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For N particles with equal mass, interacting with repulsive or attractive s-function interaction of the
same strength, the S matrix is explicitly given and shown to be symmetrical and unitary. The incoming
and outgoing states may consist of bound compounds as well as single particles. The momenta of the particles
and compounds are not changed in the scattering, but particles are exchanged, such as ABC+DE —
ADCH-BE. Only distinguishable particles are considered.

1. INTRODUCTION
FOR the one-dimensional N-body problem

N
H=-3% 0%/0x2+2 Y 6(xi—x;),
1

<7

1)

with positive or negative ¢, the S matrix was discussed
by McGuire! and by Zinn-Justine and Brezin.2 (Note
added in proof. K. Hepp kindly informed the author
that F. A. Berezin and V. N. Sushko, Zh. Eksperim. i
Teor. Fiz. 48, 1293 (1965) [English transl.: Soviet
Phys.—JETP 21, 865 (1965)] have also discussed this
problem.) We give in this paper a complete explicit
expression for S. Only distinguishable particles are
considered.

2. METHOD

The method used follows that of Sec. 1 of a recent
paper.® We observe that all formulas there are also
applicable to the case ¢<0.

If boundary conditions are not imposed, it is clear
that all solutions of the Schrédinger equation are super-
positions of solutions of the type (¥2). In other words,
Bethe’s hypothesis is proved in such a case.

3. INCOMING AND OUTGOING STATES

To construct scattering states, we need real values of
the p’s. Let us choose them so that

)

A term in (¥2) that has P=identity permutation=1,
then, represents an ouigoing wave. [A wave packet con-
structed out of such a term would have the left-most
particle (at X ¢1) travel with velocity 2p;; the second
left-most particle (at X ¢») travel with velocity 2ps, etc.
Thus the wave packet in future movement develops no
collisions, meaning it is an outgoing wave packet.] A

P1<pe<---<pnw.

1]. B. McGuire, J. Math. Phys. 5, 622 (1964). This is a very
interesting paper in which by geometrical construction many of
the results of the present paper were obtained.

2 E. Brezin and J. Zinn-Justine, Compt. Rend. Acad. Sci. Paris
B263, 670 (1966).

3 C. N. Yang, Phys. Rev. Letters, 19, 1312 (1967). Formula (m)
of this paper will be called (Ym) in the present paper.
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term in (¥2) that has P=[N, N—1, ---,1]=T, i.e,,
the “reversed” permutation, represents an incoming
wave,

Now each permutation Q represents a definite order-
ing of the coordinates and represents a scattering
channel. A scattering state Q; — Q, is obtained if there
are only incoming waves in channel Q;:

[Q*':I,]=1;
[O,']=0 for Q#Q. ®

In other words,
(Q‘-[ El’>= 1,
Ql&r)=0 for Q##Q..

The amplitudes of the outgoing waves are the elements
of £7. Now &7 can be related to 7. through repeated use
of (Y2):

=V a2V 5BV ¥ - - ¥y V-DN]

4

X[V 32V 452« - Vg V=2V [V v—1y2]ér . (5)
Thus the scattering amplitude for Q; — Qo is
(Qo] S"Q4), (6)

where S’ is the right-hand side of (5) with &1 deleted.

4. OPERATOR: {ij}

We did not call the matrix S’ in (6) the S matrix be-
cause it differs from the usual one in that the labeling of
the columns is not in accordance with the usual rules.
This is so because the incoming wave in Q;, represented
by the [Q;,I"] term, describes particle Q1 with momen-
tum py, Q2 with momentum p-s, etc. Thus the correct
S matrix is

S=S/[PNVpw-n2...7
=SI[PmJ[_Pz3P12][P34P23P12]. .. [P(N-I)N. . .Pu]. (7)

