QUANTIZATION OF SOLITONS
V.E. Korepin and L.D., Faddeev

Quantization of particlelike solutions is considered for the example of the Sine~Gordon
equation. It is shown that the quasiclassical treatment is a good approximation for a
small coupling constant. The quantum corrections are calculated by path integrals.

The Sine-Gordon equation is a completely integrable Hamilton system. The structure of the phase
space and the basic observables — the Hamiltonian and momentum — are described in [1-3]. The results
show that the equation at the quasiclassical level corresponds to a rich spectrum of particles. Apart from
quanta corresponding to the considered field in the linear approximation, the spectrum contains particles
corresponding to particlelike solutions — solitons. In this note we describe the quasiclassical characteri-
stics of these particles and calculate the quantum corrections to them.

Usually, to calculate the Green’s function of a particle one needs to know the wave functional of a
particle with definite momentum. For a particlelike solution it is not easy to calculate even in the quasi-
classical approximation since the quasiclassical solution gives simultaneously the momentum and coordi-~
nate of the particle, which contradicts Heisenberg’s uncertainty principle. ‘

In the present paper, we propose a way of circumventing this difficulty, Using the experience of
nonrelativistic quantum mechanics, we consider only the asymptotic behavior of the Green’s function at
large times. In this limit, the coordinate dependence of the particlelike solution disappears.

In the first section, we describe the classical Hamilton system associated with the equation. The
second section is devoted to constructing perturbation theory for the Green’s function of the soliton. In the
third section, we consider the renormalizations resulting from quantization of solitons. In the fourth
section, we calculate the S matrix for the scattering of solitons.

The brief exposition of the results of the present paper in [19] contains a number of errors which
are corrected in the present text.

1. Description of Classical System

In two-dimensional spacetime we consider the chiral field »(x, t) = exp{iu(x,t}}. We impose
the boundary condition »(x, t) = 1 as Ixi — =, The field n(x, t) varies on the unit circle, i.e., the
fields u(x, t) and u(x, t) + 2m are indistinguishable.

The system has a conserved charge 0=2i£{u(oo, t)—u(—oo, t)}, which takes integral values. The
corresponding current is J*=e"d.u. Its divergence vanishes independently of the equations of motion.

The Lagrangian of this field is given by
5,7-_——1— jdx[‘/zuf—-‘/zuf—mzu—cos u)l, {1a)
| A

where m is the mass and vy the dimensionless coupling constant. We use units for which 77 = ¢ = 1.
The classical equation has the form
Ou+m? sin n=0. (1b)

The Hamilton system is determined by the Poisson brackets
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{w@),u@)} =861, 2 =%u,<x>.

In {1-3] the inverse problem method (see, for example, the review [14]) is used to describe a non~
linear canonical transformation from the field variables to action—angle variables. In these variables,
the phase space is a product of three sets.

We give the list of variables that parametrize these sets and write out the nonvanishing Poisson
brackets:

1 0<p(p)<e, 0<q(p)<2m; {p(ps), @(p2)}=0(pi—ps);

2)  —oo<pe<<oo, —00<g,<®; {Pay Jur} =Ooiay @=1,..., 4;

3 o<, —oo<n,<<oo; 0=, <2m, O<Po<<Br/Y; {Noy Eou} =Osiess
{Poer oy =0bes b =1, ..., B, where A and B are arbitrary integers.

The total energy and momentum can be expressed in terms of these variables:

o0 A B o A B
Y T e 8
P= jyp2+m‘p(p)dp+ 2 Vpi+ M+ E Y+ (2M sin 6,)%, p,— .[pp(p)dp-l- Zzpa+ Efnb:M=—:}-, e=z%g_
—00 a=1 o0

b=1 qe==1 b=1

In the case of quasiclassical quantization, all the canonical variables are transformed into operators and
the Poisson brackets replaced by commutators. An ordinary scalar particle of mass m corresponds to a
variable of the first type in quasiclassical quantization. We shall call these the basic particles. They
have zero charge. Only these particles can be obtained from (1) by perturbation theory.

Note that the variables p(p) and ¢(p) are modulus—phase variables, and p(p) is the number
density of the basic particles. After quantization, the operator p(p) has eigenvalues of the form

Zﬁ(p—p;) . The eigenvalues of the energy and the momentum take the form El’pﬂ-m’, Zpi, respectively.
The variables of the second and third types correspond to localized solutions of Eq.(1). The

energy of these particlelike solutions is concentrated in a finite region of the configuration space. Particles
of mass M = 8m/y and charge +1 correspond to variables of the second type in quasiclassical quantization.

