
Q U A N T I Z A T I O N  OF S O L I T O N S  

V . E .  K o r e p i n  a n d  L . D .  F a d d e e v  

Quantization of par t ic lel ike solutions is considered for the example of the Sine-Gordon 
equation. It is shown that the quasic lass ieal  t rea tment  is a good approximation for a 
small  coupling constant .  The quantum cor rec t ions  are  calculated by path integrals .  

The Sine-Gordon equation is a complete ly  integrable Hamilton sys tem.  The s t ruc ture  of the phase 
space and the basic observables  - the Hamiltonian and momentum - a re  descr ibed in [1-3]. The resul t s  
show that the equation at the quasic lass ical  level cor responds  to a r ich spec t rum of par t ic les .  Apart  f rom 
quanta corresponding to the cons idered  field in the l inear  approximation,  the spec t rum contains par t ic les  
corresponding to part ic lel ike solutions - soli tons.  In this note we descr ibe  the quasic lass ical  c h a r a c t e r i -  
s t ics  of these par t ic les  and calculate the quantum cor rec t ions  to them. 

Usually, to calculate the Green ' s  function of a par t ic le  one needs to know the wave functional of a 
par t ic le  with definite momentum.  For  a par t ic lel ike solution it is not easy  to calculate even in the quas i -  
c lass ica l  approximation since the quas ic lass ica l  solution gives s imultaneously the momentum and coord i -  
nate of the part icle ,  which contradicts  Heisenberg ' s  uncertainty principle.  

In the present  paper,  we propose  a way of c i rcumventing this difficulty. Using the experience of 
nonrelat ivis t ic  quantum mechanics,  we cons ider  only the asymptot ic  behavior  of the Green ' s  function at 
large t imes .  In this l imit,  the coordinate dependence of the part iclel ike solution d isappears .  

In the f i rs t  section, we descr ibe  the c lass ica l  Hamilton sys tem assoc ia ted  with the equation. The 
second section is devoted to construct ing per turbat ion theory for the Green ' s  function of the soliton. In the 
third section, we cons ider  the renormal iza t ions  result ing f rom quantization of soli tons.  In the fourth 
section, we calculate the S matr ix  for  the scat ter ing of solitons. 

The br ief  exposition of the resu l t s  of the presen t  paper  in [19] contains a number  of e r r o r s  which 
a re  co r r ec t ed  in the present  text. 

1. D e s c r i p t i o n  o f  C l a s s i c a l  S y s t e m  

In two-dimensional  spacet ime we cons ider  the chiral  field ~(x,  t)  = exp{iu(x,  t ) } .  We impose 
the boundary condition ~(x,  t)  ~ 1 as Ix] -~ ~ The field ~(x,  t) var ies  on the unit c i rc le ,  i . e . ,  the 
fields u(x, t) and u(x,  t)  + 2~n a re  indistinguishable.  

t 
The sys tem has a conserved charge  Q = ~ { a ( ~ ,  t ) - a ( - - ~ ,  t)}, which takes integral  values.  The 

corresponding cur ren t  is l"=e"*O~u. Its divergence vanishes independently of the equations of motion. 

The Lagrangian of this field is given by 

~_~ L 

where m is the mass  and y the dimensionless  coupling constant.  We use units for  which ~ = c = 1. 

The c lass ica l  equation has the fo rm 

D a + m  2 sin a=0. (lb) 

The Hamilton sys tem is determined by the Poisson brackets  
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{ a(z) ,  u(y) } = 8 ( x - y ) ,  ~(x) = ! ~ , ( x ) .  

In [1-3] the i nve r s e  p r o b l e m  method (see, for  example ,  the r ev iew [14]) is  used  to desc r ibe  a non-  
l i nea r  canonical  t r an s fo rm a t i on  f r o m  the field v a r i a b l e s  to ac t ion -ang le  v a r i a b l e s .  In these  va r i ab l e s ,  
the phase  space  is  a product  of th ree  se t s .  

We give the l i s t  of v a r i a b l e s  that  p a r a m e t r i z e  these  se t s  and wri te  out the nonvanishing Poisson  
b racke t s :  

1) 0~<p!p)<~, 0~<qD(p)<2n; {9(P~), (9(P~)}=6(p~--p~); 

2) _oo<p~<o% _o~<q~<oo; {p~,, q~}=5 ..... a = l  . . . . .  A; 

3) --r - -~<~b<~162 0~<ab<2g, 0~<~b<8g/~; {~%, ~b~}=f~,b,; 

{~b,, ab,}=6b,b,; b = 1 . . . . .  ]3, where  A and 13 a r e  a r b i t r a r y  in tege r s .  

The total energy  and m om en t um  can be e x p r e s s e d  in t e r m s  of these  var iab les :  

Po= p"+m'~p(p)dp+ )'P~+M 2+ ]/~lb~+(2Msin0b) ~, P ,=  pp(p)dp+ p,,+ ~ ,"qo,. =---~--, O = ~. 

In the case  of quas ic l a s s i ca l  quantization, all  the canonical  v a r i a b l e s  a r e  t r a n s f o r m e d  into ope ra to r s  and 
the Poisson  b r acke t s  r ep laced  by c o m m u t a t o r s .  An o rd ina ry  s c a l a r  pa r t i c l e  of m a s s  m co r r e sponds  to a 
va r i ab le  of the f i r s t  type in quas i e l a s s i ca l  quantization.  We shall  call  these  the basic  pa r t i c l e s .  They 
have ze ro  charge .  Only these  p a r t i c l e s  can be obtained f r o m  (1) by per turba t ion  theory .  

