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%'e construct the exact S matrix for the supersymmetric nonlinear cr model in one space and one time
dimension. The results confirm that this model possesses mass generation and chiral-symmetry breaking. As
a byproduct, we also construct the S matrix for the elementary boson and fermion of the supersymmetric
form of the sine-Gordon equation.

I. INTRODUCTION

The two-dimensional nonlinear 0 model has at-
tracted considerable attention because of its sim-
ilarities to four-dimensional gauge theories. The
usual 0 model, however, is a theory of bosons
only, and thus it is really a model not for the full
quantum chromodynamics but only for the gauge
theory without fermions. It is reasonable to won-
der how to include fermions in the 0 model so as
to obtain a model that would mimic the full quan-.
tum chromodynamics with fermions.

In fact, one very natural extension of the non-
linear 0 model to include fermions is the super-
symmetric model defined by the Lagrangian

and the constraints n'=1, n g =0; here n' is a
real scalar field of N components, and g' is an
N-component Majorana Fermi field. '~

[This example suggests a general scheme for
the minimal coupling" of matter fields —fermions
or bosons —to the nonlinear 0 model. For instance,
one could include any number of fields Q' in the
vector representation of O(N) with constraints
n'P'=0. Or one could include fields Q" in the
tensor representation of O(N) with constraints
n'Q" =n'Q" =0. The general idea is that the mat-
ter fields take values tangent to the sphere. The
theories defined in this way seem to have many
properties in common with four-dimensional gauge
theories with matter fields. For instance, the
model (1) for N =3 has an axial-vector current with
an anomalous divergence proportional to the in-
stanton density. "']

Model (1) is a particularly simple example of
fermions interacting with the nonlinear 0' model.
We would like to answer the following questions
about it: Does the model possess dynamical break-
ing of the discrete y, symmetry and dynamical
mass generation, as suggested by the large-K ex-

pansion~' And is there a special behavior at N=3,
where the theory possesses .instantons and (ac-
cording to the results of Ref. 1) some additional
symmetries ~

Recently there has been substantial progress in
two-dimensional S-matrix theory —Zamolodchikov, '
Karowski, Thun, Truong, and Weisz, ' and Zamol-
odchikov and Zamolodchikov' have shown how to
determine the exact S matrices for a number of
two-dimensional models, including the sine-Gordon

, equation, the nonlinear 0 model, and the multi-
fermion (g()' model. The new methods are ap-
plicable to the supersymmetric nonlinear 0 model,
and we have used them to determine what we be-
lieve is the exact S matrix for this model, at least
for N&4. (As a byproduct we have also determined
the S matrix of the supersymmetric form of the
sine-Gordon equation. ) The results show that the
model actually does possess mass generation and
symmetry breaking, at least for N&4. As we will
discuss later, it is not clear that the S matrix we
obtain is correct for N=3 or 4, so we have not
been able to determine what happens in the theory
with instantons N = 3.

In Sec. II we summarize the recent developments
in two-dimensional S-matrix theory. In Sec. III
we present the S matrix of the supersymmetric
nonlinear 0 modql. Section IV is devoted to a
discussion of the properties of the model for small

¹

II, THE NEW RESULTS IN TWO-DIMENSIONAL S-MATRIX
THEORY

The conserved quantities that we ordinarily en-
counter in field theory are the momentum I'
which transforms as a vector under Lorentz trans-
formations, and internal symmetry charges, which
commute with Lorentz transformations. '

What distinguishes the sine-Gordon theory and
the other theories for which the exact S matrices
have been determined is that they possess, in ad-
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dition, an infinite number of conserved charges
that transform according to higher and higher
representations of the Lorentz group-second-rank
tensors Q „, third-rank tensors Q „„, etc. These
charges are all the integrals of local current den-
sities. Moreover, they commute with one another
and with the momentum operators „and therefore
also with the mass operator M'=I'„P'. For the
sine-Gordon theory there is a conserved tensor of
every rank; for the other theories there are an
infinite number of conser ved tensors of various
ranks.

Coleman and Mandula' showed that in more than
one space di.mension a theory possessing conserved
charges transforming under the Lorentz group as
tensors of second or higher rank would necessarily
have a trivial S matrix. In one space dimension,
however, this is not true. But the presence of
higher conserved charges still places severe re- .

strictions on the S matrix; it is these restrictions
that have been used to obtain exact solutions for
various two-dimensional models. Here we will
summarize these results.