If in (7) one explicitly writes S’, as given in (5), one
observed that the superscripts for the ¥’s are the same
as those for the P’s, but in reverse order. One now
permutes the last factor P2 through to just behind the
first factor ¥'»,'2; then the new last factor P%3 through to
just behind the second factor ¥, etc. The final
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result is

S=[{21}{31}{41} - -{N1}]
XL32142} - - (N2} ] - - AV WV —-1)}], (8)

where

{i}=X:;j=P4Y ;fi= (1—Piix;;) (14x;)2. (9)

5. S MATRIX

In (8) we have an explicit formula for the S matrix
(for both ¢>0 and ¢<0, p1<p2<ps: -+ <pn being all
real). S is an N!XN! matrix. The scattering only ex-
changes particle momenta. The elements of .S have the
following meaning:

(A’'B'C’---|S|4BC---)
=matrix element of S for
[State:particle 4 with p;, B with p,, etc.]—
[State:particle A’ with p;, B’ with ps, etc.].

In (9) the permutation operator P# is defined so
that, e.g.,

P4|CDBA)Y=|BDCA)=P4|ADCB).

It is easy to verify that each {75} is unitary. Hence S
is unitary. S is a symmetrical matrix, as required by the
time-reversal invariance of the interaction we have, be-
cause each {77} is symmetrical and the order of the
operators {77} in (8) can be reversed by repeated appli-
cation of Eq. (¥'12). For example, for N =4,

S={21}{31}{41}{32}{42}{43}
={21}{31}{41}{43}{42}{32}
={21}{43}{41}{31}{42}{32}
= {43}{21}{41}{42}{31}{32}
={43}{42}{41}{21}{31}{32}
={43}{42}{41}{32}{31}{21}
= {43}{42){32}{41}{31}{21} =3.

6. ATTRACTIVE CASE

For the case ¢<0, there are bound states' for the
system of IV particles. The wave function for the bound
state is

y=exp[Fc L |wi—ux;]].

<j

(10)

It is easy to show directly that (10) satisfies the Schro-
dinger equation.
It is clear that (10) is of Bethe’s form (¥2) with

p1=%3ic(N—1), po=3ic(N—=3), -+,

py=—}ic(V—1), (1

and with
(12a)
(12b)

£r=(a column with all elements equal),

£p=0 for all P#I,
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Fig. 1. The p’s for the N-particle bound state. The p's are pure
imaginary, and the difference between successive p’s is —ic.

The numbers pi1, ps, -+, pn are plotted in Fig. 1.
Equation (12a) can also be written as

po¥tr=4¢; for any @ and b. (12¢)
The energy of this bound state is
E=Y pP=—c2N(N2—-1)/12, (13)
i

a result already given by! McGuire.

It can be shown that for the N-particle problem, (10)
gives the only bound state. This fact was already noted
by McGuire.!

7. S MATRIX FOR BOUND STATES

If one multiplies the wave function (10) by
exp(ik X x), one obtains a new one describing the bound
state moving with a momentum Nk (k=real). The wave
function is again of the form (¥2) with the p’s equal to
those of Fig. 1 displaced by % along the real p axis.

Would such bound particles scatter each other? To
study this problem, we evidently need to fuse the con-
siderations of Secs. 3 and 4 with those of Sec. 6.

Consider as an example the scattering of a two-
particle bound state by a three-particle bound state.
The s for such a problem are plotted in Fig. 2(a). Note
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Fi1c. 2. Some scattering states. (a) Scattering between a bound
doublet with momentum p;+p» and a bound triplet with momen-
tum ps+ps+ps. (b) Scattering between a particle with momentum
$1, a bound triplet with momentum ps+ps+ps, and a bound
doublet with momentum ps+pe. (c) Scattering between a doublet
of momentum p;-} s, a particle with momentum p;, and a doublet
of momentum ps+ps. (d) Scattering between three particles of
momenta p1, p2, and ps and a doublet of momentum p;+pa. The
difference between two successive p’s in any vertical column is
—ic. Note that if the p at the top of the left-most column is pa,
then the S matrix is S=[{-a}{-a}{-a}---{-a}]---.
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that
pr—p1=—ic, ps—ps=ps—ps=—ic.  (14)