Note that  the v a r i a b l e s  p (p )  and e ( p )  a r e  m o d u l u s - p h a s e  va r i ab l e s ,  and p(p)  is  the number  
densi ty  of the bas ic  p a r t i c l e s .  Af ter  quantization, the ope ra to r  p (p )  has  e igenvalues  of the f o r m  

Z 6 ( p - p , )  . The e igenvalues  of the ene rgy  and the momen tum take the f o r m  ~__Jp~+m', ~ p ~ ,  r e spec t ive ly .  
I 

i i i 

The v a r i a b l e s  of the second and th i rd  types  c o r r e s p o n d  to loca l ized  solutions of Eq. (1). The 
ene rgy  of these  par t i c le l ike  solutions is  concent ra ted  in a finite region of the configurat ion space.  P a r t i c l e s  
of m a s s  M = 8 m / y  and cha rge  +1 co r r e spond  to v a r i a b l e s  of the second type in quas ic lass ica l  quantization. 

Following.the es tab l i shed  te rminology,  we shall  cal l  t hem soli tons,  i . e . ,  the same  name as  the 
c l a s s i ca l  solutions cor responding  to them.  The e igenvalues  of the o p e r a t o r s  P0 and Pl on these  s ta tes  
a r e  

~p.~+M ~ and Z p . .  

We wri te  down the expl ici t  solution of Eq. (1) for  A : 1, B = p = O: 

a,(x,t]p, qo~)=4arctgexp{~:mX--vt--qo ~ My (2) 
~--~-~_v ~ j ' P y t_v~ " 

The upper  sign c o r r e s p o n d s  to sol i tons of pos i t ive  charge;  the lower,  to ones of negat ive charge .  The 
v a r i a b l e s  Pa and qa a r e  the momen ta  and coord ina tes  of the sol i tons.  

Double soli tons c o r r e s p o n d  to v a r i a b l e s  of the th i rd  type in the quas ic lass ica l  t r ea tmen t .  These  
a r e  p a r t i c l e s  of m a s s  2M sin 0 b and z e r o  charge .  On these  s ta tes ,  the o p e r a t o r s  P0 and Pl have the 
e igenvalues  

Z 1/~lb~T(2Msin0b)~' Z ~1~,. 

These pa r t i c l e s  have an in ternal  degree  of f r eedom,  which is  desc r ibed  by the v a r i a b l e s  fib and ol b. The 
va r iab le  ~b is  the m o m e n t u m  of the soli ton and ~b is the coordinate  of the cen te r  of m a s s .  The solution 
cor responding  to p = A = 0 and B = I has  the f o r m  

4 arctg { tg 0 cos [ ra cos 0 (t ch ~p-x sh ~p) -co0 ] (3) 
ch [m sin 0 ((x--~o) ch ~p--t sh r ] ~ '  

where  ~ is  int roduced by the expres s ion  ~ = 2M sin 0 sinh r  

Note that  in the case  of a double soliton we have an unusual phase  space:  The pa i r  of v a r i a b l e s  o~ 
and fl descr ib ing  the in ternal  s ta te  of the double soliton v a r i e s  in a finite region.  The total  a r e a  of this 
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phase space, which is equal to 16~2/T in the quasiclassical treatment in units of 2u, is the number N of 
states. The condition 16~2/7=2~N, N----8~/~ is valid approximately for large N or small T. The quantities 

and fl have a finite number of values, and in the first approximation the eigenvalues of ~ have the form 

~A----k, k=i ..... N; k<8~/7. In other words, in the quasielassieal approximation the masses of the double 
_ t6m 7 

solitons have the finite number  of values Mh=--~-sin~-~k.  This last  express ion is valid, genera l ly  

speaking, for  small  7 and large  k. However, because of the complete integrabil i ty of the Sine-Gordon 
equation it is to be expected that it has a l a r g e r  region of application and, moreover ,  may be in fact exact. 
In par t icu lar ,  the l imit  of M1 as 7 ~ 0 is m, i . e . ,  the mass  of the basic par t ic le .  In the recent  p r e -  
print  [20], Dashen, Hasslacher ,  and Neveu suggested that the f i rs t  bound state of solitons and the basic 
par t ic le  are  identical in all physical  manifestat ions.  A s imi lar  resul t  is well known in the case  of a non- 
l inear  SchrSdinger equation [2I, 22]. Below, we shall give some more  resu l t s  that conf i rm this conjecture .  

We also require  a solution that descr ibes  the scat ter ing of two solitons. Let us write it out 
explicitly. I n  the case of equal charges  of the solitons, 

u2 (x, tlptp2qi~176 =4 arctg cth xpi-~_______2 2 , (4) 

d~=m ch $~ (x-q~ ~  ~ot, po=M sh %. 

In the case  of opposite charges ,  the solution can be written in the fo rm 

u~ (x, t Ipip2q,~176 - )  ~4 arctg cth ~i-~--------A2 2 (5) 

2 ch ( ~ - - - l n  t h e )  " 

A characteristic feature of this system is the infinite number of conservation laws [4]. They can 

be conveniently described on the basis of the conservation laws for the free system ~u + m2u = 0 which 
(see [9]) has an infinite number of conservation laws. We write them in the explicit form 

j z x x / j ,  ax[udz.~ j, rt~O, t, 

The conservat ion laws for Eq. (1) can be obtained f rom these by adding to the densit ies t e r m s  that 
contain higher powers of the field u(x, t ) .  We do not require  the explicit fo rm of these t e rms .  The 
presence  of conservat ion laws imposes  r igorous  res t r ic t ions  on the dynamics.  A var iant  of the argument  
given below was pointed out to us by A.M. Polyakov. 