The action of, say, Q'" on a one-particle state
of momentum P is essentially given by Lorentz
invariance as

We say "essentially" for two reasons. First
there could be terms such as g~"P, which are not
relevant to the following discussion and will be
ignored. Second, since [Q~",M'] =0, we might
have, if there are states degenerate in mass, a.
structure such as

dex:
n m

(p, p",.p. , p', ).= g. . (a,"I ", u;I',).. .
i -"l j=l

In fact, altogether we get an infinite number of
such equations corresponding to the infinite num-
ber of conserved tensors of higher rank. This in-
finite number of equat;ions can be simultaneously
satisfied only if n =m —so that there is no particle
production, no inelasticity —and also if, after suit-
able relabeling, P,. =k, Thus the "scattering" con-
sists only of possible time delays and possible ex-
changes of quantum numbers. N particles entering
a collision will emerge later with the same mo-
menta, but possibly after some time delay (or ad-
vancement) and possibly with different quantum
numbers.

To proceed further, we must understand the ac-
tion of the Q"" on localized wave packets.

For the sake of intuition, we will consider just
the purely spatial components Q", Q"', etc. , of
our conserved tensors. We let Q" be the purely
spatial component of the nth-rank conserved ten-
sor, and consider the matrix element

'""
lP& =.'"" lf»,

where P is the ordinary (spatial) momentum and c
is a constant.

We now claim that e"@, acting on a wave packet
that is localized in both coordinate and momentum

space, will move the packet by an amount depen-
dent on its momentum. In fact, consider a wave
packet with wave function

tI(x) = -a (p-pp) eiP(»-»p)

where lp'& is a particle of type & with momentum

p. We will simply assume M"=5". Now, the ac
tion of Q'" on a- multiparticle state will be a, sum
of the action on individual particles since Q'" is
an integral of a local current and we can always
deal with localized, widely separated wave packets,
That is,

Q'" lf, ~, "P,&=+(f',P",f, )lf „f., ~. "P.& (4)
4-"1

Suppose that the state lp, P, '
P„& scatters to the

state
l k,k, k„&. We know

m

Q'" lux a )= g(u u"u )lou "I ) (5)
'g-1

and, since Q"" is conserved, we must have

pgpVp% pPQV QA
~

Considering instead the operator Q~" ~, we would
get a similar equation with one more Lorentz in-

dp e -a (P-Pp) es (»»p e (10)

To determine where in position space these wave
packets are localized, we use stationary phase:
The wave packet is concentrated near that value of
x where the phase is stationary at P =P,. In this
way, we find that g(x) is concentrated near x =xo,
while g(x) is concentrated near x =xo —ncp " '.

Thus, for n & 1, the center of the packet is
shifted by an amount that depends on its mean mo-
mentum p, . (For n =1, Q' is the ordinary momen-
tum which, of course, moves all packets by the
same amount. ) Since e"@ moves a localized wave

pa.cket by an amount dependent on its momentum,
it will, when applied to a multiparticle state, with

wave packets of different momenta, move them

where we have taken, for convenience, a Gaussian
form of the momentum-space wave function. The
operator e "@ acting on this state gives a new state
with wave function
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time

P)

Space

F&Q. l. A three-body collision that cannot be viewed
as a sequence of two-body collisions.

relative to one another.
Now, let us consider a collision of three parti-

cles of momentaP, &P, &P, . We will assume that
we are dealing with wave packets localized in both
position arid momentum. A study of the space-time
diagrams Figs. 1, 2, and 3 will show that even
after the momenta are specified, there are sever-
al types of collisions to be considered, depending
on the initial positions of the wave packets '(or
rather, depending on the impact parameters).

In Fig. 1 we show an approximately simultaneous
collision of three particles. In Figs. 2 and 3 we

-show three particles with the same momenta, but
with different initial positions, leading to three
distinct two-body collisions widely separated in
space and time. In Figs. 2 and 3 the chronological
sequence of the two collisions is different.

Let us imagine that the two-body scattering am-
plitudes are known and one wishes to determine
the three-body scattering amplitudes. In any theo-
ry, a collision of the type in Figs. 2 or 3 can be
regarded as a succession of three independent
two-body collisions. Its amplitude is the product
of the three individual two-body amplitudes.

However, ordinarily we must consider also pro-
cessess of the type in Fig. 1, which cannot be re-
garded as the succession of distinct two-body col-
lisions. The amplitude for a collision of the type

Space

FIG. 3. This collision can also be viewed as a se-
quence of two-body collisions, but the order of the col-
lisions is different from Fig. 2. In the present theory
all three cases are related by symmetry operations and
have the same amplitude.

in Fig. 1 is not known even when the tmo-body am-
plitudes are known.

But in the theories that we are considering, '

which possess conserved tensors of various ranks,
the situation is much simpler. We simply act on
the initial states with one of our symmetry oper-
ators e "@ . This wi11, as we have noted, move
the three particles relative to one another, thus
changing the impact parameters. Since the three
diagrams differ only by the different impact pa-
rameters, we can, by operating with the e "@,
convert any one of the diagrams into any one of
the others. Thus the amplitudes for any of the
three processes shown are equal.