- Following the established terminology, we shall call them solitons, i.e., the same name as the
classical solutions corresponding to them. The eigenvalues of the operators Py and P, on these states

are
A A
Z“ Yp2+M> and Z P

Q=i az=1

We write down the explicit solution of Eq. (1) for A = 1, B = p = 0

x-—vt-—qo} _ My ) @)
V1—v? Vi—v?

The upper sign corresponds to solitons of positive charge; the lower, to ones of negative charge. The
variables p, and q, are the momenta and coordinates of the solitons.

u, (2, tlp, o) =4 arctg exp {:i:m

Double solitons correspond to variables of the third type in the quasiclassical treatment. These
are particles of mass 2M sin 6, and zero charge. On these states, the operators Py and Py have the

eigenvalues
B B
5_" Voo (2M sin 6,) 2, Z .
b=t ba=1q

These particles have an internal degree of freedom, which is described by the variables 8, and «,. The
variable 7, is the momentum of the soliton and ¢, is the coordinate of the center of mass. The solution
corresponding to p = A = 0 and B = 1 has the form

4arctg{tg 0 cos[m cos 8 (¢ ch y—x sh ) —o] } , (3)

ch[m sin 6 ((z—&,)ch p—tsh )]
where ¢ is introduced by the expression n = 2M sin é sinh ¥,

Note that in the case of a double soliton we have an unusual phase space: The pair of variables «
and B describing the internal state of the double soliton varies in a finite region. The total area of this
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phase space, which is equal to 167r2/ v in the quasiclassical treatment in units of 27, is the number N of
states. The condition 16n%/y=2aN, N=8n/v is valid approximately for large N or small y. The quantities
@ and B have a finite number of values, and in the first approximation the eigenvalues of 8 have the form
Br=k, k=l,. .., N; k<8x/y. In other words, in the quasiclassical approximation the masses of the double
solitons have the finite number of values Mhr——igln—sin—i%k. This last expression is valid, generally
speaking, for small v and large k. However, because of the complete integrability of the Sine-Gordon
equation it is to be expected that it has a larger region of application and, moreover, may be in fact exact.
In particular, the limit of My as v = 0 is m, i.e., the mass of the basic particle. In the recent pre-
print [20}, Dashen, Hasslacher, and Neveu suggested that the first bound state of solitons and the basic
particle are identical in all physical manifestations. A similar result is well known in the case of a non-
linear Schrodinger equation [21, 22]. Below, we shall give some more results that confirm this conjecture.

We also require a solution that describes the scattering of two solitons. Let us write it out
explicitly. "In the case of equal charges of the solitons,
di—d,
ch
w2, £ p1p2gi°g,"++) =4 arctg | cth b 2 ) (4)
2 sh( d1+dz '\P[“wz )

In th
5 iy

do=m ch ¥, (x—g.") —m sh ¥,f, p.=M sh {u.

In the case of opposite charges, the solution can be written in the form

di‘_dg
sh ——
'\Pi“"ll?z 2
2 d+d Sy
ch( ' Inth A2 ILZ)
, 2
A characteristic feature of this system is the infinite number of conservation laws [4]. They can
be conveniently described on the basis of the conservation laws for the free system [l + m’u = 0 which
(see [9]) has an infinite number of conservation laws. We write them in the explicit form

u:(z, tppgq,"+—) =4 arctg | cth (5)

pm=jdx[‘/2<atu:"")2+*/z(u£"+" )24 m? (us")?],  Panyi= ! dzfuu™ "1, n=0,1,... .

The conservation laws for Eg. (1) can be obtained from these by adding to the densities terms that
contain higher powers of the field u(x, t). We do not require the explicit form of these terms. The
presence of conservation laws imposes rigorous restrictions on the dynamies. A variant of the argument
given below was pointed out to us by A. M, Polyakov.

We express the conservation laws of Eq. (1) in terms of in- and out-variables. The limit as
t — —eo(«) will coincide with the free laws. This means that after the interaction the following sums over
all soliton particles, double solitons, and basic particles remain unchanged:

p:?:‘r' Pa2:$1, Z (paopazn) in = Z (paopazn) outy pa°=Vpaz+ma2, n=0, 1, .
Solving this system of equations, we arrive at the conclusion that the number of particles of each
type and their individual momenta are conserved after interaction. Therefore, the S matrix is proportional
to the identity operator: " A
S=18, I=symT18(ps—pows). (6)
aq

The symmetrization is performed with respect to each type of particle separately in accordance with their
statistics. The factor S of I has unit modulus.

