
OSBORNE, RANKIN, STEIN, %ATTENBERG, AND %INSTON

above data we estimate that ts+—+e++y occurs less
than 6X10 ' as frequently as the process ts+~e++2t.
This means that the decay ts+—+e++y has a lifetime
longer than 10 ' second. This value of the lifetime is
about 100 times longer than the lower limits previously
given in the literature. ' '

~ Since these measurements were performed, we have been in-
formed by J. Steinberger that he and S. Lokanathan have found
that the lifetime for the decay p~e+p is appreciably longer than

It might be mentioned that if the same strength of
interaction were responsible for both reactions (A) and
(B) that the result obtained on reaction (B) is more
significant than the result on reaction (A) by many
orders of magnitude in setting a limit on the strength
of the interaction.

the value we obtained. S.Lokanathan and I.Steinberger, Abstract
for the Chicago, Illinois meeting of the American Physical Society,
November, 1954 LBull. Am. Phys. Soc. 29, No. 7, 25 (1954)g.
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The representation-independent biquadratic identities which Pauli has proved to hold between a Dirac
wave function and its adjoint are shown to be generalizable in several ways. To obtain these generalizations
it is first shown how the symmetrical Kronecker product of two spinor representations of the orthogonal
group in e dimensions decomposes. Then a method is given to express the tensors formed in a particular
way from two covariant and two contravariant spinors in terms of those formed in any other way. These
results are applied to write explicitly all biquadratic scalar and pseudoscalar identities in 2v dimensions
and all scalar identities in 2v+1 dimensions. The way to obtain more general tensor identities is indicated.

BIQUADRATIC SPINOR IDENTITIES

S OON after the discovery of the Dirac equation it
was noted by Fock and Darwin' that there are

some quadratic identities which hold between the
scalars obtained from the Ave covariants which can be
formed with a Dirac wave function and its adjoint.
The proof consisted of writing down these scalars with
a particular choice of the matrices and comparing
terms. Additional identities involving the pseudoscalars,
vectors, and pseudovectors which can be formed from
the square of a wave function' and the square of its
adjoint were given by Uhlenbeck and Laporte. ' Again
a special representation was used.

In 1936 Pauli' gave a representation-independent
proof of the scalar and pseudoscalar identities. A proof
from a di8erent point of view was given by Harish-
Chandra, 4 who also proved some of the other identities
given in reference 2. In addition Harish-Chandra
obtained some relations which hold between tensors
formed with two arbitrary wave functions and their
adjoints. To a certain extent these relations are similar
to results of Fierz. ' Fierz was interested in expressing
the scalars occurring in beta decay interaction terms
formed from one arrangement of wave functions in
terms of those with another arrangement.

In the following a systematic method is described

' V. Fock, Z. Physik 57, 261 (1929); C. G. Darwin, Proc. Roy.
Soc. (London) 120, 621 (1928).

s G. E. Uhlenbeck and O. Laporte, Phys. Rev. 37, 1552 (1931).
s W. Pauli, Ann. inst. Henri Poincars 6, 109, (1936).' Harish-Chandra, Proc. Indian Acad. Sci. 22, 30 (1945).' M. Fierz, Z. Physik 104, 553 (1937).

which gives directly all identities of the desired type.
It is hoped that the general mathematical structure of
these relations will become particularly clear. The
origin of the identities can be stated, group theoreti-
cally, quite succinctly. Certain of the irreducible
representations of the orthogonal group which occur in
the direct product of the spinor representation with
itself do not occur in the symmetrized product.

The theory of spinors in I dimensions has been
shown by Brauer and Weyls to be extremely similar to
the Dirac (four-dimensional) case. Since the essence of
the argument to be used is independent of the number
of dimensions and since it is desired to shed light on
the mathematical basis, we show how to obtain directly
all the biquadratic identities existing between
dimensional spinors. As an essential step, the decompo-
sition of the symmetrical Kronecker square of the spin
representation of the orthogonal group is obtained.

Briefly, the method is the following. First we show
that certain of the covariants formed with two covariant
(or with two contravariant) spinors vanish when the
spinors are identical. Second, the work of Fierz is

- generalized. The biquadratic covariants, formed with
two 'covariant and two contravariant spinors by com-
bining the 6rst and secorid sets separately into tensors
and then combining the two sets of resulting tensors,
are expressed in terms of the covariants obtained by
6rst combining a covariant with a contravariant spinor
in the more usual manner. Using these two groups of
results the desired identities are obtained. It will be

e R. Brauer and H. Weyl, Am. J. Math. 57, 425 (1935).
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readily apparent that e/l identities of any given type
are found and that all the identities given are inde-
pendent.

In Sec. II a short summary of the relevant results of
Brauer and Weyl' are given in a form similar to that
used by Pauli. ' The representation of the matrices is
not specified. Section III discusses the connection
between covariant and contravariant spinors by means
of a generalization of an argument of Pauli and
Haantjes. ' The results of III are applied in IV to
obtain the decomposition of the symmetrical product
of two spin representations. The differences between
even and odd dimensions require separate discussions
for the identities. These are given in V and VI. Some
physical applications, primarily to beta decay, are
indicated. Most computational details are relegated to
Appendices, as are some of the arguments which di6'er
in only minor ways from those given in the major part
of the text.

1
po)
P(2)
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P(2) (2)

P(2v)

II. SUMMARY OF SPINOR PROPERTIES

For brevity we confine the discussion to the spin
representations of the complex orthogonal group. No
essential modifications are necessary for the groups
obtained on restriction to real variables except that
the definitions of some tensors formed with the spinors
might be more conveniently given by prefixing various
factors of i.

By following Brauer and Weyl, ' it is simplest to
discuss the cases of even and odd dimensions sepa-
rately.

ll =2v
We consider a set of 2v quantities F(i) satisfying

F(')F(j)+F(j)F(')=».;
These quantities together with a unit element (1) and
its negative generate a group with elements:

(z(f) .b(f)—
i1 &i2 « if

a(~) (zizz zr) b(r) (zizz . zr) . (7.)

If the quantities (6) are not linearly independent there
exists a nontrivial relation of the form

Q (z(f) .F(f) =0
f~0

Multiplying (8) by F(r'(jijs .jj ), noting that

FgFi)/I (AWB),

and taking the trace yields

(z' '(j,j . . jr)=0 (all (z' ').
Hence there is no relation of the form (8).