We learn in this way that any three-body colli-
sion can be regarded as a succession of two-body
collisions. ' Schematically, S' =S'S'S', where S' and
S' are the two- and three-body S matrices. This
property is known as the factorization of the three-
body S matrix.

Even more, the three-body S matrix can be fac-
tored in two ways as a product of two-body S ma-
trices, corresponding to the two possible se-
quences of collisions indicated in -Figs. 2 and 3.
Bougbly speaking,

S'(p„p,)S'(p„p,)S'(p „p,)

P)

Space

FIG. 2. A three-body collision that can be viewed as
a sequence of two-body collisions. The momenta are
same as in Fig. l, but the impact parameters are differ-
ent.

=S'(p„p,)S'(p„p,)S'(p„p,), (11)

where S'(P, q) is the S matrix for a collision of
particles. of momentum P and q. This equation is
nontrivial because S' is a matrix acting on the in-
ternal quantum numbers of the particles (which
were not indicated in the diagrams) a,nd the dif-
ferent matrices S' may not commute. We will re-
fer to (11) as the cubic identity satisfied by the
two-particle S matrix. It was a decisive ingredi-
ent in the work of Karowski, Thun, Truong, and
Welsz and Qamolodchlkov Rnd gamolodchlkov,
and we will use it extensively in the next section.
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In the next section we will apply the ideas dis-
cussed above to determine the S matrix of the
supersymmetric nonlinear 0 model. In doing so,
we assume, of course, that this model possesses
conserved tensors of va, rious ranks. This assump-
tion is justified by several considerations. First,
the ordinary e model is known from the solution
by Zamolodchikov to possess such conservation
laws, and the supersymmetric version of a theory
will almost inevitably possess at least all those
conversation laws that the ori.ginal theory pos-
sessed. Second, the factorization of the multi-
particle S-matrix elements are partly confirmed
for this theory by the results of Alvarez for the
large-W expansion.

III. THE 5 MATRIX OF THE SUPERSYMMETRIC o MODEL

As stated earlier, the model whose S matrix we
wish to determine is the supersymmetric nonlinear
0 model, described by the Lagrangian

d'x [l(a n )2+ -.'q b f(y +-'. (y g )2] . (12)

of a spinor. ]
Now, we would like to write down the most gen-

eral form for the two-body S matrix that is al-
lowed by supersymmetry, isospin, and Lorentz
invariance. Lorentz invariance implies that the
matrix is only a. function of the rapidity differerice
between the tao particles, so that we can work in
the center-of-mass frame and-consider a collision
of a particle of rapidity 8/2 with one of rapidity
-8/2. The rapidity difference between the two
particles is related to the usual kinematical vari-
able s =(P, +P,)2 by s =4 cosh2(-,'8).

There are four "channels" to consider-the initial
state may be

II'(-'8)I'(--'8)&, lf'(lB)f'(--'8)&,

lf'(-'6»'(--'8» o lI'(-'6)f'(--'8».

It is easy to diagonalize the S matrix among these
four states. Because fermions can only be created
or destroyed in pairs, the first two states scatter
into each other, and so do the last two. Io. addition,
the S matrix commutes with the operator Q„Q,
which in this basis is

We will assume, in agreement with the results
from the large-N expansion, that the spectrum
consists of a degenerate supermultiplet of N mas-
sive boson states lb') and N massive fermion
states lf'), a = 1, 2, . . . , N; we will work in units
in which the mass is equal to one.

This theory contains a conserved Majorana
supercharge Q . In terms of the chiral compo-
nents Q, of this supercharge, the suPersymmetry
algebra. is

Q, =Pb+P„,

Q 2=Pa —P, ,

Q.Q +Q Q, =P,

As a kinematical variable, we will, following
Zamolodchikov, use the rapidity 6, related to the
energy and momentum by E = cosh 0, q = sinh 0.

It follows from the algebra (13) that, with suit-
able choices for the phases' of the states, the ac-
tion of Q, and Q on one-particle states is

Q, l~ (6)&= "'lf (6)&,

Q. lf'(6)& =."'ll (6)&,
(14)

Q lf '(6)& = 'e "'lf'(6)&,

Q lf (6)& = -fe "'lI (6)&,

where lb'(8)), for example, is a one-boson state
of isospin a and rapidity 8. [In writihg (14), we
use the fact that Q, and Q transform under I o-
rentz transform8tions like the chiral components

Q,Q =2i

1 sinh 8

sinh 8

0

0

0

0

0 0 0 -cosh 0

0 0 -cosh 8

ls"&=[ „,,)]„,[cosh(-.'8) lI (-.'6)bb( —.'8)&
cosh &6

+ sihh( —,'6)
l
f'(—'8)f (-—'8))],

lT")=, , „„,[ sinh(-,'8) lf (-,'6)I'( —.'6))

+ «sh( 6) lf'(26)f (-26)&],

l~")=
'

