
ELSEVIER 

6 October 1994 

Physics Letters B 337 (1994) 115-121 

PHYSICS LETTERS B 

Polynomial form factors in the O(3) nonlinear o--model 

J. Balog, T. Hauer 
Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O. Box 49, Hungary 

Received 1 July 1994 
Editor: L. Alvarez-Gaum6 

Abstract 

We study the general structure of Smimov's axioms on form factors of local operators in integrable models. We find various 
consistency conditions that the form factor functions have to satisfy. For the special case of the 0(3) o'-model we construct 
simple polynomial solutions for the operators of the spin-field, current, energy-momentum tensor and topological charge density. 

In integrable quantum field theories physical quan- 
tities can be determined exactly in the bootstrap 
approach. Making general assumptions about the prop- 
erties of the S-matrix has led to the complete determi- 
nation of the factorized scattering matrix of many 
well-known models [ 1--4]. The bootstrap method has 
also been applied to the determination of matrix ele- 
ments of local operators in these theories. This form 
factor bootstrap was initiated in [5,6] and further 
developed in Refs. [7-10].  In addition to the explicit 
solutions for the Sine-Gordon, SU(2) Gross-Neveu 
and 0 ( 3 )  o--models, the authors of Refs. [7-10] also 
gave a complete set of axioms that the form factors of 
an integrable model have to satisfy. Using these axioms 
(which we will call the Smirnov axioms), the form 
factor functions in other integrable models could also 
be calculated [ 11-13]. 

In this Letter we study the general structure of 
Smirnov's axioms and recast them into a form that is 
very convenient for the recursive determination of the 
form factor functions in the 0 ( 3 )  NLS model. We shall 
show that apart from a simple multiplicative factor, 
which is explicitly given, the form factor functions in 
the 0 ( 3 )  model are polynomials in the rapidity varia- 
bles. These polynomials are determined by a simple 
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recursive formula. Although we do not claim original- 
ity on the solution of the form factor functions we think 
that our approach will turn out to be useful for the 
practical study of the structure of operators in the O (3) 
NLS model. (Note that while the solution for the form 
factor functions of the O (3) NLS model is completely 
explicit in Refs. [9,10], the complicated definitions 
make them almost impossible to use in practical cal- 
culations. ) 

For simplicity, we consider integrable models 
describing charge-selfconjugate bosons of equal, non- 
zero mass m and no bound states, as in the 0 ( 3 )  NLS 
model. (In case of bound states existing the analytical 
properties of the form factors are more complicated and 
model-dependent, and the existence of antiparticles 
makes the formulae hard to read because of upper and 
lower indices and charge conjugation matrices. We 
think, nevertheless, that it is possible to generalize the 
following arguments also for these cases.) 

We parametrize the asymptotic states by the rapidi- 
ties and the internal indices of the particles. These states 
are created from the physical vacuum by the 
Zamolodchikov-Fadeev operators, whose exchange 
relation is governed by the (two-particle) S-matrix: 
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+ + 
Z A ( O ) Z  B ( O r )  -~-SAB, Y x ( O - - O t ) Z ; ( O t ) Z ~ ( O )  . ( 1 )  

Here the capital indices belong to the internal degrees 
of freedom. 

First we recall the list of  requirements that in the 
bootstrap approach the two-particle S-matrix is 
assumed to satisfy. First, it is meromorphic in the com- 
plex 0-plane and analytic in the 0 < ~ 0  < 7r physical 
strip (no bound states). Bose-symmetry and T-reversal 
invariance imply: 

SAS,CO( O) = S ~ A ~ c (  O) , 

SAB,co( O) = S c o : ~ (  O) . 