It may be remarked that since the group (2) is
finite we can (and always will) take the matrices Fz
to be unitary. Since the square of any F& is 1 the
matrices will also be Hermitian.

The matrices Fz of (6), being linearly independent
and 2'" in number, provide a basis by means of which
all 2"&(2"matrices can be linearly expressed.

The spin representation of the orthogonal group is
obtained by noting that corresponding to an orthogonal
transformation,

lx, =HgxA, ,

The group (2) has one faithful irreducible represen-
tation. From now on the symbols F will denote the
matrices of this representation. Their degree is 2".
Since, for any element of (2) which is not (1) or (—1),
both F~ and —F~ are members of the same class,
we have

trI'~ = —trI"~ =0.

As a consequence the 2'" matrices,

1 I (zl) ' ', F (zlzz) ' ' ', F " (zl' 'zs„)

are linearly independent.

Proof

(2vp
where F(r) is the set of

~ ~
quantitiesr:

we can 6nd a new set of matrices I"(i),

F'(z) =e„F(k), (12)

F(~)(i i ir) =z()'")F(i,)F(i ) F(ir)1

Zy($2&

which also satisfy (1). These new matrices then give
another representation of the group (2). By Schur's

(3) lemma the two representations are equivalent and

The power of i in (3) is chosen so that for any element
F~ of the form

Fg =F(&(zizz ~ zr),
we have

(Fg)'=1.
' Luj denotes the largest integer contained in o.

F'(z) =S(e)F(z)S-'(e) (all z).

A set of 2" quantities which transform as

P&'= Pi) S&i)(8)gs(8)

f'= S(0)f

(13)

(14a)

(14b)



K. M. CASE

are called covariant spinors. Quantities which transform pendent. In number they are
as'

(S')—'(8) =CS(8)C '. (17)

ft' =$' 'pt
—=pt$ i—

are contravariant spinors.
The connection between covariant and contravariant

spinors is obtained by noting that if the F(i) are a
fixed set of matrices giving a representation of (2), the
matrices F'(i) also satisfy (1). Hence these matrices
give an equivalent representation and

r'(i) =cr(i)c-', (16)

with some nonsingular matrix C. The matrices S(8)
are dejined by (13) only up to a multiplicative constant.
In reference 6 it is shown that this constant can be
chosen so that

~ (2v+1)
iV =Pf f

=2'",
'-s E 2i i

(24)

F (i) i= 1, 2, , 2v (25)

be the matrices of the irreducible representation for the
case e=2v. Choosing

i.e., the even-rank quantities are just sufhcient to
provide a basis for all 2"X2"matrices.

The connection with the orthogonal group proceeds
as for even dimensions. We restrict ourselves to the
pure rotation group. (Representations of the full
orthogonal group can be obtained from the one below

by adding the commuting operation of reflection. ) Let

Using this matrix C we can associate a contravariant
spinor f with a covariant spinor f by means of the
relation

(18)

Further properties of C are discussed below.

n+2 v+ I

F(2v+1) =i F(1)F(2). F(2v)

gives a representation of (19) with U=1.
Associated with a rotation,

Sj —0j IeSIsp

we have a new set of matrices F'(i),

r'(i) =e„r(k),

(26)

(27)

(28)

Again we consider quantities I'(i) (i=1, 2,
2v+1), 2v+1 in number, satisfying (1). Forming the
quantities

But
U= b1. (2o)

p(») p(s~)

U=i F(1)F(2) F(2v+1) —U,

we obtain a group of 2'~' elements. The only irreducible
representations of dimension greater than one are two
inequivalent 2" dimensional representations. Since U
commutes with all the elements, we obtain by Schur's
lemma:

which also satisfy (1) and thus give a 2" dimensional
representation of (19).Since

U'= (dete) U= U=1, (29)

r'(i) =s(e)r (i)s-'(e) (3o)

The covariant-contravariant connection is also
similar to that for n=2 Cvonsider the matrices F(i)
(i=i, 2, ~ ~, 2v+1), given by (25) and (26). The
matrices F '(i) satisfy the same relations except,
perhaps, for the condition U=1. Direct use of the
relations (1) yield

we see this new representation is equivalent to the
original representation. Hence there is a nonsingular
S(8) such that

and thus
(21)

(22)
or

i"r'(1)rl' (2) ~ ~ F'(2v+1) = (—1)"

U'= (—1)".

(31a)

(31b)

The two inequivalent representations can then be
characterized by

Hence if v is even, the matrices F'(i) give an equivalent
representation and thus

U= 1 or U= —1. (23) I"(i)=CF(i)C ' (32a)

That these representations are inequivalent is readily
seen by noting that the character of U is 2" or —2",
respectively.

The argument given previously shows that all traces
except those of 1, —1, V, —V are zero. Applying the
same method as gave (1) shows that the even rank
quantities (r&s&=—1, r&s&, r&4&, ~ ~ ) are linearly inde-

t denotes transposed, * complex conjugate, t Hermitian
conjugate.

Indeed, if C, be the matrix occurring in (16) for the
case e=2v, we see we can take C=C„or

r«&(i) =C.r(i)C (32b)

If v be odd, consider the quantities —I'(i) (i= 1, 2,
~ . , 2v+1). These also satisfy the relations (1) and give

L
—F (1)jL—r (2)3 ~ L

—F(2v+1
= (—1)s~'U= —1. (33)
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Cr (i)C—'= r—'(i) (34)

Hence, the matrices —r(i) give the other, inequiva-
lent, representation. For v odd, the representation by
means of r'(i) give a representation equivalent to this
and so there is a C such that

i.e., C is either symmetric or antisymmetric. The
determination of which proceeds by an argument of
Pauli and Haantjes. Fortunately, this also yields much
useful additional information.

Let us suppose first that a=+1. Then C=C'. By
repeated use of (16) and (1), we find:

A matrix satisfying this is

C= C,r (2v+1). oi
Cr(f)C-i (—1)&f/2][r(f)]i

Cr(f) —( 1)[f/2) LCr(f) j&

(50)

(51)

cr (')c- = (—1) r (i), (36)

The equivalence of covariant and contravariant
representations is then seen, since in either case we can
write

Cr(f) is symmetric, f=O, 1 (mod 4),
Cr(f) is antisymmetric, f= 2, 3 (mod 4). (52)

which implies that

LS'j '=CS(8)C '.

