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We prove the existence of an infinite number of conservation laws in the massive
Thirring model, when V,(x) are elements of a Grassman algebra, and the absence
of anomalies in the quantum currents.
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A remarkable fact is valid in quantum theory for the model with Lagrangian
L=3(8,0)2+m?/ pYcospo —1) 1 and the massive Thirring model’?! namely the
conservation, after scattering, of the set of momenta of the particles in the
initial state, and factorization of the S matrix®™), if the classical conservation
laws remain valid upon quantization., We have ascertained that this is indeed
the case and present recurrence relations for the calculation of conserved cur~
rents in the Thirring model, when the fields ¢,(x) are not ¢ numbers? but
elements of a Grassmann algebra.

1. Local conserved currents for the sine-Gordon equation take a simple
form in terms of the variables »=(t+x)/2, o=(t —x)/2 and are calculated from
the recurrence relations

]-,(.n 1) ¢rar(jr(n)/¢‘r) +(B2/4)2 jr(k)jr(” + qS?(S"’ 0’ P, = ae/dr,

k4l=n

2

AR e 2m%g2 8, ,cos B + ™/g (i{"/$,) sinBé; 9, +a,jiM=0.
The currents ji”’ are homogeneous functions in 8, of degree n+1, therefore
the Green’s functions of the currents j#") require renormalization in spite of the
supernormalizability of the theory. As noted in [4], this can lead to anomalies
in the Ward identities (WD) and to violation of the classical conservation laws,
Using the quantum equations of motion in the N-product formalism 151 with an
effective Lagrangian (61
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for the current
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we obtain the differential WI
n-=1
<N i) x> = - < N 16,/ x) X> + m? 2 <N [0}
I=o

k n-1 R
-1l eNIm s -0 2 (E <N, 1Y )(0X> ) 8(x-y, );
f=~1 l=o
k A
X= T ¢(y;), X= 1 &(y; ).
j=1 i#j

where the index a at the sign of the normal product N, [Bl(x) determines the or-
der of the subtractions in the subgraphs containing the vertex corresponding to
the operator B(x), while the curly brackets correspond to two supersubtractions.
Integrating with respect to d’x we can transform the integral of the anomalous
terms

n -1 n

S %< NIV, 0 ¢-10LeDNx)X>= 3 [d2x< N [B(¢-ta DHIDX>.

l=o I=1
The monomials B; are homogeneous of degree » in 9, and of not less than third
degree in ¢. Using the Zimmermann identities and the quantum equations of
motion we obtain for the anomalous terms an inhomogeneous system of equa-
tions, the determinant of which differs from zero at sufficiently small 3. The
inhomogeneous terms of the system are Schwinger terms of the differential
WI of the form (N,,[B,](-yj)}?). Thus, in the integral of WI there remain only the
Schwinger terms, and on going to the mass shell in the momentum representa-
tion we obtain the classical conservation laws ¥, (pi0"=3 (p5"9"; n=1,2,. ..,

2, The equations of motion of the massive Thirring model
(i 9, = m )y (x) = My yF g (gyky),

when ¢, (x) are elements of a Grassmann algebra A with anticommuting genera-
tors 3,(x), $¥(x), a=1,2, and a is an involution in A, are also easier to con-
sider in terms of the variables o and 7. The conserved currents are calculated
from the recurrence relations (z[);‘z[)a=pa)

bn+l=aobn—i)plbn—2i)\ 3z ‘ by Yyby 1/115"4,1'0,' bn=0' n<0,
k+l=n, k#c

the dependence of b, on T is determined by the relations

6rbn+1=-m2bn—i)\p2bn+l+2)\mk21 b* Uy m 20,
+l=n
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and the classical conservation laws take the form
ar(l,’l’;bn—b.c.)=iméa(¢l’;b +hoc.)e

n =1

Using the quantum equations of motion with effective Lagrangian
L="/y(14 b) 8 y= (m+ a)By -[(m c)/4]($y“¢>? ,

where a, b, and ¢ are finite renormalizations of the mass, of the wave function,
and of the charge, we obtain differential WI for the current

< N3, (@b, = hoc) = im 1y )3 (1% 1, )+ hoc))(x) X >

< NUmfw* 4hb, _ - urtis, _ 11+ ¢ 4,)+2aclytis,

(1+5)%
-ygrlb, _ b+ o B ) (x)X>
A+ ¢
+—-——( te)m < NUyge be, - tytlp b, + 471G - hoc)(x) X> + 0
l+b)2

X= Tg(z;)M(y; ).
]' i

The operators 4,, B,, and C, are calculated from the recurrence relations

that follow from the relations for b, and the equations of motion, and each curly

bracket corresponds to one supersubtraction. The dots stand for the omitted

Schwinger terms, which in the integral WI, after going to the mass shell, yield
l

m
(L+eh, m)(T (goeyn -
=1
An analysis of the anomalous terms in the integral WI is carried out by using
the Zimmermann identities *), However, in contrast to the sine-Gordon equa-
tion, the massive Thirring model is only a realizable theory and it is impos-
sible to calculate explicitly the anomalous terms, Nonetheless, there are many
simplifications connected with the fermion character of the field #,(x), Lorentz
invariance, and C and P invariance, which make it possible to analyze the
anomalous terms fully and to show that they reduce, just as in the case of the
sine-Gordon equation, to the corresponding Schwinger terms, Thus, the clas-
sical conservation laws are satisfied also in the quantum theory, The equi-
valence of the sine-Gordon equation and the massive Thirring model "} makes
it possible to state that there are no anomalies in the soliton sector of the
(cos¢ — 1), quantum theory.

f= m+ I(P;n )n) < Pl“" Pm; out !Pm.;. 1.---}71; i,

Just as this paper was sent to press, we learned of preprint 18! containing
examples of conserved currents, Their expressions for J(u"), n=3,5,7 coincide
with the currents obtained from the recurrence relations.

In conclusion we are grateful to L, D, Faddeev, 1. Ya. Aref'eva, and V. E,
Korepin for stimulating discussions,

DThe results of this paper were reported at the 4-th International Conference
on Nonlocal Field Theory, Alushta, 1976,
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