We express  the conservat ion laws of Eq. (1) in t e rms  of in-  and out-var iables .  The l imit  as 
t -~ _~(oo) will coincide with the free laws. This means that af ter  the interaction the following sums over 
all soliton par t ic les ,  double solitons, and basic par t ic les  remain  unchanged: 

Z ' " + ' = Z p  .. . . .  
2n+i V V P.. ,  = (p~ = = (pOpo2.) .... po~ n=O, ~_ . . . . .  

a a a a 

Solving this sys tem of equations, we a r r ive  at the conclusion that the number  of par t ic les  of each 
type and their  individual momenta are  conserved  af ter  interact ion.  Therefore ,  the S matr ix  is proport ional  
to the identity opera tor :  

S=IS ,  l=sym II ~ (p,.-pou,). (6) 

The symmetr iza t ion  is per formed with respec t  to each type of par t ic le  separately  in accordance  with their 
s ta t is t ics .  The fac tor  S of I has unit modulus.  

2. Perturbation Theory 

We now consider a refinement of quasiclassical quantization. To investigate the quantum correc- 
tions, it is convenient to use a path integral. First, in this formalism we directly obtain conservation of 
the charge; for there does not exist a path which is continuous with respect to the time and joins field con- 
figurations with different charge Q (see [I0] for the topological meaning of this assertion). But on discon- 
tinuous paths the action becomes infinite, and the contribution of these paths to the functional integral is 
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zero. Second, a path integral enables one to develop a perturbation theory in the coupling constant ~/ if 
the method of stationary phase is used. 

In this and the following section, we shall illustrate perturbation theory by calculating the correc- 
tions to the soliton mass; to calculate them, we use the Green's function 

$ t  x t  

w h e r e  ~p(u,  t )  i s  the  wave  func t iona l  of a so l i t on  wi th  m o m e n t u m  p a t  t i m e  t .  Howeve r ,  we do not  know 
the e x p l i c i t  f o r m  of ~p(u,  t ) .  One c a n n o t  a s s u m e  tha t  the  h m c t i o n a l  i s  r e l a t e d  s i m p l y  to the  o n e - s o l i t o n  
c l a s s i c a l  so lu t ion  (2); f o r  the  t a t t e r  c o n t a i n s  bo th  the  m o m e n t u m  and  the c o o r d i n a t e  of the  so l i ton ,  and  
i n f o r m a t i o n  abou t  one of  t h e s e  v a r i a b l e s  m u s t  d i s a p p e a r  on q u a n t i z a t i o n  b e c a u s e  of the  u n c e r t a i n t y  p r i n -  
c i p l e .  The  way  out  of t h i s  d i l e m m a  i s  i n d i c a t e d  b y  the  n o n r e l a t i v i s t i c  q u a n t u m  m e c h a n i c s  of one p a r t i c l e ,  
in which  the  fundt ion G(p l ,  P2 ) of a t r a n s i t i o n  f r o m  a s t a t e  wi th  de f in i t e  m o m e n t u m  a t  t = ts to  a s t a t e  
wi th  de f in i t e  m o m e n t u m  a s  t = t 2 in the  p r i n c i p a l  o r d e r  a s  T = t2 - ts --9 ~ i s  ob t a ined  f r o m  the  c o r r e -  
sponding  t r a n s i t i o n  func t ion  G(xs ,  x2) in the  c o o r d i n a t e  r e p r e s e n t a t i o n  a s  f o l l o w s .  One m u s t  s e t  

x , = P ' t l + x t  *, x,=P2t~+x2 ~ and then  go  to the  l i m i t  t l  -9 _~o, t2 -9 +~.  The  l i m i t  does  not  depend  on x~ 
in In 

or x~. 

We proceed similarly here. The Green's function G(ps , tl I P2, t2 ) describing the transition from 
the state that is a soliton with momentum Pl at t = ts to the state which is a soliton with momentum P2 at 
t = t2 is given in the limit T -~ ~o by the integral 

~J . B 

0 
In (7), the integrat ion is with respect to the f ield u(x,  t )  which is such that u(x,  t )  = us(x, t Ips, qs ) for  

0 t = ts and u ( x ,  t )  -- us(x ,  t Ip2, q2 ) f o r  t = t2. B e a r i n g  in m ind  the g e n e r a l  na tu re  of  the a rgumen ts ,  we 
w r i t e  V ( u )  i n tead  o f  1 - cos u.  The l i m i t  as T -~ ~o does not  depend on qs ~ o r  q2 ~ Because of  m o m e n -  

t u m  conservation, G must be proport ional  to 5(pl - P2): 

c(p,, t, lp~, t~) =6 (p~-p~)F(p~) (s) 

as T ~ r162 Let us prove this. If Pl r P2, then no classical path exists which has these asymptotic 
behaviors and G = 0. If Pl = P2, there are infinitely many such paths. Each one-soliton solution us(x, t [ 
P~, q0) for given q0 is such a path. The action on these paths does not depend on q0, and (7) is propor- 

tional to I dq~ The degeneracy can be lifted by going over to a subspace with fixed total momentum. 

In the language of the functional integral, this can be done as follows (see [5]). Consider an arbitrary 

additional condition X (u, ~) such that { PI, X} r 0, where Pi is the total momentum functional: P,---- I ~a~dx. 
The transition function between states with momentum Pl is given by 

' i  

I l f x , t  

The  c o e f f i c i e n t  F i s  g iven  by  the  i n t e g r a l  (9) f o r  ul,,=a,(x, tip, , q,~ tt[, ,= ai(x, tip,, q=O) and a s  T -9 ~ d o e s  
no t  depend  on q~0 o r  q20, so tha t  in wha t  fo l lows  we se t  q10 = q20 = 0. The  funct ion  de f ined  by  the i n t e -  
g r a l  (9) i s  L o r e n t z  c o v a r i a n t  and  m u s t  depend  on T and p t h r o u g h  the c o m b i n a t i o n  Mq~l-v~T= 
MqZT/Yp~+Mq ~, w h e r e  Mq i s  the  e x a c t  quan tum m a s s  of the  so l i t on .  We have  v e r i f i e d  t h i s  a s s e r t i o n  in  
p e r t u r b a t i o n  t h e o r y .  The  c a l c u l a t i o n s  m a d e  b e l o w  a r e  in the  r e s t  s y s t e m  v = 0, in  which  t hey  s i m p l i f y  
a p p r e c i a b l y .  In (9), we se t  p = 0 and c h o o s e  a s  a d d i t i o n a l  cond i t ion  