2. Perturbation Theory

We now consider a refinement of quasiclassical quantization. To investigate the quantum correc-
tions, it is convenient to use a path integral. First, in this formalism we directly obtain conservation of
the charge; for there does not exist a path which is continuous with respect to the time and joins field con-
figurations with different charge Q (see [10] for the topological meaning of this assertion). But on discon-
tinuous paths the action becomes infinite, and the contribution of these paths to the functional integral is
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zero, Second, a path integral enables one to develop a perturbation theory in the coupling constant y if
the method of stationary phase is used.

In this and the following section, we shall illustrate perturbation theory by calculating the correc-
tions to the soliton mass; to calculate them, we use the Green’s function

)
G(p., tilpz, )= _f W, (u, ts) exp {ij-?dt} W, (u,ty) ]:[ du,
t xt

where ¥ (u, t) is the wave functional of a soliton with momentum p at time t. However, we do not know
the explicit form of ¥ (u, t). One cannot assume that the functional is related simply to the one-soliton
classical solution (2); for the latter contains both the momentum and the coordinate of the soliton, and
information about one of these variables must disappear on quantization because of the uncertainty prin-
ciple. The way out of this dilemma is indicated by the nonrelativistic quantum mechanics of one particle,
in which the function G(py, p;) of a transition from a state with definite momentum at t = t; to a state
with definite momentum as t = t, in the principal order as T = t; ~ t; = < is obtained from the corre-
sponding transition function G(xy, x3) in the coordinate representation as follows. One must set

xl=%ti+zt°, z,=%:-tz+'a:2° and then go to the limit t; =& ==, t; = +<. The limit does not depend on xg
or xg .

We proceed similarly here. The Green’s function Glpy, t;1 py, ty) describing the transition from
the state that is a soliton with momentum p . at t = t; to the state which is a soliton with momentum p, at
t = t; is given in the limit T — « by the integral

is .
. 1 ml
il —H } =L 4 gl — 3.

jeXp{l; z[nu,—H] ];[dudn, H 5 o u " V) (7)
In (7), the integration is with respect to the field u(x, t) which is such that u{x, t) = uy(x, tlpi, q10) for
t = t1 and u(x, t) = w(x, tipy, qzo) for t = ty. Bearing in mind the general nature of the arguments, we
write V(u) intead of 1 — cosu. The limit ags T — = does not depend on q10 or qzo. Because of momen-
tum conservation, G must be proportional to 6(p1 — p2):

G (P, 1] P, 1) =8 (p.—p2) F (p1) (8)

as T — <, Let us prove this. If p; # py, then no classical path exists which has these asymptotic
behaviors and G = 0. If p; = ps, there are infinitely many such paths. Each one-soliton solution ui(x, t
P1, qo) for given q0 is such a path. The action on these paths does not depend on q0 , and (7) is propor-~

tional to § dg°=2rn6(0). The degeneracy can be lifted by going over to a subspace with fixed total momentum.
In the language of the functional integral, this can be done as follows (see [5]). Consider an arbitrary

additional condition x(u, m such that {Pj, x} # 0, where Pj is the total momentum functional: P,= Snuxdx.
The transition function between states with momentum p; is given by

jexp{i jf {nu,—~H] }H §(P,~p)8(x) {Pi, 1 H du dr. (9

The coefficient F is given by the integral (9) for u|,=u,(z, t|pi, ¢.°), #]e=w(,{|p,, ¢.°) and as T — « does
not depend on g% or q,%, so that in what follows we set qy? = g% = 0. The function defined by the inte-
gral (9) is Lorentz covariant and must depend on T and p through the combination M,Vi—v'T=
MST/Yp*+M2, where M q 18 the exact quantum mass of the soliton. We have verified this assertion in
perturbation theory. The calculations made below are in the rest system v = 0, in which they simplify
appreciably. In (9), we set p = 0 and choose as additional condition

'x,==ja:Hdzi/dex. (10)
This condition is convenient in that {P;, x} = 1. In (9), we make the change of variables
u=u,(z)+7'_y-z(x, ), n=71;w(z, 1), u,{z)=u,(z, t|00), (11)
1

where the functions z and w are the deviations from the classical path. Restricting ourselves fo the
first two orders in vy, we obtain F = F_;-F,, where
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FP_,=exp {—iMT},
Fo= Iexp{ jdzz(wz, Yawt~1/,2Kz) }HG ( J' wu,,(z)da:) ( }'x(z,u,;*‘m’V’(ui)z)dx) Hdz dw, (12a)

K= —-F-i-sz”(u (x)).