III. PROPERTIES OF THE MATRICES C

l? =2v
C can be chosen unitary.

Proof

We now ask how many matrices (1V&) there are of
the form

37
Cr&f), f=O, 1 (mod 4),

2vp 2v) 2v 2v)
I+I I+I I+I I+. (53)

&0& &I) ) 4) &5)

It is readily shown that

r'(i) =cI'(i)c

Take the Hermitian conjugate,

r'(i) t= C-'tr &(i)ct,

or, since we are taking the I'(i) to be Hermitian,

ri(i) =c-»r (i)ct.

Then, inserting (16) in (39), we obtain

CtCI'(i) = r (i)Ctc
By Schur's lemma,

CtC= e1,
or

e=gf Ct;,Cf,=gf I C;f I'.

(16)

(38)

(39)

(40)

(41)

(42)

Thus e is real and positive. Dividing C by e'" we obtain

ls

iV) ——(2'"+2")/2, v=0, 1 (mod 4),

Xi——(2'"—2")/2, v= 2, 3 (mod 4).

The number of matrices (X2) of form

Cr&f). f=2, 3 (mod 4)

E2= 2'"—E'g

= (2'"—2")/2, v=O, 1 (mod 4)

Xg ——(2'"+2")/2, ) = 2, 3 (mod 4).

(54a)

(54b)

(55a)

(55b)

These matrices Ci'«' are all linearly independent
since the I'&~' are all linearly independent and C is
unitary.

The number of linearly independent symmetric (E,)
or' antisymmetric matrices (1V„) of degree 2" are:

iV, = L2 "(2"—1)/2 j+2"= (2'"+2")/2,

X = 2"(2"—1)/2= (2'"—2")/2.

(56a)

(56b)
(43)

i.e., C is unitary.
We can obtain the symmetry properties of C in a

similar manner. From (16),
Comparing (54a) with (56a) we see the assumption

a=+1 is correct for v=0, 1 (mod 4) but incorrect for

r«(z) r(i) LCi]—)r(i)(z)C& LCij—icI(i)C—)C& (44) v=2, 3 (mod 4). In the latter case we must have
g= —1. Indeed from (52), (54), and (56) we can
conclude further that:

Hence

and

Thus

LC)- cr(i) =r(i)Lc 7- c.
LC'1-'C =al,

C= aC'

(45)
If v=O, 1 (mod 4),

(46) CF«& is symmetric,

Cr«~ is antisymmetric,

If v=2, 3 (mod 4),

f=0, 1 (mod 4); (57a)

f= 2, 3 (mod 4). (57b)

or

C'= ac= C/a,

a2= 1 u —&1

(48)

(49)

CF«~ is antisymmetric,

Cr&f) is symmetric,

f=0, 1 (mod 4); (58a)

f=2, 3 (mod 4). (58b)
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TABLE I. Symmetry properties of CI'(f) for e=2v+1. Thus (65a) can also be written:

~ (mod 4) Cj. (f) symmetric

f=0, 1 (mod 4)
f=0, 3 mod 4)
f 2, 3 mod 4)
f~0, 3 (mod 4)

CI'(f) antisymmetric

f=2, 3 (mod 4)
f=1, 2 mod 4)
f 0 1 mod4)
f 1, 2 (mod4)

(—1)["[')(Cy, p«&p) (I &f)C-')»
@AfB (65b)

Under an orthogonal transformation the spinors
transform L(14b), (18), (15)$ as:

P'=S(e)P, y'=S([))y, C&t'= (C&t)S-'(0).
n=2v+I

The unitarity of the matrix C occurring in (36)
follows directly from (43). For ) even, C=C, (32b),
which is unitary. For v odd:

Then (65b) becomes:

2"

( 1)[ /2) (Cy S )P(f)SP) .—(P(»C—i)
(67)

f~
C= C,I"(2v+ I),

Ct=I't(2)+1)C,t=i' '(2v+1)C, '

=C,i' )(2v+1)=C i.

From (12) and (13) we then obtain the well-known

(35) result that the direct product (SXS) decomposes into
the representations

The symmetry properties of C (and Ci'(») follow
directly from those for C,. The results are given in
Table I.

r&»(i,i," i,)=r(»(f,). (59)

Alternately, since C is unitary we can expand using
the quantities I'&»(f;)C ' as a basis. Thus:

IV. DECOMPOSITION OF THE SYMMETRICAL
DIRECT PRODUCT

A=2v

Consider two covariant spinors g, P. The 2'" products
@~Ps form a 2"X2" matrix which from the results of
II can be expanded in terms of the matrices,

SXS Q {1f},
f=0

where {1)'}denotes the representation whose basis are
the antisymmetric tensors of rank f.

Returning to (65a), we obtain on identifying p with

f=0
(69)

From (57) and (58) we know that if v=0, 1 (=2, 3)
mod 4 then Cl'(» is antisymmetric for f=2, 3 (=0, 1)
mod 4. These terms in (69) must then vanish. Thus
corresponding to the decomposition (68) we obtain for
the decomposition of the symmetrical direct product
(S"') '

yips Qf g(f) . (I'(»—C—i)» (60) S[~)~P' {If} (70)

$CI"&~') (f';))~)),

and sum over A and 8:
(y CP(f') (f~,)P)=Q~ &)(f) ..P~s CP(f') (f',)P(f)C i—

=Qf (J&f) . trC(If') (f,)1'(»C—)

(61)

(62)

From (9) and (5) we find:

trCI'(~'( f',)I'&»C ' =2"8(i),i'))8 (i2,i'~) . . (63)

Hence,

or

(&(f)= (y CI'(f)P)/2~

(y Ci'(»[t,) . (P(»C—i)s
O'A's= 2

f=0 2p
(65a)

as
The results of (57) and (58) for C can be summarized

C)—( 1)[~n)C (66)

To determine the coeKcients a&» (f,), we multiply by

f/2, 3 for r =0, 1 (mod 4)

fWO, 1 for v=2, 3 (mod 4).

