + P" " " qN)') 'qk 
k = l  

+ 5 
3 ~ P k A O F ( 2 N ) ( p l ' ' ' P k  + P ' ' ' P N ' q l ' "  q N ) }  

- - 2 [ l + ( m - a ) ( A  0 u ) ] F ~ 2 N ) ( p , p  1 . . . p N ,  q l . . . q N ) ,  (2.32) 

where (0 .) 
(e"v) = 1 0 ' 

e,V,yv = ~ 7 5 

u@ = 2XoFs(0, 0, 0) ,  

and F~ 2N) is defined in the same way as F(~ 2N) , with ~'x is replaced by 7 5. 
The extra term in the last equation is due to the fact that the Zimmermann ex- 

pansion relating N 1 [~7 5 ~] and N 2 [~,),5 ~] contains a term arising from subtrac- 
tions for which the 7 5 vertex and the A 0 vertex are in the same proper subdiagram 
with two external lines.. 

We now apply the Callan-Symapzlk differential operator 
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to both sides of  (2.29) and (2.30), simplifying the results with the aid of  (2.31), 
(2.32), (2.12), (2.14), (2.21) and the analogue of  (2.21) with T x and t replaced by 
75 and u, respectively. Thus 

[o~rnr + arnt ('1 + b)] pX['i2N) = 0 ,  

[c~mr + ~mt (l + b) - ( ,  + b)/3 O~]pueVXI'i2N' = o , (2.33) 

and hence, 

r + ( 1  +b)  t : 0 ,  

~h 
/3 Z2- = 0 .  (2.34) 

og 

But a simple computation shows that the first-order contribution to h is nonzero. 
Hence ~3(mill, g) = O, 

Referring back to (2.14) we may now write a convenient expression for the 
"anomalous dimension", 7(mill, g): 

m ' r  
- 4= 0, (2.35) 27(m/u, g) 1 + m'r 

where m' = (m - a)/(1 + b). 

3. ZERO-MASS LIMITS 

3.1. Preliminaries 
In this section we investigate the asymptotic behavior of  the vertex functions 

in two different zero-mass limits: (i) the Gell-Mann-Low limit [6], in which m 
tends to zero wi thg  and/l  fixed, and (ii) the Callan-Symanzik limit [11, 12] in 
which m and/l  tend to zero with g and m/Ix fixed. Both limits define scale invariant 
zero-mass theories in which the Ward identities of  the massless Thirring model are 
satisfied. 

Our methods follow closely those of Symanzik [15]. With him we assume the 
validity of  certain power counting arguments which are generally accepted as true 
but which have not yet been placed on a completely rigorous footing. Thus we 
shall suppose that for non-exceptional [15] momenta Pl ,"  - -PN (no nontrivial 
sub-sum E, kPik is lightlike), a Feynman integral of the type 

J ( p , m , g )  =lira f d k R  G ( p , k , m ,  (, e) ,  {P= P l . - . P N } ,  {k= k l - . -  kN} ,  
e--~ O 

(3.i) 
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where R G is given by (2.3) and the e-dependence of the integrand enters through 
Zimmermann's  form [7] for the propagator, 

t SF(P,e  ) = i (p '+ m)[p 2 -- m 2 + ie (p  2 + m2)] -1 

has an asymptotic expansion, for X --> ~o [ 15], 

J ( p , ~ , - l m , g )  = ?t c~ ~ Ckl(P , m, g)X-kloglX,  (3.2) 
k,/=0 

where the leading power ~ is an integer which may be determined by counting powers 
in RG(P, k, m, g, e). The latter leads to the following assignment of leading asymp- 
totic powers in the massive Thirring modeh 

c~=l  " r , s , t , u , e .  

o< = 0" C (N), AoF(N), p(,N) , AoFIN), b, c, h, o~,/3, 7 

c ~ = - I  " a, rL ~ . 

(3.3) 

The same power-counting is applicable for both Gell-Mann-Low and Callan- 
Symanzik zero-mass limits, since the asymptotic forms differ only by powers of 
log m/~/. 

3.2. Gel l -Mann-Low zero-mass l imi t  

From (3.3) we see that in the limit of  vanishing m with/~ fixed and positive, the 
vertex functions F (N), 2x0F(N), etc., are at worst logarithmically divergent, whereas 
r~ and ~ tend to zero like m logXm (x ~ unknown logarithmic power). Thus, from 
(2.17), we have for non-exceptional momenta  

0 [,0V) = 0 ( m  logXm) (3.4) 
m T m  m 

and so 1 "(N) must be cons tan t  in the limit. Similarly, from (2.14), (2.15), (2.34) 
and (3.3), 

0b 
m ~m-m = - o~m(1 + b ) t  + O ( m  logXm) , (3.5) 

so that (2.23) yields 

0 
m ~mm [(1 + b)Fx(N) ] = O(m logXm), (3.6) 
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and the current/x = (1 + b ) N  l [~')'x~] has finite vertex functions in the zero-mass 
limit. 