We transform the integral in the second ¢ function:

J. 2 (Zy tm?V’ (ul)z)dz=—5 e 02 — 22 (Bym—m*V' (u,) ) da.

The second term on the right-hand side vanishes because of the classical equation. Finally, for F; we
obtain the expression

j.exp{ J. 'z (zw—" 2w ="/ oz Kz)} H(‘S (Iwuizdx) (J.zujx dx )Hdz dw. (12b)

We now note that u; ,(x) is an eigenfunction of K with zero eigenvalue. This is a general result; see (8,
17]. The last integral is Gaussian and equal to

d2
Fy—exp {—-‘/zTr’ In (-d-t;+K)}. (13)

The prime means that the contribution of the zero eigenvalue to the spectrum is not taken into account,

42
We transform Tr'la (-(—i—tz- +K) . For this, we consider

dz
L.=Tr"In ( e +eK ), v=exp {—*/:L}.

We differentiate L, and obtain

sz dz -1 ifeK({~$")
=Ty’ (———- +8K) K=Tr ~———o - K.
de dr 2iVeK

Recall that K does not depend on t. We write the expression on the ri ght-hand side in the form
s 1v’eK (€220 N i —
J’dt jdx VK |mp=— —= T - tr'VK.
2iVe 2Ye

We integrate the expression on the r1ght—hand side with respect to €, set ¢ = 1, and obtain
da: —
L=Tr' 1n((_1.t?+1f) =—itr' VK - T, (14)

where tr’ means that the trace is taken only in the x space and the zero in the K spectrum is omitted.
We transform the expression on the right-hand side of (14) by means of the trace identities for the
Schrsdinger operator [6]:

e[ W (K) —~W (K.) 1='§; jde' (A)In det S,+tr,, (15)

where Ko = —d2/dx® + mZV”(O), W is an arbitrary function, S, is the scattering matrix of the operator K,
and tr; is the contribution of the discrete spectrum. We do not write out try explicitly since for V(u) =
1 — cosu the discrete spectrum does not contribute to tr’. Indeed, for this potential

dZ 2m2

=t m . 16
dz* m ch’*mzx (18)

This operator has one eigenvalue A = 0, whose contribution is omitted. The continuous spectrum of X is
on the interval m2 < A < =, The potential in K is reflectionless and the S matrix has the form

S=(S‘ 0)’ S Va— m+im-

0 S;, V;»—- mi—im

We calculate Fj using (13), (14), and (15), After elementary calculations, we find
d*K

Fo—exp {5’1— mD(0) T+i%1‘} , D)=
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We have obtained a logarithmically divergent expression, but the infinity can in fact be eliminated. We
recall that in the case of quantization of the basic field in the one-loop approximation expressions propor-
tional to D(0) also arise. These infinities are eliminated by a renormalization of m’, In Sec.3 we show
that the same renormalization removes the divergence in (17); after the renormalization, it is found that

F_vFo"_—eXp{*i (Fs-ﬁ‘— i +0(’Y)) T}
b e

Thus, the soliton mass in the one-loop approximation is M,’=8m./y—m./x. For the A¢¢ model a similar
correction was calculated in [15]. Note that Mq0 vanishes for y = 8w, It is known that this value of vy

is critical for the Lagrangian (1); see [18,13]. Dashen, Hasslacher, and Neveu assume that this expres-
sion is exact. To prove this conjecture, one must show that the higher corrections reduce to only a
renormalization. Unfortunately, the ealeulations are very cumbersome, and we do not give them.

3. Renormalization

In the calculation of the quantum correction to the various quantities that characterize solitons
ultraviolet divergences arise [see, for example, (17)]. We must introduce counter terms into the Lagran-
gian to eliminate them. In the same order of perturbation theory, we are forced to introduce other coun-
ter terms. They cancel the divergences of the ordinary Feynman graphs which arise when the basic field
is quantized.

The two lots of counter terms must be identical since otherwise we have a contradiction. We now
show that this contradiction does not arise. For this, we consider the generating functional of the S mat-
rix of the basic field [11]:

{ exp_{ ”-q- { dz:t[‘/,(a,.u)‘—sz(u)]}H du, (18)

where in the limit {t1 — = we have u — u_, where u__ is a fixed asymptotic behavior, V”(0) = 1.

s

We also consider the propagator of solitons (in a naive formulation):
. f2
12
J- exp{—-;— jldzx[‘/z(ﬁ,,u)z—sz(u)} }H du, (19)
1y xt

A
where u=2u1(x,t|pa, ¢.0) for t = ty, ty.

a=1
We shall calculate both integrals by the method of stationary phase. We expand the argument of
the integrand in (18) in a series in the neighborhood of u¢!, where
Ou+m?V’ (u)=0; u—>u*, |t]—oo.
In (19), we expand the action in the neighborhood of the purely soliton solution uS0l, It satisfies the
equation

A
Oul+m* V' (@) =0; u*od— Z uy (, th pay g°) -
a==1

We write both expressions in the form
exp Z 1*gn (20)

where g, for k = 0 is the sum of connected (k + 1)~loop vacuum graphs, in which the propagators and
vertices are given, respectively, by

[O4m?V" (u9) |A =8 (z—y), Vimtps ————-6k3‘§::/ ©. | (21)
for (18) and _

[O+m*V” (u) 1A,=8%(z—y), Vh=*f"’2"‘ﬁ%z§:—{-(2 Lﬂm (22)
for (19).