As examples we have the familiar results:

m=2 () =1)
SXS~scalar+vector+pseudoscalar,

S["~scalar+ vector;

m=4 () =2)

(71)

SXS scalar+vector+second rank tensor

+pseudovector+pseudoscalar, (72)
S'" second rank tensor+ pseudovector;

n=6 () =3)
SXS~scalar+ vector+ second rank tensor

+third rank tensor+fourth rank tensor

+pseudovector+pseudoscalar, (73)
S[2)~second rank tensor+third rank tensor

+pseudoscalar.
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rl =2v+I
The procedure is as above with the exception that

now only the even rank quantities I"&'")C ' are used as
a basis. For the product of two spinors we obtain:

2„(]tt «f)P) . (@t g'«f&ey)
(~&~)(~t,~w= z

2Vfv p

Then, if 8, 0' are two arbitrary 2" dimensional matrices,

(P CP(2x)P) . (P(2h)C—1)
4AQB =

X=O 2V

From Table I

(74a)
Proof

We can expand the matrix ptAQB as:

where

C'= (—1)~"C (75) PtAPB —Q ((2f') .(«f'))
fl~

(82)

(2,=0, v=O, 1, 3 (mod 4)

=1, v=2 (mod 4).

Hence (74a) can also be written:

As was previously done we determine the coefficients

(76) (2(f) by multiplying with («f))AB and summing over
A and J3. This gives

2V

(—1) (Cy,«»)P) («»)C—
')BA

(t)A4 B (74b)
Qt p(f)(f()p) = p (2(f'). trp(f)(f )p(f') =(2(f)(f )2~ (83)

and hence:

The same argument as leads to (68) gives the well
known result:

Qt P(f)P) . (P(f))BA
f AfB

f~p 2V
(84)

SXS Q {12"}.
x=p

(77)

V

S[2]~P& {12k}
X=.O

where the sum is over

1( even, v=0, 1, 3 (mod 4)

I( odd, v= 2 (mod 4).

Examples are:

n=3 (v=1).

(78)

Since the terms with C«») antisymmetric in (74a)
vanish when (]) and f are identified we obtain from
Table I the decomposition of the symmetrical product:

Multiplying (84) by [)&Acpcpot8'» and summing over
ABCD gives (81).

To illustrate the utility of this result we consider
the problem of expressing the scalars formed by 6rst
combining p and ft, P and (tt into tensors and then
contracting in terms of the scalars formed by first
combining ft and f, gt and p. From (68) it is clear
that with two covariant and two contravariant spinors
we can form 2v+1 scalars. As a basis for all such
scalars we can use the 2v+1 scalars:

That these are linearly independent is proved by
assuming the converse. Then there exists a nontrivial
relation of the form

SXS scalar+ pseudovector,
S&" scalar; (79)

P A f(Pt «f)P) . (yt «f)y) —0

for all pt, p. Hut this implies

(86)

SXS scalar+second rank tensor+pseudovector,
S&"~second rank tensor. (80) Q Afoot, «f)p) («f))BA=O, all A, 8,f~

(87)

V. IDENTITIES FOR n=2v

As a preliminary to obtaining the desired identities
it is convenient to consider the relations between
covariant quantities formed from two covariant and
two contravariant spinors by combining the spinors in
va, rious arrangements. First we prove the following:

i.e., the I'&f) would not be linearly independent, contrary
to a theorem proved previously. Hence, there exists a
2v+1 dimensional matrix ((2),f) by means of which the
scalars obtained by grouping ft, P and (tt, f in (85)
can be linearly expressed in terms of the S~"f Talus 1f
we de6ne

Theorem

Let f, Pgt, pt) be two covariant (contravariant) wehave
spinors. (No relation is assumed between the two sets.) S( )y —()(2/fSf((}) (89)
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Substitution of

8= f)'= r(")(itis .ig) =r(")(X,) (90)

results obtained are:

in Eq. (81) and summing over all components of r(")
gives:

-(—1)'"

!
(2v)

&X

)&(coefficient of x~ in (1+x)'" f(1—x)~). (95d)

()„—( 1)fx

X(coefficient of x" in (1+x)'" f(1—x))'). (96)Now all r(")(X;) and r(~)(f;) either commute or anti-
commute. Moreover, As a well-known illustration we consider the P-decay

interaction. Here we have the four spinors C„~, 4„,
g„t, p, representing neutron, proton, neutrino, and elec-
tron wave functions, respectively. The scalars formed by
grouping neutron-electron, neutrino-proton are then ex-
pressed in terms of the usual grouping neutron-proton,
neutrino-electron as:

I
r'"'(1(')j'=1.

Hence

Q r(")(X;)r(f)(f;)r(")(X,) = (constant)r(~)(f ). (92)

Since we are summing over all components of I'&"~ it is
apparent that the constant is independent of which
component of I'&f' is involved. Thus, with a suitable
normalization, we have

S (0)' —S (0) (@ t p .
Q

t @ )
=~~fSs'"(+-'P. ; &."A.). (9&)

s (4',r("4) Hence,.p(&p r(&) (g,)r(f)r(&) (y.)y) (91)
2

f2v')
) (g~)r(f)r( ) (g,) —

! I(f„fr(f)
Ey)

Comparing (93), (91) and (89) we have:

(2v)
~v —! I&.r/2",

(93)

Hence'.

I
(~.f)= s

1
1
.2

0
1
2
1

1 1

0 2

2 0
0 2
1 I

1

—1
3
2

1

(98)

From the results of Appendix A it follows trivially that

where

(2vl
Id~rr(f) =Q r( ) (g,.)r(f)r(&) (),~)

Ey)

Multiplying the f; component of this equation by
r(r)(f;) and summing over f; gives:

(2v) (2v)
vl, f)I

So'= 4(So+St+Ss+Ss+S4},
St'= Sp —-,'Sr+-,'Ss—S4,

Ss' ———,'Sp —-', Sp+-ss S4,

Sp'= So+-',St—-,'Ss—S4,

S4' ——4 (Sp —S)+So—Ss+S4).

(99)

The inversion of the relation (89) is particularly
easy. Since the prime merely denotes the interchange
&~4—lf, a double prime brings the expression back to its
original form:

= Q ro) (l),.)r(f) (f )r(&) (g~)r(f) (f~) (95b)

Taking the trace and dividing by factors on the left
yields the very convenient expression

&.e.,

Sg(o)"—Sy(o) —ggP/(P) ' —(gs) yrSf(o) (100)

(101a)

(101b)

(2v) (»)
&f) &~)

Xtr Z r' )(l(,)r("(f;)r' )(Z,)r'"(f;). (95c)

Properties of d),f and special values are given in
Appendix (A). The most generally useful form of the

A direct proof of this using the formula (96) is given in
Appendix 3.