%= I x H d x i / ~  Hdx. (10) 

T h i s  cond i t i on  i s  c o n v e n i e n t  in  tha t  { Ps, • = 1. In (9), we m a k e  the change  of v a r i a b l e s  

~ = ~ ,  (x) +l'~'z (~, t), i a =  ----_w (x, t), a, (x) =u, (x, tl00), (11) 

w h e r e  the  func t ions  z and  w a r e  the  d e v i a t i o n s  f r o m  the  c l a s s i c a l  pa th .  R e s t r i c t i n g  o u r s e l v e s  to  the  

f i r s t  two o r d e r s  in  7 ,  we ob ta in  F = F f F0, w h e r e  
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F_ ,=e xp  {--iMT}, 

Fo= ; exPl i i d2x(wz~'V2w2-'/2zKz) } I I  6 ( i wa,~(x)dx) 5 ( ix(z~v.,~+m2V" (a,)z)dx ) H dzdw, 

d z 
K =  --~x~ +m'V"(~(x) ). 

We t r a n s f o r m  the i n t e g r a l  in the  s e c o n d  6 funct ion:  

(12a) 

; x(z~a,~+mW'(a,)z)dx=- I zai~dx- xz(a,=-m:V'(ai))dx. 

The  s e c o n d  t e r m  on the  r i g h t - h a n d  s ide  v a n i s h e s  b e c a u s e  of  the  c l a s s i c a l  equa t i on .  F i n a l l y ,  f o r  F0 we 
ob ta in  the  e x p r e s s i o n  

lj  

d2x ( z,w--~ /2w ~-' /~zKz ) (12b) 
t~ t x 

We now note  tha t  u l x ( x )  i s  an e igen func t i on  of K with z e r o  e i g e n v a l u e .  T h i s  i s  a g e n e r a t  r e s u l t ;  s e e  [8, 
17]. The  l a s t  i n t e g r a l  i s  G a u s s i a n  and equa l  to 

Fo=exp {-'/,Tr" ln ( ~t2 +K ) }. (13) 

The  p r i m e  ~aeans tha t  the  c o n t r i b u t i o n  of the  z e r o  e ige nva lue  to the  s p e c t r u m  i s  not  t a k e n  in to  a c c o u n t .  
/ dz \ 

We t r a n s f o r m  T r ' l n  ( ~ 7 + K )  . F o r  t h i s ,  we c o n s i d e r  

We d i f f e r e n t i a t e  L~ and obta in  

I ~ L ~  
i \ d  z - 1  

= T r '  [ - - + s K |  K = T r '  
de x dt 2 I 

R e c a l l  tha t  K d o e s  not  depend  on t .  

F0=exp {-"/2L~}. 

eigaK(i-t *) 

2i~eK 
.K. 

We w r i t e  the  e x p r e s s i o n  on the r l  g h t - h a n d  s ide  in the  f o r m  

2i~e 2 ~  

We i n t e g r a t e  the  e x p r e s s i o n  on the  r i g h t - h a n d  s ide  wi th  r e s p e c t  to  e, s e t  ~ = 1, and  ob t a in  

d 2 
(14) 

w h e r e  t r '  m e a n s  tha t  the  t r a c e  i s  t aken  only  in the  x s p a c e  and the  z e r o  in the  K s p e c t r u m  i s  o m i t t e d .  
We t r a n s f o r m  the  e x p r e s s i o n  on the  r i g h t - h a n d  s ide  of (14) by  m e a n s  of the  t r a c e  i d e n t i t i e s  f o r  the  
S c h r S d i n g e r  o p e r a t o r  [6]: 

tr[  W (g)  - W  (g0) 1= 2~/~d~,W" 0~)In det S,+tr , ,  (15) 

w h e r e  K0 = - d 2 / d x  2 + m 2 V " ( 0 ) ,  W i s  an  a r b i t r a r y  funct ion ,  Sh i s  the  s c a t t e r i n g  m a t r i x  of the  o p e r a t o r  K, 
and  t r l  i s  the  c o n t r i b u t i o n  of the  d i s c r e t e  s p e c t r u m .  We do not  w r i t e  out  t r l  e x p l i c i t l y  s i n c e  fo r  V ( u )  = 
I - c o s u  the  d i s c r e t e  s p e c t r u m  d o e s  not  c o n t r i b u t e  to t r ' .  Indeed ,  f o r  t h i s  p o t e n t i a l  

K = -  d~ + m 2- 2ra----~ (16) 
"dx ~ ch ~mx �9 

T h i s  o p e r a t o r  h a s  one e i g e n v a l u e  k = 0, whose  c o n t r i b u t i o n  i s  o m i t t e d .  
on the  i n t e r v a l  m2 < X < ~ The  p o t e n t i a l  in K i s  r e f l e c t i o n l e s s  and  the S m a t r i x  has  the  f o r m  

S= ( S~ 0), S~= Y~ "--'m~+'im- 
0 S~ Y)~--m2--im " 

We c a l c u l a t e  F 0 u s i n g  (13), (14), and (15). A f t e r  e l e m e n t a r y  c a l c u l a t i o n s ,  we find 

i m , ( 0 ) =  | z Fo=exp(-~ mD(O)T+i--~ T} D ~" d~'K- 
J k +m ~ " 

The con t inuous  s p e c t r u m  of K is  

(17) 
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We have obtained a logarithmically divergent expression, but the infinity can in fact be eliminated. We 

recall that in the case of quantization of the basic field in the one-loop approximation expressions propor- 

tional to D( 0 ) also arise. These infinities are eliminated by a renormalization of m 2 . In Sec. 3 we show 

that the same renormalization removes the divergence in (17); after the renormalization, it is found that 

F_i.Fo=exp{_i(8ra, m, + 0 ( ~ ) 1 T } .  