From the analogy it is clear that if in the [ -th perturbation order in (18) there arises the diver-
gence it InA { C(u")d’z, then in (19) in the same order there arises the infinity iy'ln A [C(u*')d’z. Both
infinities can be eliminated by adding the single counter term —"'In A [ d%zC(u) to the original Lagran-
gian.’
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Let us make this more precise in the example of the one-loop approximation, The integral (18) in
this approximation reduces to

exp {—'2 TrIn (O+m*V" (z%))}, (23)
and {19) to
exp {~!2 Trln (B+m*V" (u**))}. (24)
The ultraviolet divergence in (23) has the form
im?® .
.exp{-— =D [ ol v -1},

and in (24) it is
im? -
exp{—-—snzD(O)jdzx[V (u )-—1]}.

The infinities can be eliminated by adding to the original Lagrangian the counter term

ym

-gn—;a(())j &z[V” () —1].

It is easy to show that with allowance for this counter term in (17) F; becomes exp{i—an}.
at
Our arguments have a general nature and can be applied to an arbitrary model.

, Note finally that for the Sine-Gordon equation all the divergences can be eliminated by the multi-
plicative renormalization

" Y }
P= ——D
m>=m exp{ e 0) 3,
and in this connection see also [7].

4, Scattering Matrix of Solitons

In this section we discuss the quasiclassical approximation for the S matrix of sclitons and ways
of obtaining the quantum corrections to it {see[19]). We consider in detail the case of two simple solifons,
saying a few words about more general processes at the end of the section. The quasiclassical approxi-
mation can be calculated by proceeding from the known description of the scattering in the classical freat-
ment. The latter is based on knowledge of exact solutions of classical equations describing the interaction
of an arbitrary number of solitons [4]. The result in the case of two solitons is as follows.

1. Solitons of different charges. The solution of (5) as It| — « has the asymptotic
behaviors :
u,(zx Tflp‘pquoqz“-}—__):{ui (z,t1pq,+) Tu(x, tlpm g ), t—>—oo;
’ i (z,tlpt g +) Tux, tpet gt —), too;

7} 3
Pl-=p1+y Pz_=P2+a QA+=QF + ;P—_-K(p,", pz_), Qz+=qZ_ + E‘FK,(pi-v pz_) 3
i . . 2 (25)
Te o+

e P =D, PaT=P;

8 ;3
K(p,, ps) =K (T) = tToj d81n T

. s—2M*+Y s (s—4M?)
- 2M* ’

The roots in the last equation are arithmetic. We see that when solitons collide they pass through each
other and the entire scattering reduces to a change of their positions; the faster is moved forward along

its momentum. This corresponds to attraction. Equation (25) is an expression of the canonical trans-
formation generated by Hamiltonian K(py, ps}.

s=(p,"+p.")°— (p+pa)?  s>4M.

2. Solitons with the same charges. The solution (4) describes the collision of identi-
cal solitons, after which they are elastically scattered. This can be seen by considering the evolution of
the solution. If the momenta of the particles are of opposite signs, the solution (4) as t = —» has the
asymptotic behavior

o (%, £ pipags° @*++) > u, (2, t{ pmg ) Fu (2, t| pmgemF); BT=P1 p=p;

so that the energy density has two maxima: the first as x — —» and the second as x — <. With



increasing time, they approach, come to a halt, and move apart in the opposite direction. The asymptotic
behavior as t — = is

Us (T, t| oD, "¢+ ) ~us (z, E] Pt g ) +uy (z, t pF g ), (26)
where pit=p,”, p.t=p,", q,F=q,"+0K/0p,", ¢,;*=¢,~+0K/dp,~. K(p,", p.”) is the same function as in Case 1. We
have appended numbers to the solitons, rémembering that after the collision they are reflected, and do not
pass through one another.

