FACTORIZATION OF THE CLASSICAL AND THE
QUANTUM S MATRIX AND CONSERVATION LAWS

P.P. Kulish

It is shown that the presence of a complete set of integrals of the motion that are a
deformation of the free integrals leads to a factorization of the § matrix. The
scattering characteristics of n identical particles are expressed in terms of the
two-particle problem.

1. Considering a classical system of n one-dimensional particles with interparticle potential
1/%* or 1/sin’x* Moser [2] used the L-M pair method, which has been actively used in recent years to
solve nonlinear equations [3]. This enabled him to construct n first integrals in involution and show that
the set of particle momenta {p;}? before and after the collisions (for the potential 1/%%) is the same. In
this paper, we show that the classical and the quantum S matrix for these systems can be expressed
solely in terms of the two-particle S matrix. The result is obtained as a consequence of the existence of
a complete set of integrals of the motion and their simple structure (deformation of the free integrals), and
an analogous situation obtains in the scattering of solitons. We also justify Calogero’s assumption that
the generalization of the Moser L-M pair method for n identical particles (preserving the structure of the
matrices L and M and leaving the interaction a two-particle one) is possible only if the two-particle
potential is the Weierstrass function [4].

The equations of the classical mechanics of n one-dimensional particles with two-particle
potential v(x) and mass m = 1

d=p, p=— Y U (@a); de=dai/d, (1)

Je=i

are equivalent to an evolution equation for the matrices L and M:
L=[M, L}1=ML—LM, (2

where L and M are, respectively, n X n Hermitian and anti-Hermitian matrices with the elements [4]

Liy=pdi+ (1—0)alzi—z;); i<j, Ly=Ly', (3)
M=05; Zﬁ (#i—Zm) — (1-8) &’ (z:—2)), 4)
. mz=i
if the functions @ (x) and B (x) are related by the functional equation
o' (y)a(z) —a(y) o' (z) =a(y+7) (B(¥) —B(2)), B(¥)=B(—y), v(z)=a(zx)a(—z). (5)
We assume that Eq. (5) has solutions with v(x) > 0 and v(x) — 0 as Ix| — <. Examples of such

potentials are 1/ and 1/ sinh®x. A few words about the general solution will be said later.

2. We now turn to the analysis of classical scattering for such a system. Note that the argu-
ments will have a general nature, i.e., they will be valid for systems that have a complete set of integrals
of the motion that are nearly free ones. (These include, for example, the nonlinear Schrédinger equation
of [7], the sine-Gordon equation [8], and various others.)

* The quantum problem for n one-dimensional particles with binary interaction 1/< was completely
investigated by Calogero [1].
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The matrix M is anti-Hermitian, and therefore the eigenvalues A; of the matrix L are invariants
of the motion. The asymptotic conditions for Egs. (1) for t = —= and a decreasing potential have the form

z:(8) =pi~ttzy~+o(1), (6)

i.e., they are determined by the set of 2n numbers {p."}," and {zs"}s" (the particles can be labeled in
such a way that py~<\p."<...<p,”). Thus, as t = —« the matrix L becomes diagonal (the choice of & (x)
is nonunique [4], and for us it is convenient if @(x) — 0 as x| — «; for decreasing potentials v(x) this
can be done), Ly=p;8sto(1), hi=p~. A similar argument in the limit t — +« and the condition that the
particles do not pass through each other leads to A=p;,_,,, =p~ and #:(t)=p;_,, t+zs*+0(1). Besides the
eigenvalues A; further invariants of the motion are the coefficients I, (p;, X5 ) of the characteristic poly-
nomial :

det(L—AE) = 2 (—A) "I (piy z5),  Eiy=bss (1
m=0
By virtue of the asymptotic conditions and the properties of the potential, I m i the limit {t} — = are
equal asymptotically to free symmetric functions of p;:

LY@)= N papa..pe, (8)

i€i, <ip<in
and since the Poisson brackets {I - Ik} of the integrals of the motion is an integral of the motion, it
follows from the vanishing of its asymptotic behavior that (2, 4]

{Z.(ps z;), Lips z;) }=0, 1<m, k<n. (9

In what follows, we shall require the explicit form of the third integral, and we shall therefore say a few
words about the structure of I_(p;, x ; }. Using (7), we readily obtain the equations

I, (Pi, -rj) =Iz(o} (Pl) = p,-=P, (10&)
Lpz)=L"(p) = Y v@—a)="P—H, (10)
I<i<hksn
I(ps, i) =Is(o) (pi)— Z D (T—T4,), {10¢)
1<i;=<<n
dgeliy
iyshdgiy

while the structure of I , is more complicated, containing «( X; =X ) explicitly, and it cannot be
expressed as a polynomial function of v(x; — X; ).