Thus,  the soliton m a s s  in the one- loop approximat ion  is  Mq~ F o r  the )~r model a s im i l a r  
co r r ec t ion  ~ras ca lcula ted  in [15]. Note that  Mq0 vanishes  for  7 = 8~. I t  i s  known that  this value of 
is  c r i t i ca l  fo r  the Lagrangian  (1); see  [18, 13]. Dashen,  I-Iasslacher,  and Neveu a s s u m e  that  this e x p r e s -  
sion is  exact .  To p rove  this  conjec ture ,  one mus t  show that  the higher  co r r ec t i ons  reduce  to only a 
r enorma l i za t ion .  Unfortunately,  the ca lcula t ions  a r e  v e r y  c u m b e r s o m e ,  and we do not give them.  

3 .  R e n o r m a l i z a t i o n  

In the calcula t ion of the quantum co r r ec t i on  to the va r ious  quant i t ies  that c h a r a c t e r i z e  soli tons 
u l t rav io le t  d ive rgences  a r i s e  [see, for  example ,  (17)]. We mus t  introduce counter  t e r m s  into the L a g r a a -  
gian to e l iminate  them.  In the s ame  o r d e r  of pe r tu rba t ion  theory,  we a r e  forced  to introduce other  coun-  
t e r  t e r m s .  They cancel  the d ive rgences  of the o rd ina ry  Feynman  g raphs  which a r i s e  when the bas ic  field 
i s  quantized.  

The two lots  of counte r  t e r m s  mus t  be identical  s ince o therwise  we have a contradict ion.  We now 
show that  this contradic t ion does not a r i s e .  F o r  this ,  we cons ider  the genera t ing functional of the S m a t -  
r ix  of the bas ic  field [11]: 

; e x p {  ~ -  ~ d'x['/,(O.u)2--ra'V(a)]} ~'[ du. (18, 
~ t  

where  in the l imi t  I t  l -~ ~ we have u -~ Uas where  Uas is  a fixed asympto t ic  behavior .  V"(O) = 1. 

We also cons ide r  the p ropaga to r  of soli tons (in a naive formulat ion):  
t~ 

A f t  ttf  

where  a=Eal(x,t[pa, q~~ for  t = ti, t2. 
a ~  l 

We shall ca lcu la te  both in tegra l s  by the method of s t a t ionary  phase .  We expand the a rgument  of 
the in tegrand in (18) in a s e r i e s  in the neighborhood of u c l ,  where  

~ar ar ~, ltl~=. 
In (19), we expand the act ion in the neighborhood of the pure ly  soliton solution u s ~  It  sa t i s f ies  the 
equation 

A 

r2a~~ ' (a '~ =0; a~~ Z u~ (x, tip~, q2). 

We wri te  both exp re s s ions  in the f o r m  

exp ~ Xkgk, (20) 
k = - - t  

where  g k for  k --- 0 is  the sum of connected (k + 1)-1oop vacuum graphs ,  in which the p ropaga to r s  and 
v e r t i c e s  a r e  given, r e spec t ive ly ,  by 

[n+m~V,, (uc,) ] , , , ,=8,  (x-y), 

fo r  (18) and 

for  (19). 

[[]+roW" (~~ ] A , = ~ '  ( z - y ) ,  

8h~d~xV (a)~ I 
V~'='I'~"2-t 6~ '~ ~,=,,cl 

V~=~,/~_, 6"Sd~xV (tt) 

F r o m  the analogy it  i s  c l e a r  that if  in the l - th pe r tu rba t ion  o r d e r  in (18) there  a r i s e s  the d i v e r -  
gence i~z In A .~ C(a ~') d'x, then in (19) in the s ame  o r d e r  the re  a r i s e s  the infinity i7 ~ in A SC(~'~ d2x. Both 
infinit ies can be e l imina ted  by adding the single counter  t e r m  -- ~'+' In A S d2xC(a) to the or iginal  Lag ran -  
g i an .  

(21) 

(22) 
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Let us make this more  p rec i se  in the example of the one-loop approximation.  
this approximation reduces  to 

exp {-I[2 Wr In (D+mW'+(a ~I) )}, 
and (19) to 

exp {-I/2 Wr In (O+mW" (u "~ ) }. 

The ul t raviolet  divergence in (23) has the fo rm 

and in (24) it fs 

t i m  ~ ~ I }, 

The integral  (18) in 

(23) 

(24) 

exp t e -  ~ ira2 D (0) ~d2x[V'(u'~ 

The infinities can be eliminated by adding to the original Lagrangian the counter  t e r m  

~n2,D(O) ~ d2x[V"(~)-i]. 

It is easy  to show that with allowance for this counter  t e rm in (17) F0 becomes  exp i--~-T . 

Our arguments  have a general  nature and can be applied to an a r b i t r a r y  model. 

Note finally that for  the Sine-Gordon equation alI the d ivergences  can be el iminated by the mult i -  
plicative renormal iza t ion  

and in this connection see also [7]. 

4. Scattering Matrix of Solitons 

In this section we discuss the quasiclassieal approximation for the S matrix of solitons and ways 
of obtaining the quantum corrections to it (see [19]). We consider in detail the case of two simple solitons, 
saying a few words about more general processes at the end of the section. The quasiclassical approxi- 
mation can be calculated by proceeding from the known description of the scattering in the classical treat- 
ment. The latter is based on knowledge of exact solutions of classical equations describing the interaction 
of an arbitrary number of solitons [4]. The result in the case of two solitons is as follows. 