A quasiclassical S matrix arises when the canonical transformations are quantized, The corre-
sponding formulas are

S+-Mps, py pi¥y pe¥) =8(pym—pi*) 8 (pm—p2*) S-(s),
S.:Mps, p, it pt)=08 (Pi__‘Pz+)6(Pz_"‘P1+)S+°1(3), (27a)
S_(s)==exp {—iK () +ic.}, S:%(s)==exp {—iK()+ics},

where we have added the constants of integration ¢; and ¢; to the phase K(Z) normalized by the condi-
tion K(1) = 0,

An alternative way of deriving (27a) is based on the general definition of the S matrix [11] in terms
of a functional integral over paths with classical asymptotic behaviors. In the case of two solitons, the
method of stationary phase reduces to calculating the asymptotic behavior of the truncated action A
between t; and t; on the solutions (5) and (4) as t; — t; — =, Calculations made in the center of mass
system show that
4 ) 16 Vi—v2. 1 p
[ua(++) 1=—K(5)+2pAq, Alu.(+—) |=—K () +8xn*/y+2pAq, Ag=v (t.—t,) +— In—, v= (27b)

v M v Vp*+M?
where Aq is the change in the soliton coordinate in time t; -~ t;. It follows from the experience of non-
relativistic quantum mechanics that the last term in (27b) must be subtracted, and the remainder is then
the phase shift. Comparing (27a) and (27b), we see that ¢y = 8%2/y, ¢y = 0. This result and its inter-
pretation were obtained for the first time by Jackiw and Woo [23].

Equation (25) gives one the possibility of continuing analytically the S,(s)’s from the physical
region s > 4M? into the complex plane with cut along the real axis for s > 4M2, s < 0, Then S.(s) is
not real in the gap 0 < s < 4M2, We interpret this as a manifestation of the accumulation of poles corre-
sponding to bound states of solitons. Indeed, the number N of bound states tends to infinity as vy — 0. The
higher corrections must lead to replacement of the false cut in the gap by a finite number of poles.

This eircumstance prevents a direct verification of crossing. One can however use Hermitian
analyticity and write down the crossing condition in the form

8., (4M*—s-+i0) =S_* (s+i0). (28)

It is not difficult to see that this equation is indeed satisfied in our approximation. The argument was first
published by Coleman in the Appendix to [23].

Let us attempt to establish the complete quantum S matrix on the basis of its quasiclassical
approximation. By virtue of what we have said in Sec. 3, allowance for quantum corrections reduces to
replacing S_€1(s) by a function S_{s) of the form

S_(s)=8_(s) expi (%) "6, (29)

where g,(s) is a sum of (k + 1)-loop connected vacuum graphs of the renormalized perturbation theory,
which is constructed like the perturbation theory (20)-(22). Note that Reg,(s) = 0 both for s < 0 and
for s > 4M.

We have not been able to obtain any explicit expressions for the quantum corrections by means of
this diagramnhatic technique apart from the investigation of some asymptotic behaviors (a promising
approach to this problem is contained in [20]). We therefore consider whether something could not be said
about the quantum corrections on the basis of the general requirements of analyticity and unitarity. The
quasiclassical S matrix has one unsatisfactory property — it is not real in the gap; the quantum correc-
tions must evidently put right this shortcoming. Let us consider more carefully the expression for S_¢i(s)
in the gap. After a change of variables, we obtain (8 = aM? coszv/z, 0<v<m)
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2 8
s. -exp{ jdel +an} =exp sz+an+——jdeln . N=2, (30)
o 0+v Y
j 95

The first term in the argument of the exponential gives the undesired complex value., Quantum corrections
cannot eliminate it since it has the order N (29). Thus, the phase of the quantum scattering matrix S_(s)
is of order N and Im S_(s) = 0 (in the gap). This evidently means that the exponent of the power of S_(s)
contains a function h(v) that is piecewise constant and has discontinuities i at the points ¢,, whose
number is N, An example of such a function h(v) is the following: points of discontinuity distributed
uniformly, 6, = 7k/N, h(0) =

Since in the physical region S_(s) is unitary in any order and has the correct asymptotic proper-
ties, from a given function h(v) one can recover ln S_(s) uniquely to within a known polynomial arbitrari-
ness. For the h(v) given above, S_(s) has the form

—i8. 1
S-(s) —exp{ 2 In— — Ce purr + mN} Ou=nk/N,k=1,...; k<8n/y.

Note that the sum in the argument is an m’cegral sum for the integral in Eq.(30). We rewrite S_(s) in the

form s te—iort1
S_(s)=e" } |-——. (
- E+emion 31)

8
It has first-order poles at the points s,=4M* sinz—:—, i.e., at the points corresponding to the masses of the

-

double solitons in the quasiclassical approximation. Note that if the function h(v) had discontinuity iln
(I integral) then S_(8) would have a pole of [-th order.