By virtue of the asymptotic behaviors of x,(t) as t — =, classical scattering is described by
the transition from the set {p.~, zo;"}:" to the set {p;*, zv:*},". As we have already mentioned, Moser and
Calogero have shown [4] that p*=p, .,,. We calculate the discontinuity of the asymptotic coordinates:

Av=zo,t s = 2o~ = Hm (T (£) —2: (—2) —2pit) 11
t~> o0
and show that it is entirely determined by the two-particle problem. We consider first a system of two
particles. In the case when the particles cannot overtake each other, using the solution of Eqs. (1) in
quadratures for two particles, we have

k

e e Ly = e

1) =A(k), 12

where k=p,~—p,~, p.">p,~=0, a<0, v(a) =k*/4.

We now consider three particles. Equations (1) correspond to motion defined by the energy
function H. In addition, one can consider the motion of our system defined by the Poisson brackets of the
function 13( p;. x].) (10c). We denote the parameter (time) of this motion by t,. We obtain the equations
of motion ]

0x:/dty=pspr—v(Ti—n), (i,], k) <> (1, 2,3), dpJote=pp’ (x:—z)+pu’ (z:—25). (13

Thus, the coordinates x; and the momenta p; of our system depend on the two parameters t and ¢ . In
what follows, we shall use the fact that the motions defined by H and I , are independent because they are
involutory.
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Using the translational and Galilean invariance, we go over to the system in which e7=p,~=0,
and then the asymptotic behaviors are :(2) =o0(1}, z.(t) =p."t+xze+t0(1), z:(2) =pst-tao+o(1), and the colli-
sion time of the particles is of order f.=—=o"/p:~, tis=—=am~/Ps~, tuw=(Zos~—xw")/ {p——p:-). For the chosen
asymptotic momenta, the asymptotic behavior of the coordinates and the momenta as t, = +=is '

xf(t, ta) =pz_p3_t3+0(1), .’L'z(t, ts) =p2—t+0('1), .’L'a(t, ts) =p3—t+0(1), pi(t, ts) =pi_+0(1), l‘—'-‘i, 2, 3. (14:)

The collision time t,. is the same, while tu=(—%u"+ps"ps76:) /P27, ts=(~%u"+p:"ps"ts)/ps~ and can be
arbitrarily large. Thus, at the time of the collision of the second and the third particle the first particle
may be arbitrarily far from them. After the scattering in the system (2, 3), we have

T2 () =ps~t+2os"—A(ps~—p2) Fo (1), 25(t) =pot+ze:~+A(ps~—p:7) o (1), (15)

where A(k) is given by Eq.(12). The scattering now takes place in the system (2,1), and then again in the
system (3,2). After the transition to the limit t — + it remains to set 1:3 = 0, which, since H and 13
are involutory, gives the result for the original equations (1):

2 (t) =ps o —A (p—p27) —A (ps—p17),

. (16)
xz(t) =p2“t+xoz'—A (pz—_"p‘_) +A (pa_—pg") . .‘Es(t) =p1_t+$og_+A (pz"--p;") +A (pa——pi_) .
For n particles, using the integral I (p;, xj), we take the first particle from the groupof n - 1
particles and, arguing as before, we obtain finally for the discontinuity of the asymptotic coordinates
Ai=x0nti+l_x0i~=_2 Alpr—pi)+ Z’ (pr—p:). amn

Ji i>i
The transition from the set {p:~, zo}1" to the set {p*, zo"}s" during the scattering process is given by a
canonical transformation whose generating function we denote by @ (2w, pi*). The difference between
@ (zw~, pt*) and the generating function of the identity transformation (to within relabeling of the particles):
Dy (2o:~, pit) = Zxoi_pnti—[-i {18)
i=1

can be called naturally the classical S matrix:

n

O (Lo~ pi¥) = Z‘z(ﬁ—pnri+i+ Z'f] (pit—p;") =008, Pi_=aq)/a$0i-=Pnti+h
et i<cj (19)

Tomi44==0 O/Opi =i+ Zn' (p—pi)— Z 1" (pi—pi7), n(p)=—pa— jdz( (p*—4v (2))"—p).
i=>i <t —c0
Note the following fact. We require that the system of n one-dimensional particles with binary
interaction have, besides the momentum and energy integrals, a third integral of the form (10c). This is
equivalent to the vanishing of the Poisson brackets {H, I.}, which are equal to