Similar considerations are obviously applicable to
the other tensors formed with four spinors. A particu-
larly simple case is that of the pseudoscalars.

While it is intuitively clear that there are 2v+1
independent pseudoscalars it may be worth while to
give a simple proof. Restricting ourselves (temporarily)

4 This is essentially Eq. (1.4) of reference 5.
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to the real orthogonal group will not change this number
and permits the use of group integration. Let h denote
the volume of the pure rotations, dS denote the volume
element for pure rotations, dU for rotation-reQections,
and dT a general volume element. Then if x be the
character of the spinor representation, y4 is the char-
acter of the representation given by four spinors. The
number (E,) of scalars contained in this representation
1S:

from (84) by multiplying by

(ec )ACvtvC vtvD (C e )DB

and summing over A, 8, C, and D. This gives:

(]t,ec 'qV) (4[C'e'][)

=Zf(1/2 ) Qt, r "V) (~,c'e'r'"ec-'~t). (1o9)

From (109) we obtain the scalars,

E,= (1/2h) x4dT
2'.'0]= (Pt r'»c-'4t t) (q[ c'r["q[)

in terms of the Sf&0& of (85) by substituting

(110)

= (I/2&) ~x'dS+ x'd ~,

while the number of pseudoscalars (Xv,) is:

(102a)

e=e'=r&»(];)

and summing over the components );.Remembering

r'(i) =cr(i)c ', [c'j '= (—1)[""'c-', (111)

and (107) gives:

1V„,= (1/2h) t x'dS — x'dU . (102b) where
gXf~f

g~f
—( 1)([v/2]+[f/2])g~f

(112)

(113)

Since x vanishes for reQections:

X„,=X.=2v+1. (103) (114)

Since it has been seen that (u)2= 1 the inverse of (g)
is obviously:

(g 1) —( 1)([v/2]+ [X/2] ]44„

For our independent pseudoscalars we may choose
those obtained by inserting a factor F('"& in one of the
two factors in our scalars. Thus a basis is formed by:

Sf'" =—Sf'" (p p qP y)
= (pt r(f)y) . (yt I (2 ]r«)y) (104)

The quantities Sz[2"' obtained by interchanging f and

p may be expressed in terms of these as:

(g)= -2
—1

1
1

0
I
2
1

1 1
4 4

1 02

0 1
2

1 1
4 4

1

1
3
2 )

1
1

(115)

giving (on omitting superscripts for convenience)

The application of (112) to P decay is of some
importance. From (113)and (98) we obtain

j:nserting
S (2") =u (2")g (

e=r&»(x,), e'=r&2"&r[»p. ;)

in (81) and summing over X; gives:

(105) &0= 4 {—S0—S2+S2+Sp—S4}
2'2= 2 (—2Sp+Sy+S2+ 2S4}v

T2———',(—3Sp+S2—3S4},

T2——-,'(—2S0—Sr—Sp+ 2S4},
&4= 4{—Sp+Sl+S2 Sp S4}.

(116)

(gt r[»4t) (q/' r""'r'»]t) = 2 (1/2") 8' r"V)
f=o

.p(yt r(»)r[» (g.)r(f)r(» (][,)y) (106)

But we have seen that

(1/2")p r[»(z,)r«&r[»(z, ) =g„r«]. (107)
) ~

Comparing (107), (106), and (105) gives:

To obtain the scalar biquadratic identities we need
only combine (112) with (57) and (58). Thus if we

identify f =4tv, q[t =qV those Tz& ] will vanish for which
CI"("' is antisymmetric. This gives as the scalar iden-
tities:

(a) If v=0, 1 (mod 4)

0—ggfSf' (ft,g; /ting) X=2, 3 (mod 4). (117)

Hence there are v scalar identities in this case.
(b) If v= 2, 3 (mod 4)

u},f('")=a),f. (108) O=g/, fSf[p&gt, p; ft,p) X=O, 1 (mod 4). (118)

Of paramount importance for the identities is the
problem of expressing the covariants formed by com-
bining the two covariant and the two contravariant
spinors together first in terms of the combinations as
in (85). For this the relevant starting point is obtained

These are v+1 identities.
Since (graf) is nonsingular (113), we see that these

identities are all independent. Moreover, since only one
of the two factors of Tq&'] need vanish, (117) and (118)
are COrreCt prOVided Only ft =qvt Or /=vs.
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For ted= 2 (v= 1), (117) yields the single identity:

g fSf&')=0

Since the matrix (g) is readily found to be

(119)

(g)= 1
1

E2

2

1
1
2 &

(120)

we obtain
S0—51—52=0;

or, expressing I"s as Pauli matrices:

(121a)

(121b)

0= 4 (—Sp—Sg+Sp+S p
—S4},

0= p( —2Sp+S[+Sp+2$4},
0= ~ f —Sp+Sg+Sp —Sp —S4}.

(122a)

(122b)

(122c)

For I=4 (v=2) we have, using (118) and (115), the
three identities:

Thus, irrespective of the relation between t[t) and f,
we have for pt= [lt the identities,

0= h),fSf"") (131)

for the values of X in (129) and (130) corresponding to
the respective values of v.

Similarly, from (57b), (58b), and (1) it can be
shown that (all equations for v and X holding mod 4):

'if v=O, for X=1, 2 (132a)

if v=1, for X=O, 3 (132b)
([l, Ctft(pv)P(x)[l) —0

if v=2, for X=O, 3 (132c)

, if v=3, for X=1, 2. (132d)

Hence, for arbitrary pt and tl/t, we obtain for p=[l the
identities (131) holding for the X corresponding to the
v of (132).

The most interesting identities are those in which we
have simultaneously ft=tl)t, [l =t/). Combining the two
sets of identities given shows that

h),fS (Pv)()it )I/' tl/t [l) =0

)trav

(mod 4). (133)

Adding (a) and (c) gives

Sp+S4—Sp ——0.

Subtracting (c) from (a) gives

S1=S3.

Substituting this in (122b) gives

SP—S4—S1=0,
and

(123a)

(124)

(h) = —1

(123b)
and the identities:

2

1
2

)
1
2 ~

(134)

While (133) gives //ll the pseudoscalar identities it is
unnecessarily complicated for calculation since some
of the identities contained therein are rather trivial
and better obtained by other methods. This is seen by
two examples.