The operators V;;*® are all defined and have nonzero
etgenvalues, except for the following:

Ymab: Y34ab= Y45ab=%(Pab__ 1) ;

Yzlo'b, Y43"'b, Y54”’b are not deﬁned,

(15)

y21=y43=y54=0. (16)

For the wave function (¥2) to be bounded, such
columns as £ - - - must be zero; for otherwise as xg1—,
the terms in (¥2) with the elements of - - - as coeffi-
cients will diverge exponentially. Considerations like
this and a reexamination of (¥2), which remains valid
except for the cases where ¥ ;2 is not defined, finally
lead to

¢p#0

tp=0

where P is defined to be of type 4 if in
P=[P1,P2,P3,P4,P5]

if P is of type 4, (17a)

if P is not of type 4, (17b)

1 and 2 are in that order and 3, 4, 5 are in that order
(e.g.,[23145]isnotin 4, [34152]isin A). Furthermore,

Er={12345
satisfies
£I=P12EI=P34EI=P45EI- (18)
Because of (18), we have, e.g.,
Eo1305= YV 122¢10305= 5 (P2 — 1) £12345=0, (19)

E54321= Y4512Y3523' o Y12I2£12345= 0 .

10345 still gives the outgoing waves, but the incoming
waves are not given by £s4301, which is zero by (19).
Instead, it is given by &34510. Thus, instead of the S’ of
(6), we have now

(20)
(21)

Again, the .S matrix is obtained by a permutation of the
columns of S":

S={32}{42}{52}{31}{41}{51}.

512345=51534512,

S'= (V322Y 423Y 558) (V51 2V 01V 513) .

(22)

8. ALLOWED STATES

Equation (22) gives explicitly the S matrix for a two-
particle bound state scattered by a three-particle bound
state. Because of (18), S should only operate between

states ®, satisfying
b= PiP= P¥P=PHP, (23)

We shall call such states “allowed” states. Among the
5!=120 components of the column ®, there are only

C. N. YANG
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5!/2131=10 independent allowed ones. For example,

(ABCDE|®)= (4 BCED|®)=(4BDCE|®)
=etc.=(4 BEDC|®)
=(BACDE|®)=(BACED|®)
=(BADCE|®)=cetc.
=(BAEDC|®)=1/(12)\?

together describe the allowed incoming state

AB+CDE, (24)

where 4B is the symmetrical bound state of 4 and B
with momentum pi+ p2, and CDE is the symmetrical
bound state of C, D, and E with momentum ps+ pa+ ps.

9. SOME IDENTITIES

We shall prove in Sec. 10 three important properties
of the S of Eq. (22). A few mathematical preliminaries
will be given in this section.

We note that

(12)=3(1—-p"), {34}=3(1-P%),

(45)=3(1—P), =
so that Eq. (23) is equivalent to
0= {12)®={34)B=(45)®. (26)

(¥12) remains valid, or rather the following hold true:

{ij iy =1, (27a)

{ij}{kg}{ki}={ki}{kj}{i]}, (27b)
{ijHkly = {k1} {17}

if 4, j, k, [ are all different, (27c)

provided the undefined {21}, {43}, and {54} do not
appear. [Note that {35} and {53} are defined. ]

Although {21} is not defined, we can try to define
y21 ({21}) so that ys;=0 does not appear any more in the
denominator. In other words, we define

(21} = (1—ya)) P2H1=PP41,
(43} = P41,
(54} = Potf1.