[lI (-'6)f'(--'6)& If'(-'8»'(--'8»],
v2

[
l

I '(-'8)f'(--'6)
&

—lf'(-'6)I "(--'6))].
v2

(Whenever we write a two-particle bra lS") or
ket (S' l, the first isospin index will refer to the
particle of rapidity 8/2 and the second will refer
to the particle of rapidity -6/2. ) The statement
that the S matrix is diagonal in the above basis
means that

(Sab lS l
Tcd) (Uab lS l

@cd& p

etc.
In addition, we find Q, l

S'b) =' [2 cosh(&6)]' '
l
Ucb&,

Q, l

U"
&

= [2 cosh(26)]'~ '
l
S"), and therefore

It follows that the S matrix is diagonal in the ba,sis
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p = (pcd
f [q S] fsa~)

= [2 o h{-'6)]"'{(s"fs fs'"& - «"fs f
U")),

(»)

and

$,(i~ —6) T,{iv 6) = -i ta, nh(-,'6)

x [$,(6) T,(6)]

$,(&r —6)+T,(in —8) =$,(8)+T,(8),

(2l)

$,(im —. 6) —T, (im —6) = -i tanh(-, 8)

x [$,(6) —T.(6)] .

(22)

In writing the constraints imposed by unitarity,
it is convenient to decompose the S matrix into
states of definite isospin. There are three isospin
channels —the initial state can be symmetric and

traceless, antisymmetric, or isosinglet. The am-
plitudes for (S'd fS fS") in the symmetric traceless,
antisymmetric, and isosinglet channels are, re-
spectively, S,+S„S,—S„and S, +S,+AS, . Uni-
tarily implies that in the physical region (real,
positive 6) these amplitudes each have modulus

one, so

so that supersymmetry implies

(S"
f
S

f
S")= (Ucd

f
S

f
U")

A similar argument shows

(T"
f

S
f
T")= ( V'd

f

S
f

V'") .

Finally, expanding in all the possible isospin in-
variants, we find that the most general form for
the S matrix permitted by supersymmetry and iso-
spln ls

(5'"
f
$

f

$'") = (U'd
f
$

f

U")

(6)bacbbd + S (6)babbcd

~$ (6)b«bac

(20)

(r d fsfT ")=(v"fsfv")
(6)bacbM g (6)babbcd

+ «g~ gufgbc
3

with the other S-matrix elements vanishing. "
We will also have to use the restrictions that

are placed on the S matrix by crossing, unitarity,
and analyticity. Crossing exchanges 6 with im —6.
The crossing relations are simplest if written in
terms of the sums and differences of the S,. and T, .
Taking account of certain factors of i that appear
in exchanging a boson with a fermion under cros-
sing, the crossing relations are

$,(i~ 6)+ T, (i~ 6) =s, (e)+ T,(e),

[$,(6) +$,(6)][$,*(6)+S,"(6)]= l,
[s,(e) s,(e)][s,*(6) s+(6)] = l,
[S,(e)+S,(6)+iVS,(e)][Sa(e) d. S+(6)

+Psf (6)] = l,

(23)

[$,(6) —$.(6)I[s,(6) —$,(-6)]= l,
[s,(e)+s, (6) d-fI~S, (6)][s,( e)+s, ( 6)

+vs, ( e)j=l.

(24)

In this form the unitarity equations are valid
throughout the complex 6 plane. We have, of
course, exactly analogous equations with I replac-
ing S.

Finally, what are the analytic properties of the
S,, and T,. '? In terms of the usual kinematic vari-
able s =(P, +P,)', we ordinarily would expect elas-
tic thresholds at s ='4m' and s =0, as well as in-
elastic thresholds at s=16m2, s=36nz', etc.
However, in this theory, the inelastic thresholds
are absent because of the absence of particle pro-
duction, so the S matrix is analytic except for two-
body cuts beginning at s =4m' and s =0. The elas-
tic thresholds are known to be square-root branch
pointS, and the transformation from s to 8, s
=4 cosh'(-, 8), is, as noted by Zamolodchikov, ex-
actly such as to remove these square-root singu-
larities. " Therefore the S-matrix elements are
expected to be meromorphic functions of 8 with no
cuts.

Now, of course, we must turn to the problem of
determining these meromorphic S,. and T, We do
this by using the cubic constraint on the S matrix
discussed in Sec. II.

This cubic constraint, as we recall, states that
a three-body collision can be regarded in two dif-
ferent ways as a succession of two-body collisions.
For each possible three-body initial and finalstate,
there is a 'separate condition that we must impose;
expressing the fact that this particular three-body
S-matrix element can be factorized in two ways.
Since there are many possible initial and final
states, the analysis is somewhat tedious.