We cannot, of course, guarantee that S_(s) reduces to such a modification of the function S_¢1(s),
though the possible candidates for the function h(v) cannot differ too strongly from the example we have
chosen. Thus, the points of division 0, must be arranged fairly uniformly in the interval [0, 7]. We
assume that Eq.(31) is exact for v = 87/N, N = 2, 3,

The case of the scattering of A solitons is treated similarly. The classical scattering of A soli-
tons reduces to the process of successive scattering of solitons on one another [16, 4] and the quasiclassi-
cal expression for the S matrix in the case of solitons of the same charge has the form

exp{—mf K(py, pz) 2o (po(p): } v 0(p)=a*(p)a(p), [a(p, a*(pa) 1=p."8 (p—p2).

A similar expression holds for solitons of arbitrary charges, the S matrix being equal to the product of
the pairwise S matrices.

We now turn to the case of the scattering of double solitons. The corresponding classical solution
in the system n = 0 is periodice in time with period 27/m cos ¢ [4]. We first calculate the propagation
function of a double soliton in the gquasiclassical approximation.

Proceeding as in Sec.2 [see (8)], we obtain G(pi, t:|pz t:) =0 (pi—p2) F-4(ps, 0), where

F_i(p,0)=U(t, 1,6, p)exp{—i2M sin0 VI—* T}, p= Zﬂ:sm v .
1--v*
We do not need the explicit form of U, and we note that |U| = 1, and in the center of mass system U is

quasiperiodic in t; and ty:

2m

U(t1 + b, e,o) —e"U (t,, 1, 6,0),

m cos 9

where & = 3270/ .

The function U does not contribute to the coefficient of T and therefore does not modify the mass
only in the case when U is exactly periodic, i.e.,

g=2mk. O,~yk/16. (32)

Note that the condition (32) is equivalent to the quantization of periodic Bohr—Sommerfeld orbits. We have
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obtained one more confirmation for the quasiclassical spectrum of the double soliton:

16
m sin@, ©6,= X k.

M, =
* 16

We now turn to the expression for the S matrix and give without derivation the quasiclassical
result for the scattering of double solitons with internal momenta 6, and 6, :

2
oxp{ =i [ K (Ger0e=t9) -+ (G o) +R (e ) + K (o)~ 22 )
1

N p—1+2Csin » s—M2—M,? s—Mp—M,\*
—explo— | dolp=>—" "2~ =n=1}, t= B M ( Lt (
( exp{Zn oj eln§2—1—2i§-sin9} for k=n 1) t =i +} A ) 1, (33)

where K is the same as in Eq. (27).

We also give the quasiclassical scattering matrix of a double soliton with internal momentum 6 B
and of a simple soliton:

. . 8 s—M—M? s—M—M
—iK (Ge!™2-) —iK (gt Ox i) +'——}, = L+ |/( —1.
e"p{ K (te )ik (e T o, 2M M, ) (54)

Finally, we consider the scattering of a particle of the basic field on a soliton. The S-matrix element is
proportional to the identity operator (6). Solving the analyticity and unitarity condition [12], we obtain for
the coefficient of it

. 2)Vm*—z +1 —m2—-M? \ 2
s 8@ im -zt =(_._____s m ) (35)
glx)Vmi—z —1 M
where g(x) can be expanded in positive powers of v, As a function of its argument, g(x) has the form
R,
glz) =Bc“u . ,  R,>0.

We show that in the lowest order in y the value of g{x) is g = 1/m. The expression for the generating

sol

functional of the Green’s function has the form 8(p. —pax)F (8) where
TN T PP S S _
 F jexp{zj d*zlnu,~H]+ m Id zj(x) (u—u,) }.];[G(Px)ﬁ(x) {P., 2} I:_[dudn.

We have faken a fixed soliton. Calculating the integral by the method of stationary phase and taking
into account only the first order, we obtain

i
F_l=exp{i jdt Z (u)+ —T fd”x(u“‘-ux)]'(z) }, Outm? sinu®=—j(z), u(e,t)—u"(—oe,t)=2n.

We differentiate twice with respect to the current and obtain for the Green’s function of a soliton-basic
particle the expression F_,=exp {—iMT}A.(z,, 1|, t.), Where

2

(otms~ ) 8:=5(e—y)— Y—i— @)y @), [ 00(2) Au (e, y) dz=0,

m
ch®*mzx M
We go over to the S matrix by means of reduction formulas and find that it is

S=1 ptim

p—im’
where p is the momentum of the particle. From this we obtain directly the expression for g(x).