(2) 

(3) 

The most important assumptions in the S-matrix boot- 
strap are unitarity, crossing symmetry and Yang-Baxter 
equation, respectively: 

SAn,CO( O)Sco: ,B,(  -- 0) = ~AA' 6~B', (4) 

SAB,CO( ier-- O) = SAO.C~( O) , (5) 

S A B , V W (  O ) S v c , A , Z (  O"~- O ' ) S w z ,  B, C, ( O t )  

~ ' S B c ,  v w ( O t ) S A w , Z c , ( O " ~ "  O t ) S z v ,  A , B , ( O )  • ( 6 )  

Finally, we require that all the eigenvalues of  the S- 
matrix at zero momentum transfer are - 1 (which is 
satisfied in most integrable models, including NLS):  

SA~,co( O) = -- 6AO ~Rc . (7) 

Let us now take a local field operator X of spin s. We 
restrict our attention to its matrix elements between the 
vacuum and an n-particle state. (Other matrix elements 
can be derived from these ones [ 10] .) The definition 
of the n-particle form factor is: 

(01X(0)  I0aAI . . . . .  - (") OnAn)-- fA1. . .A, (O 1 . . . . .  0,) . 

(8) 

The form factors are originally defined for ordered 
sets of  real rapidities corresponding to the asymptotic 
states, but they can be analytically continued to the 
complex plane in all variables. The Smirnov axioms 
postulate the properties of  this analytically ex t endedf  
function: 

f ( n )  r01, On) A1. . .Ank " • ", 

= e~Y (a'~?..A,( 01 -- h . . . . .  0, -- A) ,  (9) 

(~ ( 0, 0', .) f . . , A B  . . . .  • • "~ • • 

= S A B , Y x (  O - -  IOt'~c (n) [ v ,  . . .xr . . .~  . . . .  0 ' ,  0, . . . )  , ( 1 0 )  

f ( m  , ( .... z l a 2  . . . . .  01 ,  02 On) 

= f  (n) r 02, On, 01 - 2i7r) (11) A2.. ,AnAI \ " " ' '  

R e s ( f  ~:~.! . t : , (  /3 + izr, [3, Oi . . . . .  On)) 

i = _ _  (n) 
27"1" [ ~ A B f  u b " U n (  O1 . . . . .  On) 

- S~m...un,v~...voa( Ol . . . . .  O~ [ f l )  (12) 

× f  (m tO1, On)] V b , . V n \  • " ", • 

The matrix S( 0~ . . . . .  On [/3) entering (12) is a product 
of  two-particle S-matrices corresponding to the scat- 
tering of particles ( f iB,  OIU~ . . . . .  O~U~) into the set 
(01V~ . . . . .  OnV,, [3A). One should also postulate that 
the functions f are meromorphic in all variables and 
they are analytic in the physical strip except for poles 
explicitly given in (12).  (In case of bound states giving 
extra (nonkinematical) poles a fifth equation applies 
connecting the ( n +  1)-particle form factor to the n- 
particle one.) 

We can simplify Eq. (9) if we w r i t e f a s  a product 
of a " sca la r"  form factor F and an overall factor that 
carries the Lorentz-transformation character and can- 
cels the e '~ in Eq. (9):  

f(n) r 01, 0~) Al . . .Ank  " " "' 

= e ~ ~ ( ~ )  ~ (01  0n)  ( 1 3 )  IAI...~ n. , ..., . 

i=I 

Eqs. (10) ,  (11) and (12) are of the same form (with 
F instead off ) ,  except for (12) in the two-particle case, 
which changes to 

. . . .  ~2) ( 0~, 02) = finite ( O 1 - -  O 2 - -  lTl') I 'A1A2  \ 

(O~ ~ 02 +iqr) . (14) 

The first three axioms together describe an invari- 
ance property of the form factor function F, while (12) 
governs the structure of the poles. To identify the sym- 
metry group described by the first three axioms, we 
summarize the way it is realized. Let us consider a 
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group if, a manifold ~ ,  and the set of functions map- 
ping the manifold into a linear space: 9 - =  {V: 
.~" ~ G:}. Let q~ be an action of  the group .~ on .d": 

q~(~P(P, gl) ,  g2) = q~(P, gig2) , 

V g l , g 2 ~ ,  p ~ f e "  (15) 

and assume that for all p ~ ~/ ,  g ~ f f  there corresponds 
a nonsingular linear operator Ms(p) acting on G:  sat- 
isfying 