Solitons of different charges. The solution of (5) as It] -+~ has the asymptotic 1o 

behaviors  
f u, (x, t]p,-q,-+) +a~ (x, tlpz-q2--), t-+-r162 

(x, t[ptp2qiOq20+ - )  t~2 a~ (x, t [p~+q~++) § (x, t [pz+qz+--), t ~ ;  

0 
p~-~p,+, p~-=p2 +, q,+=q~-+ K(p,-,pz-), qz+=qz-+ opK(p~-,p~-);  

Opi- (25) 

K(p,,p,)~K(~)-~t dOln ~+e_~---------~, p~-=p~, p,-~-p~; 

: -  2M'+'f s ( s-4M 2) r -= s= (p,~ 3_ (pl+p,) 2; s>41gt. 
2M 2 

The roots  in the las t  equation a re  ar i thmet ic .  We see that when solitons collide they pass  through each 
other  and the entire scat ter ing reduces  to a change of their  posit ions; the fas te r  is moved forward along 
its momentum. This cor responds  to a t t ract ion.  Equation (25) is an expression of the canonical t r a n s -  
formation genera ted  by Hamiltonian K(pl, P2 ). 

2 .  S o l i t o n s  w i t h  t h e  s a m e  c h a r g e s .  The solution (4) descr ibes  the coll ision of identi-  
cal solitons, a f ter  which they are  e las t ical ly  scat tered.  This can be seen by considering the evolution of 
the solution. If the momenta of the par t ic les  are  of opposite signs, the solution (4) as t -+ - ~  has the 
asymptot ic  behavior  

u2(x, tlp,p2q,~176 t[p,-qi-+)+u,(x, tlP~-q~-+); P,-=Pl, P2-=P2; 

so that the energy density has two maxima: the f i rs t  as  x -+ -co and the second as x ~ co. With 
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increas ing time, they approach,  come to a halt, and move apar t  in the opposite direction.  The asymptotic  
behavior  as  t ~ ~o is 

u~(X ' t I p,p~q~Oq2O-t-+ ) ~ it, (x, t I p,+q,+q-) +~t, (x, t ] p2+q2++), (26) 

where  P~+=P2-, P~+=P~-, q,+=q~-+OK/Opz-, q~+=q~-+OK/Op~-. K(p~-, p~-) is the same  function as  in Case 1. We 
have appended nu m ber s  to the sol i tons,  r e m e m b e r i n g  that a f t e r  the col l is ion they a r e  ref lec ted ,  and do not 
p a s s  through one another .  

S m a t r i x  a r i s e s  when the canonical  t r an s fo rma t ions  a r e  quantized. The c o r r e -  A quasie lass ical  
sponding formulas  a re  

s+_o,(p, -, p,-, p,+, p=+)=,(p , - -p ,+)~(p=--p,+)s_o ' (s) ,  
s++o'(p, -, p~-, p,+, p~+)=~(~,--p~+)~(p..--p,+)s+o'(s), 
S_C'(s)=exp {--iK(~)+ic~}, S+r =exp {-LiK(~)+ic2}, 

(27a) 

where we have added the constants  of integrat ion cl and c2 to the phase K(~ ) normal ized  by the condi-  
tion K(1) = 0 .  

An al ternative way of deriving (27a) is based on the general  definition of the S matr ix [11] in t e rms  
of a functional integral  over  paths with c lass ica l  asymptot ic  behaviors .  In the case  of two solitons, the 
method of s ta t ionary phase reduces  to calculating the asymptot ic  behavior  of the t runcated action A 
between tl an d t z  on the solutions (5) and (4) as  t2 - tl ~ ~ .  Calculations made in the center  of mass  
sys tem show that 

A[a~(+-b)]=-K(~)+2pAq,  A [ a ~ ( + - ) ] = - K ( ~ ) + S ~ V ~ + 2 p A q ,  hq=v(t.~--ti)-~ 16 Yl--V~-ln l__ ' v P (27b) 
7 M v ]Ip~+M2 

where Aq is the change in the soliton coordinate in t ime t2 - tl. It follows f rom the experience of non-  
relat ivis t ic  quantum mechanics  that the las t  t e r m  in (27b) must be subtracted,  and the remainder  is then 
the phase shif~t. Comparing (27a) and (27b), we see that cl  = 8~2/T, c2 = 0. This resul t  and its in te r -  
pretat ion were obtained for  the f i r s t  t ime by Jackiw and Woo [23]. 

Equation (25) gives one the possibi l i ty of continuing analyt ical ly the S+( s ) 's  f rom the physical 
region s > 4M2 into the complex plane with cut along the real  axis for s > 4M2, s < 0. Then S+( s ) is 
not real  in the gap 0 < s < 4M2. We in terpre t  this as  a manifestation of the accumulation of poles c o r r e -  
sponding to bound states  of soli tons.  Indeed, the number  N of bound states tends to infinity as T -- 0. The 
higher  co r rec t ions  must  lead to rep lacement  of the false cut in the gap by a finite number  of poles.  

This c i rcumstance  prevents  a d i rec t  ver if icat ion of c ross ing .  One can however use Hermitian 
analytiei ty and write down the c ross ing  condition in the fo rm 

S+ (4M~-s+iO) =S_" (s+iO). (28) 

It is  not difficult to see that this equation is indeed satisfied in our approximation. The argument  was f i r s t  
published by Coleman in the Appendix to [23]. 

