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LETTER TO THE EDITOR 

Diagonalisation of GL(N) invariant transfer matrices and 
quantum N-wave system (Lee model) 

P P Kurish and N Yu Reshetikhin 
Leningrad Branch of Steklov Mathematical Institute, 19101 1, Leningrad, USSR 

Received 26 July 1983 

Abstract. The algebraic Bethe ansatz is constructed for the GL(N) invariant transfer 
matrices with arbitrary GL(N) spin. For this purpose the notion of vacuum subspace is 
introduced. It is shown that the GL(N) magnet can be interpreted as an integrable discrete 
approximation of vector or matrix nonlinear Schrodinger models or of the quantum 
N-wave system. 

The quantum inverse problem method (QIPM) connects exactly solvable field- 
theoretical models on a line or chain with solutions to the Yang-Baxter equation. 
We refer the reader to the review papers on QIPM of Faddeev (1979), Faddeev and 
Takhtajan (1979) and Kulish et a1 (1981) for details and references. As a result of 
the development of QIPM many interesting quantum models were solved and their 
lattice approximations were found, e.g. the sine-Gordon equation, the nonlinear 
Schrodinger equation and its multicomponent generalisation (see e.g. Izergin and 
Korepin 1982, Kulish et a1 1981). The eigenstates of the corresponding Hamiltonian 
were constructed by means of the algebraic Bethe ansatz (ABA) for scalar equations. 

The generalisation of the ABA to the multicomponent case incorporating the 
hierarchy of the Bethe ansatz was made by Kulish (1980) on an example of the 
quantum vector nonlinear Schrodinger (NS) model and by Kulish and Reshetikhin 
(1981) for the Sutherland (1975) magnet. In Babelon et a1 (1982) and Schultz (1983) 
this method was applied to the model with Z N  symmetrical R-matrices. All these 
models have a pseudovacuum with some special property (see below). 

A class of GL(N) invariant solutions of the Yang-Baxter equation (YBE) was found 
by Kulish er a1 (1981). The transfer matrices corresponding to these solutions describe 
the chains of interacting GL(N) spins, which transform according to an irreducible 
representation with the highest weight (m 3 m2 2. . .a mN). The Sutherland model 
corresponds to the case of spins which transform according to the vector representation 
(mi =ail). This case also corresponds to the Yang solution of YBE (Yang 1967). 

In the present work we suggest a method of diagonalisation for transfer matrices 
of systems of interacting GL(N) spins with arbitrary highest weight. For this purpose, 
we had to introduce the notion of vacuum subspace instead of pseudovacuum in the 
traditional scheme of ABA. 

It is shown that in correspondence with the choice of representation, acting in the 
quantum space of the system, the present model of the GL(N) magnet can be 
interpreted as an integrable discrete approximation of quantum vector or matrix NS 
models or as an integrable discrete approximation of the quantum N-wave model. 

@ 1983 The Institute of Physics L591 
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The model under consideration is the system of interacting GL(N) spins p !  situated 
on a chain with M sites. The space of quantum states at each site n = 1,. . . , M  is 
the representation space V, of GL(N), corresponding to the highest weight 
(my', . . . , m:'). The space ,3t = VI 0 . . , OVM is a (full) quantum space of the system. 

In accordance with QIPM, let us define the monodromy matrix 

T,(u) = b M L a M ( u  - U M ) b M M - I L a M - 1 ( U  - U M - I )  . * b l L a l ( U  -uI). (1) 
This operator acts in the tensor product W, 0 2 (W, = C" is an auxiliary space). The 
matrices bk act non-trivially only in W, and b k  = diag(b:, . . . ,6 : ) .  The operatorL,,(u) 
acts non-trivially only in W, 0 V,  and has the form 

N 

L , , ( u ) = u  + 1 e ! p !  (2) 
i , j = 1  

where (e:)kl = S:S/ are basic matrices in the auxiliary space and p !  are generators of 
the Lie algebra gl(N)-representation V, : 

EP!, P:I = ~ m n  ( S j k p t  - Slip,ki), p t l o ) ,  = mj"'lO),. (3) 
The vector IO), is the highest vector in the space V,: p:lO),  = 0, i <i. The operator 
L,,(u) satisfies the Yang-Baxter equation 

Rab (U )La" (U + U )Lbn ( 0 )  = Lbn (U )La" (U + U )Rab (U ) (4) 

which is written in the tensor product W, O wb 0 V,, W, = wb = C N .  The N2 X N2 
matrix Rab(u) is given by 

Rab(U)=U +phT', ( 5 )  
where 9::' is the permutation operator in C N  0 C": Shy'f 0 g = g Of. 