As an example, we consider the S-matrix ampli-
tude for

f
ba(eo)f~(ca+ 6,)bc(ea+ 8, + 82))

—fb (ea)f'(ca+6~)b'(6 +6 +6 )).

for real H. The amplitudes, however, are all real
in the region below threshold, which corresponds
to imaginary 6. It follows, using the Schwartz
reflection principle, that S,*(6)=S,.(-6) for 6 real
and i = 1, 2, 3, so we can rewrite unitarity in the
form

[s,(6)+s,(e)][s,(-6) d. s, ( 6)] = l,
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b 82
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FIG. 4. - Two collisions which must have the same am-
plitude in this theory. equating the amp]. itudes gives a
nontrivial constraint since each two-body collision is
described by an isospin matrix.

This reaction involves isospin exchange but no
spin exchange, since the outgoing particle of ra-
pidity, say, 60 has different isospin from the i.n-
coming one, but has the same statistics. It will be

sufficient for us, in treating this reaction, to con-
sider only the case a bc c.

As illustrated in Fig. 4, we must consider the
fact that there are two ways to factorize this am-
plitude. (In the diagram, e„and 8, are the ra-
pidity differences between neighboring particles. )

In considering either sketch in Fig. 4 we must
remember that a sum over all possible identities
for the parti. cles in the intermediate states is im-
plied. For example, the line indicated by the ar-
row in. the left half of Fig. 4. may be a boson or a
fermion of any isospin. Therfore, when expanded
in terms of the functions we have called S, and I'„
either half of Fig. 4 represents a considerable
number of terms. Some simplification occurs if
we add Fig. 4 to the same diagram with all bosons
replaced by fermions, and all fermions by bosons.
The identity of the two halves of Fig. 4 then gives
the requirement

[S,(8,) + T,(0,.)][s,(0,) + T,(8,)][S,(8,+ 8,)'+ T, (0, + 8,)]

+ [s,(e,) T, (e,)][s,(e,) T,(e,)][s,(e, + e,) T, (0, + 0,)]
+ [s,(0,)+ T,(e,)][s,(e,)+ T, (e,)][s,(0, + g, )+ T,(0,+ 0,)]
+ [S3(8„)—T3(81)][S,(02) + T, (02)][S3(g,+ g2) + T~(g, y g2) ]

= [s,(e,) + T,(e,)][s,(e,) + T,(e,)][s,(0,) + T, (e,)]
+ [S,(0,) —T,(8,)][s,(8,) —T,(0,)][S,(8,+ 8,) T(g, + g,)],

where the-l. eft- and right-hand sides of the equation correspond to the left- and right-hand sides of the
figure.

If we consider instead the reaction

(25)

~f'(0,)b '(8, + 8,)h'(8, + 8, + 8,))- tf (8,)f'(8, + 0,)b'(8, + 8, + 8,))

(and the same reaction with bosons and fermions interchanged), we obtain a similar equation, but with a
different coefficient for the second, fourth, and sixth terms. These equations 'combine to give

[S,(8,) + T,(8,) ][S,(g,) + T, (8,)][S,(8, + 8,) + T;(8,+ 8,)]
+ [s,(0,) + 7', (0,)][s,(0,)+ T, (e,) ][s,(e, + 0,)+ T, (0, + e,)]

= [S,(0,)+ T, (0,)][s,(8,)+ T,(8,)][S,(8, + 8,)+ T,(g, + 8,)], (26)

and

[s,(e,) —T,(e,)][s,(e,) —T,(e,)][s,(e, + 0,) —T,(e, + e,)]
+ [S,(8,) —T,(8,) ][Si(82) —Ti(82) ][S3(ei+82) —Ts(8 i+ 82) ]

=[s.(0)-T (0)l[s (0.) —T (0.)][s (0,+0) —T,(0,+0.)] (27)

The meaning of the first equation can be clarified by dividing by

[S,(8,) + T,(8,)][s,(8,) + T,(8,)][S,(g, + 8,) + T,(0, + 0,)] .

%e find

S,(0,) +T,(8,) S,(8,) + T, (8,) S,(0,+ 8,) p T,(0,+ 8,)
s, (e,)+ T,(e,) s, (e,)+ T,(e.) s,(e, + e,)+ T,(0,+ e,)

(28)



2140 R. SHAN KAR AND E. %ITTEN

In other words, the function (S, + T,)/(S, + T,) is a
linear function of 0. So

s, (0)""=~(' e)

S,(8)+ T, (8)
s, (e) + T, (0)

(29) T, (0)
i~(i~ e)

'T 8=.

s, (e') T,(e')
s, (0') T,(e') (3o)

for some constant X, which we will soon deter-
mine. (Unitarity will require that )(. is real. )
Likewise

Now, Eq. (31) implies that we can write

1
s, (e) = (( . , s(e),

sinh(-, 8

1', (e)= ((+ ~
. „„))s(e),slnh~ 2 9

(35):

for some real constant p.
If we now consider the amplitude corresponding

to Fig. 4 and

subtract

from it the amplitude for
the reaction with bosons and fermions exchanged,

.the resulting equation implies X= p.
Finally, it is convenient to consider the reaction

~f'(,0) I'(e, +0,)b'(0, + e, +e,))
—

i
I) (80)b'(80+ 0,)f '(80+ ei+ 02)) .