(28)

With this definition, (27b) is true also for those cases
where {21}, {43}, and/or {54} appear, provided we
replace them by {21}, {43'}, and {54'}. For example,

{43'}{53}{54'} = {54'}{53}{43'},

{2173{51}{52} ={52}{51}{21}. (29)
® is allowed if, and only if,
20={21"}d={43'}o={54'}. (30)

Equations (23), (26), and (30) are equivalent.
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10. UNITARITY AND SYMMETRY OF S

We now first prove that if & is allowed, so is S®. This
follows from

{12}5@= {12} ({32}{31}) ({42}{41}) ({S2}{S1})®
= ({31}{32}) ({41}{42}) ({S1}{S2}){12}®

S={51}{41}{31}{52}{42}{32}.
Now
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and
{34}5®={45}5%=0.

Next we shall prove that S is symmetrical for allowed
states, i.e., if ®; and ®, are both allowed,

@11-5‘192 = ‘I’]_qu)g B (3 1)

To prove this, we note that {5} is symmetrical. Thus

(23)

S{21'} = ({323{31}) ({423 {41}) ({S2H{STH{ 21"} = {21} ({31}3{32}) ({41}{42}) ({51}{52}) ,
S5} = {21 {54} ({31}{32}) ({STHA N ({52}{42})

S{2U {54 53} = {21 {54 }{S3} ({S1}{31}) ({52}{32}) ({41}{42}) ,

(33)

S{2U}{(54}{53) {43} = {21/} (54 }{53} (43"} ({51} {52}) ({41} {31}) ({42} {32}) = {21'}{54'} {53}{43'} .

But
{21 }{54'}{53} {43/} @, =8(2y5571— 1)Bo= 24P,
®,7{21"}{54'}{53}{43"} =8 (2ys5 1 — 1)®; = 24%, 1.

Thus (33) yields directly (31).
Last we shall prove that S is unitary for allowed
states, i.e., if ¥, is allowed,

B,1STSPy = B,id, . (34)
To prove this we find that
St={51}1{41}7{31}1{52}1{42}T{32}".
Now
Prps3{51}TP53pPl2={23} etc.
Thus
STPssplz= pssp12{233(24}{25}{13}{14}{15}.
By (32),
STP53P12S= Ps3pi2,

Thus _

B,T5T P53 P12SP, = P,idD, (35)
Put

(I)1=S(172.

Thus &, is allowed, and ®,= P'2P%®,;. Equations (35)
and (31) together give

Pylhy = B,1.5B, = B, 5B, = B,15TSB, .

11. GENERAL CASE

The results of Secs. 7-10 can be generalized in a
straightforward way to the scattering between any
number of particles or compounds, each of which may
be a bound state of any number of particles. The S
matrix can be easily written down. For example, we
write down the S matrix for a scattering between a

single particle of momentum p;, a bound triplet of
momentum pe+ps+ps, and a bound doublet of mo-
mentum ps+pe. These p’s are plotted in Fig. 2(b). We
have, like Eq. (22),

S=({21}{31}{41}{51}{61}) ({54}{64})
X ({53}{63})({52}{62}). (36)

For the case where the p’s are given by Fig. 2(c), we
have

S=({32}{42}{52}) ({(31}{41}{51}) ({43}{53}). (37)

For the case where the p’s are given by Fig. 2(d), we
have

S=({21}{31}{41}{51}) ({32}{42}{52})
X({54})({53}).  (38)

All these S matrices are unitary and symmetrical for the
allowed @ in each case.

12. REDUNDANT POLES

The S matrix discussed above has evidently matrix
elements that are rational functions of the relative
momenta of the particles involved. For real values of
these relative momenta, S is regular. But for complex
values of these relative momenta, S may have poles. For
example, in the reaction AB4CDE discussed in Secs.
7-10, for which the S matrix is given by (22), there are
poles when ys2, Va2, V52, Va1, Ya1, OF ¥51 vanishes. However,
only the pole y3=0 corresponds to a bound state (the
S-particle bound state). The others are redundant poles.
This point was already realized by McGuire.!
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