Mg, (p)Mg2(q~e2(P) ) =Me,e2(P) • (16) 

Now we can define an action of  the group on the set 
9 -  of  linear functions, qS: N~ × ~'---. ~ -  as: 

[ qS(g, V) ] (p) - M e ( P )  V( ~(p, g) ) ,  (17) 

@(gl, rib(g2, V ) ) =  tib(glg2, V)',  

V g l , g 2 ~  , p~ . ' [¢ ' .  (18) 

Introducing a compact notation for the action of  q~ 
and @, this can be summarized as: 

q~(p, g) =-pg , 

@(g, V) ---eV, 

Ms~ (p ) Mg2 (p g' ) = Ms,g2 ( P ) , 

e V(p) =Me(p)  V(p g) . 

(19) 

(20) 

(21) 

(22) 

The invariance group of  the form factor functions 
can now be identified by studying the action on the 
arguments. (The elements of the manifold fg" are n- 
component rapidity vectors.) It is easy to see that the 
transformations form a direct product group with a 
continuous and a discrete component. The continuous 
component is the ( 1 + 1)-dimensional Lorentz group 
L acting through shifting all the rapidities by a common 
value as in Eq. (9),  The discrete component contains 
all the permutations of  the n variables generated by the 
transpositions (10).  In addition, any of  the n rapidities 
can be shifted by 2kilt, where k is an integer. (One can 
construct these transformations by repeatedly using 
(10) and (11) .)  Since the permutations act on the 
generators of  this latter group as well, the discrete com- 
ponent is a half-direct product. (Note that this discrete 
group can be generated by the two elements corre- 
sponding to (10) and ( 11 ).) Thus the symmetry group 
of  the first three axioms is: 

i f =  L ® ( S ,  A Z®").  (23) 

It is easy to find the matrices corresponding to the 
linear transformations in Eqs. ( 9 ) - (  11 ) explicitly and 
verify that as a consequence of  the S-matrix properties 
( 2 ) - ( 6 )  they satisfy the consistency relation (16).  
This means that the first three axioms can be summa- 
rized as: 

~ F = F .  (24) 

Now we turn to the fourth Smirnov axiom which 
determines the singularity structure of  the form factors. 
We write the form factor F as a product of  two terms, 
an overall factor which carries all the singularities and 
a regular term with the tensorial structure of  F: 

Here the function ~ is chosen to satisfy 

4 
Res( ~ ( z ) ;  z = irr) = (26) qT2 ' 

~F(i~+ 0) = - ~ ( i z r -  0 ) .  (27) 

The advantage of  using the reduced form factor G (n) 
is that while it is still invariant under the group ~', it is 
analytic in the physical strip and the fourth axiom 
directly gives its value at the point 01 - 02 = iqr. More 
precisely, if we define 

1 
E( O) =- qt( O) qd( O+i.rr ) , (28) 

RA~,CO( O) =-- -- SAB,CD( O) E( O), (29) 

SAB,CD( O) ~ RAB,CD( O) / E(  -- O) , (30) 

then S plays the role of  the " reduced"  S-matrix and G 
satisfies (10) with ,~ instead of  S and ( 11 ) with an extra 
( -  1)n-1 factor inserted at the rhs. These modified 
equations, together with (9) ,  define transformation 
matrices also satisfying the relations (16) and they can 
be compactly written as 

~ G = G ,  (31) 

where the upper left index notation now indicates this 
new, modified group action. In the rest of  the paper we 
will use this modified action only. 
(12) now reduces to 
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G(A~)V3...v.( fl+ i'n ", fl, Os . . . . .  On) 

= TA,,,...,,,,,:,...v,,(/31 03 . . . . .  0,) 
( n - - 2 )  