{H.I,})= Z‘; v(zi—z) (v (zi—z;) Tv" (Ti—z4) ). (20)
i<k
jetisER
For three particles, introducing the notation X, ~X =0a X - X = b, X, —x,=a+ b, we have

v(a) (v’ (b)+v (a+b))—v(b) (v' (e)+v (at+b)) +v(atd) (v' (a) —v (D))= v(b) v’ (b) 11=0. (21)
v(at+d) —v'(at+d) 1

If the potential satisfies the functional equation (21) for three particles, then {H,1.} = 0 for any number
of particles. Equation (21) is none other than the composition theorem for the Weierstrass function

@©(z) [5], which determines this function to within a factor and a constant. As Calogero has shown, the
Weierstrass function as potential satisfies the original equations (5), and, therefore, in such a system
there exist n integrals of the motion. This assertion is analogous to the one obtained in [6]. There, the
sine-Gordon equation was recovered uniquely from the free Klein—Fock equation on the basis of the
requirement that, besides the momentum and energy integrals, there should exist a third integral for the
equation with interaction as a modification of the free one by the addition of a power series in the field and

its derivative (see the Appendix).

v{a) v (a) 1 /

3. We now turn to the quantum case for n one-dimensional particles. The general formulation
of the problem in quantum mechanics for the system (10a), (10b), ... does not present difficulties. The
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expressions I,(p;, X, } in each term contain different p; and & (x]. - X%,), the numbers of the coordinates
do not coincide with the numbers of the momenta, and there is no operator ordering problem. The set of
operators I m( p; . X; ), 1= m = n, is a complete set for our system, and the eigenfunctions satisfy the
equations _

Lo (piy 2) ¥ (24, ..., ) =E, Y (2y,..., 2,), I<m<n. (22)

The admissible potentials v(x) have the singulatiry l/x2 in the neighborhood of the origin, and we shall
therefore consider the eigenfunctions in the region X, ZX ... 22X, with null conditions on the
boundaries x; = x; .- It is convenient to represent the eigenvalues E, as symmetric functions of the
parameters k;, 1 =1 = n, which describe the common eigenfunctions of the operators

IV (p)exp (i ch jx,-), where (01, Tyr vves crn) is an arbitrary permutation of (1, 2, ..., n). Remem-
—y :

bering that the operators I, (p;, x;) are given asymptotically for z=ar, a>a>...>a, r>, by I(f,)L( p;),
the asymptotic behavior of the eigenfunction ¥ (zi,..., z.)=Y¥ (z:|k;) is a linear combination of exponentials:

‘I’(x,jk)——ZAqexp( Zk z) (23)

J=1
where the sum is taken over all n! permutations ¢ = a ). We determine the coefficients A,
by considering the asymptotic behavior of the operators I ? p1 , along the different boundaries of the
chosen region x; = X g 1=1i=n -1, Suppose, as before x =aq;r, r = =, but a; =a;, * y/r,
i.e., x; — x; , can take any positive values. Then

7 741
In(Poy &) =L, (n—2) + (0 Pss ) I (n—=2) F (pses—0 (&= T300) ) o2 (n—2), (24)

where I(o)(n — 2} is a symmetric function of n — 2 momentum operators w1thout the momenta p; and

Pj - In this direction, the asymptotic behavior of the eigenfunction ¥(x; lk, ) i
ZA~ exp ( L Fo,23) xp (i (ke + hoyy) (21 -+ 2is)/2) § (23 — Zjna | (ko — By )/2), (25)
JEirsi -1
where the sum is over pairs of permutations 5= (oy, 02..., 6-) and 5(G<j+1)=(0y ..., Gisss O ..., Ox) that

differ from one another by a transposition, and ¢ (y | k) is an eigenfunction of the operator —-dz/dy2 + viy).
Its asymptotic behavior is (k= (k. —k, ,,)/2)

P{z—z51 | k) =exp ik (27— ) Fexp in(k) —ik(z—x;1,) ) +o(1), (26)
and, therefore, the coefficients 4~ and 47 ws+1 are related by the equation
A’E(j<—>j+1) = exp (2in ((kdj J+1)/2)) A"' 27
Taking into account the antisymmetry property of the two-particle phase shift 5 (k) = 5 (—k), ordering
the k, ’s: k1 <k, <... <k,, and choosing the coeificient of the incident wave exp(iZkixi) equal to unity,
we obtain for Aj,
As—exp (2;‘ Y n(G—r/2) ) , (28)
i)
where the sum is over all transpositions (i, j) whose product carries (1, 2, ..., n) into the given

o ). Thus, the coefficient of

e n
exp (iikn_i+,xi ) (29

EES Y

permutation ¢ = (01,

is
exp (Zi Z 1 ((ki—k;)/2) ) (30)
I<Ci<li<n
For single—channel scattering, which holds in our case, the S matrix must be determined by considering
the behavior in the limit r — = of the eigenfunction corresponding to the fixed set {k;}? integrated with

respect to the angular coordinate variables with a smooth function. The coeff1c1ent of the reflected wave
determined by this asymptotic behavior then gives the S matrix.