For v=1, we have

S0—S4—S3=0. (123c)

Identities (123b, a, c) are just Pauli's' Eqs. (34, &, &, p).
Pseudoscalar identities may be obtained in a similar

manner. Thus by an argument paralleling that leading
from (81) to (112) we obtain

T) ('")([[',qV; y,y) =h»Sf(") (yt,y; yt, y), (125)
where

i.e.,

2

Q hy/Sf(') =0, X=O, 2.
f=0

0—
~&( —Sp(&)+S (&)+S (&)}

0=x( Sp(&) —S (&)+S (2)}

Adding, we get the identity:

(135)

(136a)

(136b)

T'.""'(4'4'4,[l)=([l',P'")C '4'). (W'P""'P'"'4), (126)

and
h» —( 1)([v/&)+[f/&)+Wf)~&f

(h) has the inverse

S0(2)—S,(2) (137a)

which, on expressing the S~&') in terms of Pauli matrices
and wave functions, is seen to be the trivial statement
that

(O'4) (P,~pl) = (N*,~pk) (PA) (137b)

(h-&)» —( 1)([v/&)+ [&/&1+v+) )g»

From (57b) and (58b) we have:

If v=O, 1 (mod 4),

(tt[t,P(")C 'Pt) =0, X=2, 3 (mod 4).

If v=2, 3 (mod 4),

(ft,Po')C—Qt) =0, X=0, 1 (mod 4).

For obvious reasons this will be called a "relabeling
identity. "

Inserting (137a) in (136) gives as the other identity,

S,&) =O. (138a)

In terms of the Pauli matrices this is the trivial result;
(129)

)01 )0301 )02 y0302

=~(P, 4)(4*, 4) p(P, 4)(4*, 4)=0—, (138b)

(130) which we will also call a "relabeling identity. "
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For v=2 we have: TAsLz II. The number of pseudoscalar identities X~„ trivial
relabeling identities Si, and nontrivial identities 1V„.

—1
(&)= —4—1

and the identities:

1

0

1
4

3
4 4
0 —~

0
0

I (mOd 4)

0

2
3

llv
gv+g
$p+1
j&+k

Pseudoscalar identities
Ni

V

@+1

v+1

v/2
v/2-2
v/2+1
u/Z+ j'

0= —So+52+So—52—54,

0= —Sp —Si/2 —52/2+54,

0= —S()+Si/2+So/2+ 54,

0= —So—Si+S2+Sp—S4.

Subtracting (d) from (a) and adding (b) to
the two trivial relabelling identities:

(140a)

(140b)

(140c)

(140d)

(c) gives

h), S &')=0, )=0, 1, 3, 4. (139)

Explicitly these are (omitting the superscript 4)
where we also give various properties of the matrices
introduced.

The v+1 scalars obtained by first combining the
spinors as ft with p, qV with P are expressed in terms
of those with the grouping ft with P, qV with p as:

52) '(f, (1); (t),p) = Q ugr52r()I, )t'; (t),Q),
f~p

X=O, 1, , v, (145)
where

5 ~ (8A; O'4) = (0',I'""'4).(4',I'""'4), (146)

S1=S3,

Sp= S4.

Inserting (141) in (140a) and (140b) gives
nontrivial identities:

Sg——2Sp,

S1=0.

(141a)

(141b)

the two

(142a)

(142b)
For22=3 (v=1) (X,f=0,1)

52f (Pt P yt y) —.(Pt P(2x)P) . (yt P(2x)y) (14/)

(2),~
——(1/2")(coeKcient of x'" in

(1+x)'"+' 'f (1—x)'i) (148)

As examples we have:

These are Pauli's' Eqs. (344) and (342), respectively.
The nature of the "relabeling identities" is shown

from the result of Appendix C that

So'= —,
' (So+S2),

S2' ——-', (3S()—S,) .
For 22=5 (v=2) (X,f=0,2,4)

(149a)

(149b)

.(2v) ( 1)&(5 .(2v) (143)

5„('"&=0. (144)

Thus for even v, we have v of these trivial statements,
while for odd v we have v+1 relabeling identities.
Table II shows the number of pseudoscalar identities
(Xv,) given by (133), the number of trivial relabeling
identities (Ei), and the remaining number of nontrivial
identities X„.

From (139) and (143) explicit forms for the non-
trivial identities can be obtained. However, in practice
it is just as convenient to use (139) as it stands merely
remembering (143).

This gives an identity for each of the v possibilities
i = 1, 2, , v. Moreover if v is odd Eq. (143) for i =0
shows that

Sp'= -,'(So+52+54), (150a)

52'= —', (55o—52+54), (150b)

54 =o(55p+52 354}. (150c)

The scalars formed by combining 6rst covariant with
covariant, contravariant with contravariant spinors can
be expressed in terms of the Spf of (14'I) as

V

T2),(ft,gt; f,(t)) = Q y), r52r (X=0, 1, v), (151)
f~

where

T2~(gt yt P y) —(Pt P(2))g—lyt) . (y Qtp(2))y) (152)

p~r
—(—1)(f+&(~/2])(2~r (153)

For example we have, for v= 1,
VI. IDENTITIES FOR n=2v+1

All calculations proceed the same as for even dimen-
sions except that now we need only use the even
quantities F&") as a basis for expansion of 2")&2"
matrices and we use the properties of Table I. For
brevity we will give only the results for scalars formed
with 2 covariant and 2 contravariant spinors. The
proof of the statements is outlined in Appendix D

while, for v=2,

Tp ———,'(—Sp+S2),

T2 ——-,'(—3So—52);

To= o (—So+So—S4),

T,= —-', (5So+52+54),

To —-(—5So+S +3S ). ——

(154a)

(154b)

(155a)

(155b)

(155c)
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As in Sec. V, we obtain nontrivial identities between
the S2z for ft=Pt and (or) P=f for those values of )&,

in (151) for which these assumptions make T2q vanish.
That is, we obtain identities for those ) such that
CI'&2"& is antisymmetric. Thus from Table I we obtain
the identities:

where

2vl
~ z=

I Id.z/2",
&x)

(A1)

APPENDIX A. PROPERTIES OF THE MATRIX ayf

In the text we obtained the result

X odd,

S = 'X even'
)& even'

f=o .) odd,

v=0 (mod 4)
v=1 (mod 4)
v=2 (mod 4)
v=3 (mod 4).

t 2vq (2vi
(156) &iv = ()) (j) I

For m= 3 (v= 1) we have only the equation for X=0:

ypfS2f 0~

&1 &Sa& ~ ~ 9,
j1&gg & v ~ jet

I
I' '(iii2 6)1'&"(jij2 jz)]' (A2)

or
Sp=S2. (157b)

or

—So+S2 S4= 0,

—5SO+S2+3S4=0,

(158a)

(158b)

It may be noted that (157b) is just the identity (121b)
obtained for m=2.