If one imposes the cubic condition on this S-matrix
element, one learns that

s, (e) —T, (e) &f

S,(8) + T, (8) sinh(-,'0)

0' s inh'(-, 0)"""-"=e+~ sinh (-0)+f '(36)

where we have let 4= —I/X=2m/(iV 2). Cro-ssing
symmetry, moreover, now implies

S(0) = S(in—0) . '

To summarize our results, we now have

(37)

where S(8) is a new unknown function. In view of
(29), (30), (34), a,nd (35), S,„S,S, T„T„and
T, are all known in terms of S, )). , and f. If we
substitute this information into the unitarity equa-
tions, we learn that X = (1V —2—)/2w and

for some constant f.
It turns out that there is no need to consider the

cubic constraint on the S matrix any further, since
the equations corresponding to the other initial
and final three-body states either are identities,
or are consequences of the relations that we will
now deduce more easily from crossing symmetry
and unitarity.

The crossing equations have a dramatic conse-
quence —as in the case considered by Zamolodchi-
kov, they will determine the functions S, and T,.
In fact, combining (21), (22), and (29) yields

S (0) + T (8) = S (iw —0) + T, (iv —8)

s, (e) = (( „,, )s(e),
if

s).nh &0

s, (0)
X —2 (i)T —8) '

s(" =1V 2

2)n' S,(8)

r, (e)=(e, . ,', , )s(e),sinh —,
'

8

T, (0)
N —2 i7) —8'

T 0 = T, (0)
N —2 0

(36)

s, (i~ e)+ T, (i~ e)
i)).(i)) e)

s, (e) + T, (0)
i)(.(iw 0)

and combining (21), (22), and (30) yields

S,(8) —T, (0)=, [S,(i~ —8) T, (i 07)) ]tanh, e

s, (i~ 0) T, (i~ 0)
tanh(&0) . i)).(i)T —0)

S,(0) - T,(0)
ix(i~ e)

and adding and subtracting these equations, we
find

(32)

where f is an unknown constant, and S(8) is an un-
known meromorphic function that satisfies (36)
and (37).

To determine f requires some information of a
different sort. At least for large enough N, ' it is
known that the iriteraction is repulsive in the chan-
nels corresponding to S, , S„and S, but attractive
.in the channels T„T„and T,. Therefore we ex-
pect bound-state poles in the T,. but not the S,. But
a bound-state pole present in the T,. can be absent
in the S, only if it is canceled in the S, by the fac-
tor [1 —if/sinh( —,'8)]. Therefore we expect that the
function S(0) contains only a single bound-state
pole at 8= 0, where sinh( —,8,) =if.

Furthermore, the large-N expansion indicates
that bound-state poles will be present, in T, and in
T, —T, but not in T, + T,. (This can be easily
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02
Q(0)Q(-0) = 0.

(39)

understood. For large N, the interaction is weak,
Bnd the bound state is near threshold, where the
T, describe almost pure fermion-fermion scatter-
ing. The T, + T, amplitude is symmetric in iso-
spin, so it corresponds to an antisymmetric wave
function in coordinate. space, and a weak attrac-
tion will not produce a bound state in such a chan-
nel. ) How can a bound-state pole present in T, and
in T, —T, be absent in T, + T, . This is possible
only if 1+ 2~i/{N —2)8,= 0, where 8, is the position
of the pole. So 0, = 2'/—(N —2) and, combining
this with our previous result, we find that f
= s in[ w/(N —2)'].

Now that f has been determined, all that re-
mains is -to determine the meromorphic function
S(0) which satisfies

02 sinh2( —'0)
8'+ &' sinh'{ —8)+ sin'{—&) '

and S(0) = S(iv 8) and which has a single bound-
state pole at 0= i' and no other poles in the physi-
cal region {0~ Im& ~ w). To construct such a func-
tion, we first write S(8) = Q(8) Y(0) where Q and Y

are to satisfy

be

(41)

This violates the crossing relation (40) which we
might repair by writing

QB= 0 im —0

0+id in —8+id' (42)

Now (39) is no longer satisfied, a situation which
can be redressed by writi'ng

0 iw —0 in+ 0+i~
8+id iw —8+id ix+8 (43)

2im' —0+ i ~X,
2jr —0

(44)

Again (39) is ruined. Continuing in this way, we
obtain an infinite product which converges to the
desired function Q(0). The resulting Q(8) can be
rewritten as a product of I' functions Q(8)
=R(8)R(iw —8), where