Eq. (3.4) allows us to define, at least for non-exceptional momenta, the Gell- 

M a n n - L o w  z e r o - m a s s  t h e o r y  associated with the massive Thirring model as follows: 

F(N) t t GMLW 1 . . . p N , u , g )  = lira EUV)(p I . . .  PN'  m,  Ix, g ) .  
m ~ 0 

The limiting vertex functions are scale-invariant, satisfying 

since 

/a~0 [,(N)GML = Nr(O,  g)  --GMLP(N) = N7(0  ' g)FG(G~M) L 

(3.7) 

(3.8) 

, , , , ,  , , , , ,  ,m ,,,, 

I - - , ~ I  ,_. ( 3 . 9 )  

From (3.8), the boundary conditions for time-ordered Green's functions and the 
normalization condition at/x, the two-point flmction of the zero-mass theory is 
completely determined: 

p{2) ( .  GML ~' p)= i f f t12r(p2 + iO)- r ,  r = r ( O , g )  . (3.10) 

The zero-mass vector-current vertex functions (for non-exceptional momenta) 
are defined with the aid of (3 .6 ) :  

GMLw.,p1 . . . P N , t & g )  ==- lira (1 + b ) p ( N ) x ( p ,  p l . . . P N ,  m , t & g )  (3.11) 
;'H "--* 0 

From (2.29), (2.30) and (3.3) these are easily seen to satisfy the Ward identities, 
characteristic of  the massless Thirring model [4] 

p p ~2N)x ~n 
X GML ~t-,Pl " ' ' P N ' q l "  "" q N  ) 

N 

= ~ tP(2W} (P~ PN, q~ qk +P qN) t GML . . . . . . . .  
k = l  

p(2N) (Pl Pk  + p PN' q l  "" " GML . . . . . .  q x  ) } '  (3.12) 
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I,(2N) x,  
(1 - h 0 ) P v e v x  GML ~p 'p l  " ' ' P N ' q l ' ' ' q N  ) 

N 
= i ~ ,¢p(2N) ~,, 5 

t GML tt ' l  " " " PN' ql  " " " qk +P" " " qN)'Yqk 
k = l  

+~5 p(2N) O~ 
~Pk G M L V e l ' ' ' P k  + P ' ' ' P N ' q l  "" qN)}  ' 

where 

h 0 = lira h < oo //7--'0 

(3.13) 

3.3. Callan-Symanzik  zero-mass l imit  

The asymptotic behavior of the massive Thirring model in the limit m -+ 0, 
--* 0 and p = # / m  fixed may be studied in a manner which parallels closely the 

discussion of the preceding paragraphs. The controlling differential equation is now 
(2.12) which we rewrite, considering g =pm as a function of m 

[m ~ a  F~N) NT] = amAoP(N)  . (3.14) 

From (3.3) the righthand side may be ignored in the limit m -+ O, and we may define 
the vertex functions of tire Callan-Symanzik  zero-mass theory for non-exceptional 
momenta as 

F(C~)09]"" PN' mo" P' g) = m--.411iill (t~0) N'~p(N)(p 1 . . PN, m, pm,  g) , (3.15)  

where m 0 is an arbitrary mass parameter which fixes the normalization. Similarly, 
the current vertex function may be defined as 

I ,(N)a (p, Pl  PN, g) CS • • • m0'  p' 

= l i m  (n~0-0) -(N 2)7+c~mtF(N)X(p,p 1 
m - - , O  " " " P N '  m ,  p r o ,  g )  . (3.16) 

Using methods analogous to those of subsect. 3.2, one nray derive in straightforward 
fashion the Ward identities characteristic of the massless Thirring model. This time 
the anomalous dimension, non-trivially dependent on the choice of p, is given by 

~'{p, g ) .  (3.1 71 
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4. CONCLUSIONS 

Why is the massive Thirr ing model  asymptot ica l ly  scale invariant? According  to 

Mueller and Trueman  [2], the crucial fact is that the interact ion is renormalizable  

and of  the form X/ ' j  u, w i t h / u  conserved. Our analysis reveals a qui te  di f ferent  pic- 

ture: the absence of ,Cal lan-Symanzik coupl ing-constant  renormal iza t ion,  which 

leads to asympto t ic  scaling in ei ther  of  the two zero-mass limits of  sect. 3, is a 

consequence  o f  the asympto t ic  conservat ion o f  bo th  vector  and axial-vector cur- 

rents (]u" resp./5u),  with the two related by the relation (peculiar  to two dimensions)  

/ 5 .  = e u d ' :  . 

The authors  are indebted to B. Schroer  for a number  o f  helpful  discussions 

during the prel iminary phase of  this work, as well as to T.L. Trueman and A.H. 

Mueller for clarif icat ion of  several points  in their article. 
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