For I=5 (v=2), we obtain identities (156) for &=0, 2.
These are

Since (A2) is symmetrical in )&. and f, we have

deaf dfg,

To calculate diaz we will assume )&(f (From. (A3)
we see this is no signiicant restriction. ) Since it is clear
that each term in the sum over j&, j2, jf gives
same contribution we can restrict ourselves to the single

(2v&
term I'&z&(12 ~ f) on multiplying by I I. Thus

&,f)
Sp ——S4,

S2= 2Sp.

(159a)
I

f'2
d~z=

~
I

I2"
~

tr P I'"&(i&i .i&)
159b E )& ) & ix&iI«~ ~ ~ ig

In Table III we give the number (Xz) of scalar
identities given by (156). Since there are v+1 scalars
formed from two arbitrary covariant and two arbitrary
contravariant spinors, the number (X,) of independent
scalars when spinors are identiied is:

XI' (12 f)1'&"& (i~i i )I"&z& (12 f) (A4).
Consider a 6xed term in the sum. Since P"&(i,i2. ~ )
either commutes or anticommutes with I'&z&(12 . f)
and the squares of both are unity we have:

which is also given in Table III.

VII. CONCLUSION

(160) (2") ' tri'&"'(i~i2 iq)1'&z'(12 f)
Xr&")(i i, . iz)i'&z)(12 . .f)=~1. (A5)

If k of the indices i~, i2, i~ are greater than f, the
sign is

The decomposition of the representation of the
orthogonal group in n dimensions given by the sym-
metrical product of two covariant or two contravariant
spinors has been obtained. It has been shown that using
the decomposition all identities holding between co-
variants formed with four such spinors when some of
them are identical are readily found. Explicit formulas
for the scalar and pseudoscalar identities in e=2v
dimensions and for the scalar identities in N=2v+1
dimensions are given.

TABLE III. Numbers X+ of scalars formed from 2 sets of identical
spinors. n=2~+1. Ng is the number of scalar identities.

(A6)

This occurs in the sum over i~, . - - i~ a number of
times equal to

f f ) (2v f'&—
I)&.-k) ( k )

Hence

(2v)
(—1)'"

E)&)

v (mod 4)

0

2
3

Ni

v/2
(v/2)+k
(v/2)+1
(v/2)y)

(v/2)+1
(v/2)+$
~/2

(v/2)+k

Comparing with the power series expansion,

m. n (yg) (zg )
(1+&)"(1—&)"=Z & I . II . I(—1)i~'+~ (A8)'-0 i=0 Ei ) 4 j)
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we see that

)/2«)
de=

I I (—1)'"
EI), )
&&{coeKcient of x" in (1+x)' /(1 —x)r}. (A9)

Using (A1), we obtain the result (96).
A further symmetry property is obtained by changing

the sign of x in (A9). Thus

(2«'t(
( 1)fA( 1)A

&x)

&({coeKcient of x" in (1—x)'"—/(1+x)/}. (A10)

However, (A9) also says that

APPENDIX B. PROOF THAT a'=1

A direct proof is obtained using the generating
function of (96). This relation may be rewritten

a„.=2-"(—1)"(2~i)—'

X» x'" » —x dx x+' 3»

where the contour C encloses the origin. Similarly,
using the generating function (A16) for (d), the sym-
metry property (A3) and the relation (A1) between
(()',) and (d) we obtain:

/2«) p2«)"=2 "(—1)"
~

((' I (2 ) '
Ea ) Ly)

(2«)
(—1)'"

EI)
Hence:

y
2v—0» y ody y&+1

)({coefIicient of x" in (1+x) (1—x) " /}. (A11)

Comparing, we see

2v f'2« )
(2~i)-'.-o "' ' Ep)

d), o„ / ——(—1)"der. (A12)
X dxdy x~+'y~+' 33

From the symmetry properties (A3) and (A12), we
need the coeKcients d),r only for X &f& v. This is only where

(v+1) (v+2)/2 coeKcients.
For I(, small, Eq. (A7) is particularly easy to use. { } ~ ~ ~t( 1)„+ ~,

Thus, by direct calculation we readily obtain: p

dpf= »

du= (—1)'(v—f)/v

(A13)

(A14)

& HI —x) (1—y) 3'L(1+x)(1+y)7" '
={(—1)""(1—*)(1—y)+ (1+*)(1+y)}'" (&4)

do/= L2(v —f)'—«3/v(2« —1) (A15)

Case 1. 1()+y Even

}= 2'"(1+xy)'"(2«)
d„y=df„= ( )

Inserting this in (33), expanding by the binomial

theorem and evaluating by residues gives:
)& coefficient of x/ in 1+x " 1—x "}. A16

But
(v')

(1+x)"(1—x)"=(1—x') "= g(—1) 'i ix". (A17) .-o
=o (i)

Thus:
dg;+g, „=0,

It is convenient to divide the discussion into two

A particularly simple result when one of the indices
is v is obtained from (A10).

(A19) (2v t/2«)
(2&i) ' dxdy(x"+'y~') ' Q )

)x'y'
Ey) 0 (z)

The simple formulas (A13-19) give all coeKcients of
the matrices (d), (a), (g), (h) for v up to and including
3(~=6).

=(2 o 'f x «/x+'= v&u

v=v.
(B6)
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2r

Z (2vv(2v7

Case 2. p+y Odd

) —22 v (~+~)2v

or, more symmetrically,

(2v) —( 1)v+(g (2v)

APPENDIX D. DETAILS IN CASE n=2v+1

(C7)

o 0

(2v'( ) d2dy 2 (2vy(
(2~) '

xv+'y~'*-o I i )

To express the covariants obtained by interchanging
P and ()t, we expand

t'2v) (2v )
--'

(2«) fy'--"~yf y~
&f2) Taking traces:

g(2f) = 2 ()Iyt r—(2f)p)

4'4'~= E -4"".(r"f))a~.
f~p

(D1)

(D2)
=0 unless 2v —p, =y.