We now return to the conjecture of Dashen, Hasslacher, and Neveu that the basic particle and the
first state of the double soliton are identical. In the spirit of this conjecture, the following must coincide:
1) the S matrix of two double solitons with 6 = 7/2N and the S matrix of two basic particles, 2) the S
matrix of a soliton and a double soliton with & = /2N and the S matrix of a soliton and the basie particle.
Let us verify this in the lowest order in y. Three of the S matrices have been given above, and the
fourth (for two basic particles) in [7]. The verification reduces to expanding expressions of the form
K(—£e™ ™/ N) in powers of 1/N = y/87; for example,

A/ NY — —_FY 97 _g__—_._i _L
K(~te"")=K(~) 2L1n§+_1+0(N).
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Calculating (33) in the lowest order in vy, we obtain
.my
WsGodm)
which obviously agrees with the Born expression for the S matrix of basic particles. The expression (34)
in the lowest order in v is
Ym?*—z+m
Vm* =z —m

which agrees with (35).

Conclusions

We hope that we have succeeded in convincing the reader that this one-dimensional nonlinear
model of field theory has a number of attractive properties. Let us list some of them.

1. The Lagrangian of the theory contains only one field, but a complete spectrum of particles is
manifested. In the weak interaction approximation the solitons are heavy particles and they interact
strongly.

2. The solitons have a quantum number which has a topological nature, and this can be interpreted
as a charge. Solitons with the same charge repel each other, while solitons with different charge attract
each other.

3. In the weak interaction approximation a prescription exists for calculating in perturbation
theory. The quantum corrections are small for small coupling constants, and the quasiclassical treat-
ment determines the entire nonanalytic contribution to the physical quantities.

The contents of this paper have been frequently discussed and corrected in collaboration with our
colleagues I. Ya. Aref’evaya, P. P. Kulish, V., N. Popov, and L. A, Takhtadzhyan. We are very grate-
ful to them. The paper was partly reworked after one of the authors (L. D. Faddeev) had been to the
United States, where the paper was discussed with R. Dashen, R, Jackiw, S. Coleman, A. Neveu, and
B. Hasslacher.

LITERATURE CITED

1. L. D. Faddeev and L. A. Takhtadzhyan, Usp. Mat. Nauk, 29, 249 (1974).

2. V. E. Zakharov, L. A. Takhtadzhyan, and L. D, Faddeev, Dokl. Akad. Nauk SSSR, 219, 1334 (1974).

3. L. A. Takhtadzhyan and L. D. Faddeev, Teor. Mat. Fiz., 21, 160 (1974).

4. L. A. Takhtadzhyan, Zh. Eksp. Teor. Fiz., 66, 476 (1974).

5. L. D. Faddeev, Teor. Mat. Fiz., 1, 3 (1969).

6. L. D. Faddeev and V. S. Buslaev, Dokl. Akad. Nauk SSSR, 132, 13 (1960).

7. 1. Ya. Aref’eva and V, E. Korepin, Pis’ma Zh. Eksp. Teor. Fiz., 20, 680 {1974).

8. J. Goldstone and R. J. Jackiw, Preprint 443, Mass. Inst. Technol., Cambridge, Massachusetts
(1974).

9. P. P. Kulish, IFVE, STF 74-155 [in Russian], Serpukhov (1974).

10. D. Finkelstein, J. Math. Phys., 7, 1216 (1966).

11. I. Ya. Aref’eva, A, A, Slavnov, and L., D. Faddeev, Teor. Mat, Fiz., 21, 311 (1974).

12. L. Castillejo, R, H. Dalitz, and F. J. Dyson, Phys. Rev., 101, 453 (1956).

13. S. Coleman, Preprint, Harvard University (1974).

14, L. D. Faddeev, Modern Problems of Mathematics, Vol. 3, VINITI, Moscow (1974).

15. R, F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev., D10, 4114, 4130 (1974).

16. V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz., 61, 118 (1971).

17. R. Jackiw, Preprint 453, Mass. Inst. Technol, Cambridge, Massachusetts (1974).

18. T. H. R. Skyrme, Proc. Roy. Soc., A262, 237 (1961).

19. V. E. Korepin, P. P, Kulish, and L, D, Faddeev, Pis’ma Zh. Eksp. Teor. Fiz., 21, 302 (1975).

20. R. F. Dashen, B, Hasslacher, and A. Neveu, Preprint C002220-37, Princeton (1975).

21. V. E. Zakharov and S. V. Manakov, Teor, Mat. Fiz., 19, 332 (1974).

22, P. P, Kulish, S, V. Manakov, and 1., D, Faddeev, Preprint ITF-17 [in Russian], Chernogolovka

—
=t
O
-3
o1
=

23. R, Jackiw and G. Woo, Preprint 469, Mass. Inst. Technol., Cambridge, Massachusetts (1974).

1049