Now we have ruined crossing symmetry again. It
can be restored by including an. extra factor:

0 iw —0 in+ 0+i &Q0= 8+id iv —8+i 4 im+ 8

s inh'(& 0)
Y{0)Y(-0) —

~ h2(10) ~ 2( 1 g)

and also

Q(0) = Q(iw 0),

Y(8) = Y(iw 8) .
(40)

Let us first discuss the construction of Q(8). U
we only had to satisfy (39), a simple choice would

RB= I'(&/2n— i8/2' m) I'(—,
' —i,8/2w)

r( f0/2~)r(-,' +/2~ f0/2~)

A similar iteration for Y(0), starting from the
first guess

sinh( —,
'
0)

Y(0 ~ 1 ~ ~ 1sinh(-, 8) —i sin(2a)

leads to

(45)

(48)

sinh(~0) sinh[~(iw —8)]
Y(0) =

sinh(28) —i sin(26) sinh[2(iw —0) —i sin(~ 6)]

sinh[&(in+ 8) ]+i sin( —,6) sinh[~(2iw —0)]+ i sin(~A)
sinh[ —'(in+ 0)] sinh[z(2iw —8)]

This can also be written as an infinite product of I' functions, Y(8) =R(0)R(im —8), where

I'(—i8/2m) " I'(6/2m —z0/2m+I)I'( —z0/2m —6/2m+I —1)I'2( i0/2m+I ——,')
R(0) =

i8/2w) I"(6/2n—i0/2m+I+ —,)'I'(-i0/2w 6/2m+I —~)1 (—i0/2n+I —1)

(47)

(48)

We believ'e that the solution S(8) = Q(8) Y(0), with

Q and Y as given above, gives the exact S matrix
for the supersymmetric nonlinear 0 model. Given
our physical requirement that there is a bound-
state pole at 0=i& and no others, it is the unique
solution with no Castillejo-Dalitz-Dyson (CDD)
zeros in the physical region. It impresses us as
being the simplest solution. And it agrees with the

results of Alvarez for the Large-N expansio~. This
last point is a very important check on the calcu-
lation.

We have factored the S matrix as a product of
two'functions, Q and F. What is the meaning of
this factorization&

Q(8) is the function encountered by Zamolodchi-
kov in solving the nonlinear 0 model. We claim
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that Y(8) would appear in the same way in solving
the supersymmetric sine-Gordon model, which is
described by the Lagrangian

+= ~(~„P) + 2igkg+
4 2 cos P4 —z(cosPP)gg,

(49)

where Q is a real scalar field, g is a Majorana
fermion, and P is a coupling constant. If we con-
sider in this model the scattering of the elemen-
tary particles —bosons and fermions —then. the
supersymmetry constraints leave two invariant
amplitudes, which can be determined by the meth-
-ods we have discussed and turn out to be

~

~

~

sin(& 4)
1 +i . „,g -) Y(8),sinh(~0

with the function I'(8) described above. (One must
make a correct identification of 4 in terms of P;
this can be done by studying the high-energy limit
of the S matrix. ) The S matrix of the supersym-
metric nonlinear o. model seems to be a. product
of two S matrices —an isospin-bearing S matrix,
which is the S matrix of the ordinary nonlinear 0

model, and a Bose-Fermi S matrix, which is the
S matrix of the supersymmetric sine-Gordon
equation.

The two-body S matrix that we have constructed
contains, as we have said, a single bound-state
pole at O=i4, which appears in the channels T,
—T, and T,. For large N, these are essentially
fermion- fermion bound states.

If one considers the multiparticle S-matrix ele-
ments —which are known from factor iz ation. from
the two-particle S-matrix elements —then, as in
the case treated in Ref. 7, one finds additional
multifermion bound states. In fact, the n-body
scattering amplitude contains a bound-state pole
with a. mass proportional to sin[nest(X —2) j. This
coincides with the mass spectrum found by
Dashen, Hasslacher, and Neveu" and by Zamolod-
chikov' for the Gross-Neveu model. In addition,
the isospin quantum numbers of the fermion bound
states are the same in the model we are treating
as in the Gross-Neveu model —for instance, the
two-body bound states appear in the isosinglet
channel (T,) and the antisymmetric tensor channel
(T, —1',).

This is certainly a striking similarity between
the supersymmetric 0 model and the Gross-Neveu
model. It tends to confirm the idea of Alvarez'
that the supersymmetric o model is a kind of
amalgam of the ordinary 0 model and the Gross-
Neveu model, equally suspended between the two.
Alvarez shows, for example, that to lowest order
in I/N, the boson-boson scattering amplitudes of
the supersymmetric o model coincide with those

8
Q=g (5o)

But might we not equally well have started with a
first guess

8
Q=g (51)

In constructing Y, we started with
1

s inh(-, 8)
zsinh(-, 8) —i sin(-, ~)

' (52)

Why did we not sta, rt with

sinh( —,'8)
Y(8) =

sinh(-, 8)+i sin(-, a)
' (53)

At first. sight, we seem, in fact, to have four
acceptable starting points. We may take (50) or
(51) and (52) or (53). However, we want our S
matrix to have a single bound-state pole at 0=i&.
If we start with (50) and (53), we obtain an S ma-
trix with no bound-state pole, while starting from
(51) and (52) we get an S matrix with a double pole
at 0= i~. Both are unacceptable.