Thus in Case 2 we get zero unless

(II7)
or

V

Ptf, /f2= Q 2 "(ft,r(2f)f) (r(2f)) „.
f~p

(D3)

f2+'Y = 2vy

which was treated under Case 1. Hence:

2p

Z ~)vvOv7

=~& P= f) (B9)

Multiplying l&y

ey(chic(t

Dg'f)a and summing gives

V

(&'e~)(~'0%) = 2 2 (S'r -'"C)(~'0'r "0~) (D4)
f=0

In particular this gives for the scalars:
or

( ) (pt r(2x)y) . (yt p(2X)p)

APPENDIX C. THE RELABELING IDENTITIES

Prom the deinition

~~""'(O'A; 4' 4) = (4',r'"'4) (4' r""'r'")4)

(Pt,r( (),2,ii,)P)

Now
for X=O, 1, , v. (D5)

P r( ) ) (y,)r(2f)r(») (&,~)
—~„~1 (2f) (D6)

= Z 2 "(kt,r'»'0) Z(kt, r""'(~')r""r""'(~')4)
foo P

it is clear that

6 &i2. &i),
Using the same arguments as in the even-dimensional

X (pt, r(2")F("&(i)i2 i),)p), (C1) case, we have:

S),""'= SS2y y""' (C2)

with some constant 8,. To determine 6, we need only
find the relationship between a Axed term on the left
and the corresponding term on the right. For simplicity
we consider the term in which i~ i), is the sequence
1, 2, X. This term is

(2v+1)
(Xkf I I oyf/2

2X )
(2v+1) (2v+15

ox= 2"I
2X ) 4 2f

(D7)

«Z Lr""(~,)r""(f))'

(Dg)

(Pt i(»r (1)I (2). . .F (X)|ty)i (Pt I (1).. .

Xr(2v)i(»r(1)r(2)" r(X)y)
=(-1)"9',r(1) r(~)~)

Xi"(Qt,r (X+1). F (2v) P). (C3)

The corresponding term of S2„ f~2"' is
v

(Pt,i(2»r(X+1). F(2v)f)iv(pt, r(1)F(2). . .

XF(2v)i" "'F(X+1) F(2v)P)

=(4',r(1)" rp)4)i"(4', r(~+I) "r(2 )4) (c4)

Comparing (C3) and (C4) we see that

Performing the sum as in Appendix A, we obtain

(2v+1) ) 2x

2) f l I p I (—I)»—'$»—'
2X ) (-o

2f q )2v+1—2fq
!XL(-» f~'I

&2&—i) & )2i

or

t
I

Z(-I)"-'
) '=o

( 2f q ('2v+1 2f)—
xl . II . I (D9)

& 2~-i) (

and hence
8,= (—1)",

(2v) ( 1)Xg (2v) (C6)

(2v+ 1i
o),f=l I

(coeKcient of x» in
& 2&)

(1/g)2~( —2f(1 —2;)2f) (DIO)
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On changing the sign of x in (D10) we see

6X, ~s (21/+1—f) ~

Some special values are

60f = 1)

Putting 8=0'=P&'"&(X,) and summing over compo-
nents gives:

(D11)
r =22-"gt,r' P)

f
.g (yt (, z—IP z(») ()„)P z(sf) P z(») (yz)Cy) (D]5)

(D12)

ct —( 1)(v+[v/2])c (D16)

(2v+1) ' l 2v) f 2v Using the symmetry properties of C, which can be
(D13) summarized as

2X ] (2X) (2X—1i

Is

2' ),= P (Pt,Pt»&P) (—I)&/'+~i"»i~zr), s(yt, p&»/y), (D17)
f D

To obtain the linear combinations formed by corn- and Eqs. (1), (36), and (D6) gives:
bining similar type spinors, we multiply (D3) by
(0C ')~cg —

OPD(C 0)DB and sum:

gt, (IC Iqt)(-q, C (/'p)

V

"(yt,p&s&&II) ~ (ztzt, Cz retry «s&&I/'Cy). (I)14)
f~P

or
~2K PXf~2f p

p~f —(—]) if+~+fr/&iIzr~f

(D18)

(D19)
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An approximation scheme for the one-nucleon Green's functions previously put forward by the authors
is renormalized. The experimental mass and the constants Z& and Z2 are rigorously expressed as free-particle
limits of integrals over the kernels appearing in the scheme. The mass and wave-function renormalization
are carried out rigorously; the vertex renormalization is performed by a slight redefinition of the approxima-
tion scheme, without greatly altering the physical assumptions peculiar to each approximation. General
prescriptions for renormalization are written down, and the first three approximations are explicitly shown
to be finite.

1. INTRODUCTION

ECEKTLY the authors' have proposed a covariant
approximation scheme for the treatment of the

coupled Green's functions equations of meson-nucleon
systems. The procedure led to the replacement of the
in6nite set of coupled equations for the rigorous kernels

by a finite set of approximate equations, involving
Green's functions which describe processes with no
more than a fixed number of external meson lines.

In (I) the question of renormalization was ignored.
It is of course not known whether the usual infinities
of pseudoscalar meson theory with pseudoscalar coup-
ling are due to the use of the perturbation expansions
in which they appear; however, whether the theory is

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

/Now at the Institute for Advanced Study, Princeton, New
Jersey.' R. Arnowitt and S. Gasiorowicz, Phys. Rev. 95, 538 (1954),
to be referred to as (I).

finite or not, a renormalization has to be carried out.
In the approximation scheme, whose validity may only
be motivated in the low-energy region, it is expected
that such high-frequency phenomena as the self-energy,
etc. , will not be described correctly, and the existence
of infinities are a not unexpected feature. Nevertheless
the lack of a correct description in the high-energy
domain does not prevent one from performing a re-
normalization. For example, when a subset of per-
turbation graphs is summed rigorously, ' the radical
diGerence in the high-energy behavior of the sum and
the individual terms of the series does not prevent the
renormalization of the latter by perturbation methods.

In this paper a nonperturbation renormalization of
the approximation scheme is carried out, i.e., equations
involving the renormalized Green's functions, with
finite masses and coupling constants, are derived.
Although it is of course necessary to solve the resulting

' S. F. Edwards, Phys. Rev. 90, 284 (1953).