Let us at tempt to establish the complete  quantum S matr ix  on the basis  of its quasiclassical  
approximation.  By vir tue of what we have said in Sec. 3, allowance for quantum cor rec t ions  reduces  to 
replacing S_ cl  ( s ) by a fimetion S_( s ) of the fo rm 

St 

where g~( s ) is a sum of (k + 1 )-loop connected vacuum graphs  of the renormal ized  perturbat ion theory, 
which is cons t ruc ted  like the per turbat ion theory  (20)-(22). Note that Re gk ( s ) = 0 both for s < 0 and 
fo r  s > 4M 2. 

We have not been able to obtain any explicit  express ions  for the quantum cor rec t ions  by means of 
this d iagrammat ic  technique apar t  f rom the investigation of some asymptot ic  behaviors  (a promising 
approach to this p rob lem is contained in [20]). We therefore  consider  whether something could not be said 
about the quantum co r rec t ions  on the bas is  of the general  requi rements  of analytici ty and unitari ty.  The 
quasie lass ical  S matr ix  has one unsa t i s fac tory  p roper ty  - it is not real  in the gap; the quantum c o r r e c -  
t ions must  evidently put r ight  this shortcoming.  Let us consider  more  careful ly  the express ion for  S c1( s ) 
in the gap. After  a change of var iables ,  we obtain (s  = 4M2cos2v/2, 0 < v < 7r) 
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l 0 -v  / 

c~ N "  ~e-~~ } + N  i oos--~-- 8~ 
S_ =exp ~ - -  [ dO l n - -  + iN~ = exp iNv+iN~ dO In N (30) 

t ~t ~ ~+e -`~ " z m - ~ - ~ v / '  = - - "  
cos__if_ j V 

The f i r s t  t e r m  in the a rgumen t  of the exponential  g ives  the undes i red  complex  value.  Quantum co r r ec t i ons  
cannot e l imina te  it  s ince i t  has  the o r d e r  N (29). Thus,  the phase  of the quantum s c a t t e r i n g  ma t r i x  S_( s ) 
is of o r d e r  N and I m  S_( s ) = 0 (in the gap).  This  evidently means  that  the exponent of the power  of S_( s ) 
contains a function h( v ) that  i s  p iecewise  constant  and has  discont inui t ies  iTr at  the points Ok, whose 
number  is N. An example  of such a function h( v ) is the following: points  of discontinui ty d is t r ibuted  
uni formly,  O k = ~k/N, h(0)  = 0. 

Since in the physica l  region S_(s)  is  un i t a ry  in any o rde r  and has  the c o r r e c t  a sympto t i c  p r o p e r -  
t ies ,  f r o m  a given function h( v ) one can r e c o v e r  In S_( s ) uniquely to within a known polynomial  a r b i t r a r i -  
ness .  F o r  the h (v )  given above,  S_(s)  has  the f o r m  

N 

s_(,)=ox,{y'.l,, ;'-'~ 
~=1 ~+e-i~ 

Note that the sum in the a rgumen t  is  an in tegra l  sum for  the in tegra l  in Eq. (30). We r ewr i t e  s ( s )  in the 
f o r m  

S- (s) =e"~= "~"H 
;e-,O,+t 

~ ,  ~+e-t0, (31) 

It has f i r s t - o r d e r  poles  at the points s~=4M2sin2-~, i . e . ,  at  the points  cor responding  to the m a s s e s  of the 

double soli tons in the quas ic l a s s i ca l  approximat ion .  Note that  if  the function h( v ) had discontinuity ilTr 
(l integral)  then S_(s)  would have a pole of l - th  o rde r .  

We cannot,  of course ,  guaran tee  that S_(s)  r educes  to such a modif icat ion of the function S c •  
though the poss ib le  candidates  for  the function h( v ) cannot di f fer  too s t rongly f r o m  the example  we have 
chosen.  Thus,  the points  of division 0 k must  be a r r anged  fa i r ly  un i formly  in the in terva l  [0, ~]. We 
a s s u m e  that Eq. (31) is  exact  for  ~/ = 8r /N,  N = 2, 3 . . . . .  

The case  of the sca t t e r ing  of A sol i tons is  t r ea ted  s imi l a r l y .  The c l a s s i ca l  sca t te r ing  of A so i l -  
tons r educes  to" the p r o c e s s  of succes s ive  sca t t e r ing  of soli tons on one another  [16, 4] and the quas i c l a s s i -  
ca1 express ion  for  the S ma t r ix  in the case  of sol i tons of the s ame  charge  has the f o r m  

i 
P2)~:p (p , )p (p2)  :},  p(p) =a+(p)a(p), [a(p~, a+(p~) ]=p,"g(p~--p~). 

A s i m i l a r  express ion  holds for  sol i tons of a r b i t r a r y  charges ,  the S ma t r ix  being equal to the product  of 
the pa i rwi se  S m a t r i c e s .  

We now turn to the case  of the sca t t e r ing  of double sol i tons.  The cor responding  c l a s s i ca l  solution 
in the s y s t e m  V = 0 is pe r iod ice  in t ime  with per iod  2 v / m  cos  0 [4]. We f i r s t  ca lcula te  the propagat ion  
function of a double soliton in the  quas ic l a s s i ca l  approx imat ion .  

Proceeding  as  in Sec. 2 [see (8)], we obtain G(p~, t~lpz, t~)=5(p~-p~)F_~(p~, 0), where  

2/I/sin 0v 
F_, (p, 0) =U(t, ,  t~, 0, p) exp{-i2M sin 0 l ] t -v  2 T}, p ---- - 

~l_v~ " 
We do not need the explici t  f o r m  of U, and we note that  I U I = 1, and in the cen t e r  of m a s s  s y s t e m  U is  
quas iper iodic  in t~ and t2: 

U(t~ + 2~--,t2,0, O)=e~U(t~,t2,0,O), 
tTt COS 0 

where e = 32~0/T.  