From (4) we obtain the Yang-Baxter relation for monodromy matrices 

Rnb(U)Ta(u +u)Tb(u)= Tb(u)Ta(u +u)Rab(U). (6) 
It means in particular that the trace of T,(u) (transfer matrix) over W, forms a family 
of commuting operators 

N 

[ t ( u ) ,  t ( v ) l =  0, t (u)=Tr ,  T a ( u ) r  1 Tii(u). (7) 
i = l  

We shall see later that entries of T ( u )  can be used to construct the eigenstates of 
t ( u ) .  To obtain the integrals of motion for our spin system with local densities it is 
necessary to consider L -operators in auxiliary spaces W, corresponding to the rep- 
resentation with signature (ml,. . . , m N )  and transfer matrices generated by these 
L-operators. For the fundamental representation [ 1 k ]  the corresponding transfer 
matrices can be written in the form (k = 1,. . . , N): 

tk(U)=Tr(al ... ak,{Pnl...akTal(u) * Tak(u + k - l ) )  (8) 
where the trace is taken over the antisymmetric subspace in the product 
Wa, 0 . . . 0 W,,, Wai 3 C N  and PIII...,, is a projector on this subspace. The operators 
(8) commute with each other, 

(9) 
the joint spectrum of these operators is simple modulo the global GL(N) degeneracy, 
and transfer matrices corresponding to other representations of GL(N) in auxiliary 
space are some algebraic function of f k ( u )  (Kulish and Reshetikhin 1982). 

[ t k  (U ), h(u 11 = 0, 
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To construct the eigenstates of ?(U) we arrange the N x N matrix ( 5 )  in the block 
form 

where D ( u )  is an ( N  - 1) x ( N -  1) block, B ( u )  is a row with N - 1 components, C ( u )  
is a column, The R matrix (4) from (3), (6) in this basis has the form 

j u s 1  0 0 0 \ 

\, 0 0 0 S(U)/  

where I is the unit matrix in CN-’ ,  S ( u )  acts in C N - ’  0 CN-’ and has the same 
structure as the R matrix: S ( u )  = U + LP(N-l). The relation (6) contains all the commuta- 
tion relations between entries of T ( u ) .  We shall only use the following ones of them: 

(U - u ) A ( u ) B ( u ) + B ( u ) A ( K )  = ( U  - U  + l ) B ( u ) A ( u ) ,  (12) 

(U -u)D,(U)Bb(U)+B,(U)Db(u) =Ba(u)Db(U)Sab(U -U), (13) 
the subscripts indicating the auxiliary spaces W,, Wb. 

In contrast to the traditional approach let us consider the vacuum subspace 
X o  = Vio’ 0.. . @V$’ in X instead of the pseudovacuum. The subspace Vio’ c v k  

consists of vectors f k  E Vk satisfying 

P P f k  = “ l k ’ f k ,  p : fk=o,  j = 2 , 3  ) . . . ,  N. (14) 
The subspace VLo’ corresponds to the natural embedding GL(N - 1) c G L ( N )  and 

is an irreducible GL(N - 1)-module of the highest weight (m2)  . . . , mN). Vectors f E Xo 
satisfy 

M 

n = l  
A ( u ) f  = n ( U  - U n  +my’)bAf, C’(U)f  = 0, i = 2 , .  . . , N, (15) 

(16) D , ( u ) f = b M L a M ( U  (1) (1) - u M ) .  . * b:”L::(u - U 1 ) f  =Th”(u)f, 

Here p x ,  i, j = 2, . . . , N are generators of the GL(N - 1) acting in V?’ and auxiliary 
space Wh” = CN-’.  We construct the eigenvectors of (7) by the formula 

F = B ” ( u : ” )  . . . BI.1 (U!,’:)F;:!,~- , i = 2, . . . , N. (18) 
The set of vectors Fit,'. I ,  from Xo will be found later. Acting on (18) by t ( u )  = 
A ( u )  +Tr,D,(u) accordiig to Kulish (1980) and Kulish and Reshetikhin (1981), we get 

M “1 U -u(kl’- 1 
A ( u ) F =  ( u - u , + m ‘ l “ ’ ) b ~  n ( 1 )  +‘unwanted terms’, 

n = l  k = l  U-uk 
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The ‘unwanted terms’ do not contain the vector (18). The condition of their vanishing 
in the sum of (19), (20) gives rise to the equations on quasimomenta {u i ” } .  The 
operator t i l ’ (u l {uL1’})  introduced in (20) acts in the space 

Z(l’ = Eo 0 w:” 0 w:” 0 . . . 0 w%), 
t“’(u \{U;’’}) =Tr, i’:’ ( U ) ,  

F:”(U)= T : l ) ( U ) s a n l ( U  - U n , ) .  . . S , l ( U  - U 1  1. 

Wi” CN-1, (21) 

122) 

(23) 

The indices ( i f ,  i f )  i n  (20) refer to the spaces Wj”, I = 1, . . . , n,,,. From (211423) we 
conclude that til’(u \{U;”}) is the transfer matrix of the GL(N - 1)-invariant magnet 
on a chain with M + n l  sites. As for initial T ( u )  for T“’(u) the relations 

(1’  (1 )  

S , b  (U ) f:” (U + U ) fa) (U ) = fL1 (U ) fL1 ( U  + U ) S , b  ( U  ) , 
[t“’(u t ‘ l i ( u / { U ; l ) } ) ]  = 0, (25) 

(24) 

are valid. These relations imply the following theorem. 