In the integration with respect to the angular variables in our region x, = x = ... = x, and for
the chosen ordering of the set ik, }”, a contribution to the incident wave* exp (—~z]k]r)/(]k|r) a0/t and to

* In these expressions r* ~E 5 [k]? —Z k2

= i=1
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the reflected wave exp (ilk|r)/(|k|r)*-/> from the sum (23) come from only the terms exp (i Zk,-xi } and

(29), respectively. Thus, for the S matrix of the system of n one-dimensional particles with binary.
interaction v(x)=cg (x) admitting the formulation of the scattering problem we have obtained the formula

Sty ks K., o) = exp ( 2 Y n((kh)/2) )Ha(k;_i+,-ki), (31)
Ii<j<n i==1

where 7 ((k;- — k;)/2) is the phase shift of the two-particle problem with total momentum k; + k; and

energy (k2 + k?)/z.

Note that the Weierstrass function — in the general case it is a doubly periodic meromorphic
function —~ defines a more interesting class of potentials for statistical physics rather than scattering
theory.

The question of the factorization of the S matrix for Moser—Calogero systems was suggested to
me by L. D. Faddeev. I am also very grateful to V. S. Buslaev, F. Calogero, and M. A, Semenov-Tyan-
Shan’skii for helpful discussions.

Appendix
The free Klein—Fock equation (—«<z, t<+, g:=0a9/dt)

Prt—Paxct M2P=Qgr +m¥p=0; = (t—z) 12, o=(t+2)/2, (32)

has, besides the energy—momentum tensor [which we write in the form of the pair of conserved currents
(@2 —m2g?), (m%g% ~¢%) ], an infinite number of conserved currents by virtue of the symmetry under the
substitution ‘<>t and the fact that in addition to ¢ (o, 7) the derivative with respect to ¢ of any order is
also a solution of Eq.(32). We denote the conserved currents by ¢.”,7.”) and ", ;), where n = 1,2,
., and .
1=, L =m0 0% 1P =mer ey 1Y = - (0ee). (33)

. n n {n n . . .
By virtue of Eq. (32), atJ,( T aafcf . 0, O4js - aojé ’—0. Let us consider what interaction terms can be

added to Eq. (32) if we require, first, that the interaction contain only powers of the field ¢ and, second,
the conserved currents acquire corrections of higher than second degree in ¢. We add to (32) an infinite
series with arbitrary constants ¢, that are to be determined:

Qo = —m?p + V" augpn. {34)
The currents J() and j(I) can be readily found in this case too (the energy—momentum tensor exists for
any local interaction). Consider the current J Q) ; for its conservation we must have the equation

(2)
3:Qos® = 2Q0oPoot = 0oty + 3F(Q, 9oy .. ), (35)

where the right-hand side can contain an additional term in the form of a derivative with respect to 7,
which, modifying the current, we transfer to the left-hand side. Using Eq.(25), we obtain

Poor = _mZ(PU + nan(Pn—[EPu,
and we rewrite Eq. (35) in the form

o’ = 2®oaPs ( —m? + E na,pr—! ) = B¢ (cpgz ( —m? + Z na,@tt )) - Z n(n—1)ap" 2. (36)
n==2 n=32

=3

If this equation is to express a conservation law, the last term must be a total derivative with respect to 7.
We express the term with n = 3 in terms of the equation of motion (34):

oo

- miQ = Quy _Z a2.Q",

n=2

oo

s Bas = '
- @c*2as + Bazm—2@q® ( Por — Zaﬂcp") - @° Z' n(n—1)a,pr—2 = A——iaﬁﬂpa‘ - ¢ (243 + Z' [(r+2) (R+1)anio + 6m—2asa,]p ) .
Lm-

n==2 . n=4 n=2 .
Thus, the last term in (36) has the form of a total derivative with respect to 7 plus a series in ¢, which
cannot be represented in the form of a derivative with respect to ¢ or with respect to 7. Therefore,
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this series must vanish identically, which gives relations between its coefficients:
ar=02,=0, Qppr1=—m24"(2n+1)1, A=--Baym=?,
and Eq. (25) can be rewritten in a compact form with arbitrary constant A:

Qor+ mPA~"% sh (AY%g)=0.
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