But we have two acceptable starting points —(50)
with (52) or (51) with (53). Either leads to a single
pole at 8=i~. So we seem t,o have two possible,
and equally natural, S matrices.

In fact, in the problems considered by Zamolod-
chikov and Zamolodchikov, they were led to con-
struct only the function we have called Q (Y did not
appear). There are two natural starting points,
(50) and (51), and therefore two S matrices. One
turns out to be the S ma, trix of the nonlinear 0 mod-
el, while the other is the S matrix of the Gross-
Neveu model.

Likewise, in our case, we might expect to have
two S matrices, one for the supersymmetric 0
model and one for a supersymmetric Gross-Neveu
model.

But surprisingly, the iterative procedure gives
the same result for the S matrix (which depends
only on the product S=QY) whether one starts with
(50) and (52) or with (51) and (53). (This results
from some algebraic identities for the 1 functions. )
Yet (51) and (53) are the starting point closest to
the Gross-Neveu model, while (50) and (52) are the
starting point closest to the nonlinear v model.

of the ordinary 0 model, while th'e fermion-fermion.
scattering amplitudes of the supersymmetric v
model coincide with those of. the Gross;-. Neveu mod-.
el.

There is also a more mathematical sense in
which our results confirm this idea.

Let us consider the process that we followed in
constructing Q and Y. In constructing Q by itera-
tion, we started with a first quess
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Our S matrix thug corresponds to the supersym-
metric versions of both the Gross-Neveu model
and the nonlinear o model.

IV. CONCLUSION.

Now that we have a proposed S matrix for the
model, we would like to return to the physical
questions which motivated this research.

We wanted first to know whether the dynamical
breaking of the y, symmetry and the mass genera-
tion which appear in the 1/Ã expansion are proper-
ties of the exact theory. Our results seem to con-
firm that these properties are exact. The proposed
S matrix agrees with the 1/N expansion and with
all the general properti. 'es of quantum field theory
(unitarity, analyticity, crossing). If this S matrix
is correct, it certainly shows that the model con-
tains symmetry breaking and mass generation.

Because of the breaking of the discrete y, sym-
metry, the full spectrum of this theory. will con-
tain "kink" states, similar to those found in a
semicl. assica1. calculation by Call. an, Colema, n,
Gross, and Zee" for the (gg)' model, in addition
to the elementary particles and their bound states.
We have, of course, found only the S-matrix ele-
ments for the elementary particles (from which
the bound-state amplitudes can be determined by
factorization). The S matrix for the kinks remains
unknown.

We also wanted to know if this theory exhibits
some special behavior at N=3, which is the case
most closely rela. ted to four-dimensional gauge
theories. Here the results are less conclusive.

Although wel1. behaved for N &4, the S matrix '

that we have constructed is anomalous in a variety
of ways for N ~4. One of the-bound-state masses
goes to zero as N-4 from above; the threshold be-
havior of the S matrix, although correct for N &3,
is wrong for N = 3; and the S matrix we have com-
puted for N= 3 lacks the enlarged supersymmetry
algebra that the theory is known to possess for this

value of N.
A resolution of these problems (and of similar

questions about the Gross-Neveu model) has been
suggested by A. B. Zamolodchikov (private com-
munication). By way of motivation, let us recall
that in the sine-Gordon theory, for P') 4w, the
elementary boson disappea. rs from the spectrum,
which consists only of kinks. Motivated in part by
semiclassical mass formulas, Zamolodchikov
suggests that a similar phenomenon occurs in
these models for Ã «4: the elementary particles
disappear from the spectrum, and only the kink
states survive. Thus, to understand the theory
for N = 3 or N= 4; it would be necessary to deter-
mmine the kink S ma.trix.

Finally, we are left wondering'whether or not
the two-dimensional nonlinear 0 model has a,n
important lesson to teach about four-dimensional
theories. Could there be an S-relatrix method for
dealing with four-dimensional quantum chromody-
namics~ That would presumably require the exis-
tence of some hitherto unguessed symmetry struc-
ture (which, because, of the Coleman-Mandula
theorem, could not consist of the existence of con-
served local charges). Or would an understanding
of how the 0 model S matrix comes about from a
"microscopic" point of view help us in understand-
ing the structure of four-dimensional chromody-
namics ~
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