Theorem. The vector (18) is an eigenvector of t ( u )  iff F“’E Xi’’ is an eigenvector of 
fil)(ul{u;l’}), so that 

Here A ( u )  is the eigenvalue of til’(u \ { u t ’ } )  

t “ ’ (u ({u(kl’})F(l) = A(u)F“’.  

The quasimomenta {U ~ ‘ ) } Z L l  satisfy the equations 
n,  M 

i # j  

The theorem is proved by a straightforward calculation following Kulish and 
Reshetikhin (1981). 

Thus we have reduced the diagonalisation of the GL(N)-invariant transfer matrix 
(7) to the same problem for the transfer matrix with GL(N - 1) symmetry. Using the 
embeddings GL(N) 2 GL(N - 1) 3 * . 3 GL(2) and repeating the procedure N - 2 
times we get the problem of diagonalisation of the GL(2) invariant transfer matrix 
(inhomogeneous XXX-model). The solution of the last problem is well known (see 
e.g. Faddeev and Takhtajan 1979, or Baxter 1971). 

As a result the eigenvectors of t (U) are parametrised by N - 1 sets of quasimomenta 
{ U k  (1) ) k L l , . . .  n , {ukN-” } ‘N-I k = I . The corresponding eigenvalue is 
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The corresponding eigenvector is the highest vector of an irreducible representation 
Of SL(N) with the highest weight ( M + n z - 2 n 1 7 . .  . , nk+l+nk- i -2nk9. .  . , 
n N - 2  - 2nN-1). 

In the cases solved by Kulish and Reshetikhin (1982) the spaces VLoi were 
one-dimensional, the highest weights were ( m y ' ,  m:"', m:"', . . . , m:"') and hence 

M 

k = l  
D,(U)X~ = I ,  n (U -vk + m i k ' ) Z o .  

This situation corresponds to the usual pseudovacuum. 
Depending on the choice of representation acting in X, the GL(N) magnet can be 

considered as a discrete version of the following field-theoretic models. 
(i) The magnet with m j n )  = mall,  b, = diag(-1, 1 ,  . . . , 1) is a discrete approximation 

of the quantum vector NS model with N - 1  components. In the continuum limit 
m = x / A ,  M = A-'L, A + 0, x ,  L are fixed. For N = 3 ,  this was thoroughly discussed 
by Kulish and Reshetikhin (1982).  

(ii) If ml"' = m ,  6 ;  = - 1 ,  i s k ;  m!"' =0,  6 ;  = 1 ,  i > k ,  the model is the lattice 
approximation of the matrix NS model where the field 4 ( x )  is the k x (N - k )  matrix. 
In the continuum limit m = x / A ,  M = A-lL, A + 0, x ,  L are fixed. 

(iii) The case ml"' = m,, 6, = diag(b ', . . . , b N )  corresponds to the discrete approxi- 
mation of the quantum N-wave system (Manakov 1976). In continuum limit m, = 
l/Aa,, M = A-'L, b' = l / m , ,  A +  0,  a,, L are fixed. In this limit the monodromy matrix 
( 1 )  tends to the monodromy matrix f ( u ) :  

(a lax) f (x ,  U ) =  -:(uA + Q ( x ) ) ~ ( x ,  U ) : ,  ( 3 1 )  A =diag(al , .  . . , U N ) ,  

[ ~ I J  (x ), 4 k; ( Y  11 = d i k a j f i  (x - y ), 

f ( O , u ) = I ,  f ( ~ ,  u ) = ~ - 1 / 2 f ( ~ ) ~ 1 / 2 .  (34)  

( 3 3 )  

Here : , . . : means the normal ordering of the operators q+, q, which act in Fock space 
XF = O l s , < J s ~  X F ( ~ , , ) .  The vacuum space Xo,  which was used previously, when A + 0 
has the form X0 = 0 2 G l < J G N  ZF(q,,). The eigenvalues of the trace of f ( u )  are obtained 
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from (29), (30) in this limit. For example, for N = 3, we have 

The Hamiltonian of the N-wave system is expressed as a linear combination of 
coefficients in the expansion of t ( u )  over U-'. The Heisenberg equations for N = 3 are 

@ / a t  + b l ( a / a m l 3  = xq12qt3, 

i (a /d t  +62(a/ax))q12 = Xq23q13r 

@/at + b3(a/a~))q23 = xqT3q12, 

where x is defined by the Hamiltonian. 
The application of the generalised Bethe ansatz to the multicomponent models 

with ZN symmetry and with pseudovacuum was made by Babelon et a1 (1982) and 
Schultz (1983). The construction given above can be performed in an analogous 
fashion for the trigonometric case. 

We thank L Faddeev, E Sklyanin and L Takhtajan for helpful discussions. 
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