The function U does not contr ibute  to the coeff ic ient  of T and the re fo re  does not modify the m a s s  
only in the case  when U is  exact ly  per iodic ,  i . e . ,  

e=2~k. 0k=~k/i6. (32) 

Note that  the condition (32) is  equivalent  to the quantization of per iodic  B o h r - S o m m e r f e l d  orb i t s .  We have 

1047 



obtained one m o r e  conf i rmat ion  for  the quas ic lass ica l  s p e c t r u m  of the double soliton: 

Ms = i6m sin Ok, -- ~ k "f 0 4 -  - ~  . 

We now turn to the expres s ion  for  the S ma t r i x  and give without der ivat ion the quas ic lass ica l  
r e su l t  for  the sca t t e r ing  of double sol i tons with in ternal  momenta  O k and On: 

N ' f "  C~-t+2~; -s ine k = n = i ) ,  ; 2M~M. \ 2M.M. I -1 '  (33) 

where  K is  the s ame  as  in Eq. (27). 

We also give the quas ic l a s s i ca l  sca t t e r ing  ma t r i x  of a double soliton with in ternal  momen tum 0 k 
and of a s imple  soliton: 

8 ~ s-M2--M~ z . " ! / / s -M2-M~\  ~ 

Final ly ,  we cons ider  the sca t t e r ing  of a pa r t i c l e  of the bas ic  field on a soliton. The S -ma t r ix  e lement  is  
propor t iona l  to the ident i ty ope ra t o r  (6). Solving the analyt ic i ty  and tmi ta r i ty  condition [12], we obtain for  
the coeff icient  of i t  

S.--- g(x)Vm2-x+t ( s-rn'-M~ ) 2 
, x = ( 3 5 )  

g(x) Yra2-x - i  2M 

where g (x )  can be expanded in pos i t ive  powers  of T. As a function of i ts  a rgument ,  g (x)  has the f o r m  

g ( x ) = R o _ 2  - - , B ~  R~>0. 
en~--X n 

We show that  in the lowes t  o r d e r  in T the value of g (x )  is  g = l / r e .  The express ion  for  the genera t ing 
z sot Sol 

functional of the G r e e n ' s  function has  the f o r m  6(p~n -po. t  )F (8) where  

~ .  
t z 

We have taken a fixed soliton. Calculat ing the in tegra l  by the method of s ta t ionary  phase  and taking 
into account  only the f i r s t  o rde r ,  we obtain 

F _ , = e x p { i ~ d t ~ ( u ~  i__ ~a~x(aO,_a,)](x) }, nur247 sinu~,=_j(x) ' #"(~,t)--a~(--~ =2.n. 
? 

We dif ferent ia te  twice with r e s p e c t  to the c u r r e n t  and obtain for  the G r e e n ' s  function of a so l i t on -bas i c  
pa r t i c l e  the expres s ion  F_,=exp {--iMT}A2(x~, t, lx2, t~), where  

( D + m  ~ 2 r a  ~ 1 

We go ove r  to the S m a t r i x  by means  of reduct ion fo rmu la s  and find that  i t  i s  

S=I p§ , 
p-ira 

where p is  the m om en t um  of the pa r t i c l e .  F r o m  this we obtain d i rec t ly  the express ion  for  g ( x ) .  

We now re tu rn  to the conjec ture  of ]3ashen, Hass l ache r ,  and Neveu that the bas ic  pa r t i c l e  and the 
f i r s t  s ta te  of the double soli ton a r e  ident ical .  In the sp i r i t  of this conjec ture ,  the following must  coincide: 
1) the S ma t r i x  of two double sol i tons with 0 = v/2N and the S ma t r ix  of two bas ic  pa r t i c l e s ,  2) the S 
ma t r i x  of a soliton and a double soliton w i t h  0 = ~ / 2 N  and the S ma t r ix  of a soliton and the basic  pa r t i c l e .  
Let  us  ve r i fy  this in the lowest  o r d e r  in T.  T h r e e  of the S m a t r i c e s  have been given above,  and the 
fourth (for two bas ic  pa r t i c l e s )  in [7]. The ver i f ica t ion  r educes  to expanding exp res s ions  of the f o r m  
K ( - ~ e  -~/N) in powers  of 1/N = T/8~r; for  example ,  

. .  C - i  / i 
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Calculating (33) in the lowest order  in 7, we obtain 

i + i m2~/ 
21Is (s-4m ~) 

which obviously agrees  with the Born expression for the S matrix of basic part icles .  
in the lowest order  in T is 

t/ m'--x  + m  

YrnZ--x --rr~ 
which agrees with (35). 

The expression (34) 

C o n c l u s i o n s  

We hope that we have succeeded in convincing the reader that this one-dimensional nonlinear 
model of field theory has a number of attractive properties. Let us list some of them, 

1. The Lagrangian of the theory contains only one field, but a complete spectrum of particles is 
manifested. In the weak interaction approximation the solitons are heavy particles and they interact 
strongly. 

2. The solitons have a quantum number which has a topological nature, and this can be interpreted 
as a charge. Solitons with the same charge repel each other, while solitons with different charge attract 
each other. 

3. In the weak interaction approximation a prescription exists for calculating in perturbation 
theory. The quantum corrections are small for small coupling constants, and the quasiclassieal treat- 
ment determines the entire nonanalytic contribution to the physical quantities. 

The contents of this paper have been frequently discussed and corrected in collaboration with our 
colleagues I. Ya. Aref'evaya, P. P. Kulish, V. N. Popov, and L. A. Takhtadzhyan. We are very grate- 
ful to them. The paper was partly reworked after one of the authors (L. D. Faddeev) had been to the 
United States, where the paper was discussed with R. Dashen, R. Jackiw, S. Coleman, A. Neveu, and 
B. Hasslacher. 
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