XGv3. . . .V , , (  O 3 . . . . .  On) (32) 

except for the n = 2 case which is modified to 

( 0 1  - 0 2 - i T r ) l s l - l ~ ( 2 )  :a 02)=fini te  ~J A1A2\ Vl 

(0t  ~ 02 + i ~ - )  . ( 33 )  

The matrix appearing in (32) can be explicitly given 
in terms of  the matrix R and the function E: 

TABU3...U,,,V3...V, ( [31 0 . . . . .  On) 

1 
= 2iqr [ E ( f l -  03) ... E ( f l -  O~)tABSv3v3 ... 8V,,V,, 

+ ( -- 1 ) ~-  ~R, ts~.x4v~ 

X ( / 3 -  03) ... Rx, ,u , , : v , ( /3 -  0,) ] . (34) 

Note that Eq. (32) gives the value of  the n-particle 
reduced form factor in terms of  the (n - 2)-particle one 
at the specified point (and not its residue as (12)) .  
Now (after choosing a suitable function gO our task is 
to determine a series of  analytic functions G (~) that 
solves Eqs. ( 3 1 ) - ( 3 3 ) .  

I f  we know the (n - 2)-particle reduced form factor, 
Eq. (32) gives the value of  the n-particle one at the 
special point. Assuming that the n-particle form factor 
also solves the equations, one can apply the elements 
of the group ff  and compute the values of  this function 
at other special points as well. We can compute the 
value of  G (') at all points where any two of its argu- 
ments differ by an odd multiple of iTr. This opens the 
possibility of  determining the form factors completely. 
If  the form factors belong to some special class of  
functions, the knowledge of  their values at some spe- 
cially chosen points could be sufficient for their deter- 
mination. This is the case for the 0 ( 3 )  NLS model 
form factors, since the reduced form factors in this 
model, as we shall see, are polynomials. 

However, a question of  consistency arises here. It is 
easy to see that the determination of  the value of G (~) 
at a special point (01 . . . . .  0,) defined above is not 
necessarily well-defined, since in general there are 
many different points (0 ;  + iTr, 0~ . . . . .  0") from which 
one can get there by applying the elements of  ft.  If  the 
system of  the equations is consistent, the different ways 
determining G (') at a given special point should give 

the same result. This condition gives consistency equa- 
tions. 

Now we present some equations of  this kind, which 
will play an important role in the study of  the O(3) -  
model form factors. To make the formulae easier to 
read we introduce a compact notation: dot over (under) 
a variable means a shift by izr ( - iTr), and we denote 
the kth Ok rapidity simply by its index k. We define the 
following functions built from the ( n - 2 ) - p a r t i c l e  
form factor: 

~ r ~  ... n)  u3 u,(12 ... 

=TABt:3...V,,V,...V3(2[3 ... n)G(v~-.~),(3 ... n ) ,  

( 3 5 )  

H (k)= PkP3H(2), k = 3  . . . . .  n .  (36) 

Here the Pis are those group elements that represent 
the transposition of  the (i - 1) th and the ith component 
of the rapidity vector. The H(k)s are nothing but the 
values of  G (") at special points: 

G¢")(/¢23 ... n ) = H ( k ) ( 1 2  ... n) . (37) 

We will use the following consistency equations sat- 
isfied by the H(k)s: 

H(k>(... Ok ... O, . . . ) = H ( ' ) ( . . .  Ok ... 0t . . . ) ,  

oh = 0, ,  ( 3 8 )  

P ' H ( k ) = H  (k), s ~ k ,  k + l ,  (39) 

PkH(k) = H ( k -  1) , (40) 

Pk+,H(k) = H(k + 1) , ( 4 1 )  

H(A]?..A,,( 12. . .  n) 

= ( - 1)"-'H(A'~?..a,,A,(13 ... n . 2 ) ,  (42) 

H 2 ! . . A ° ( 1 i 3  . . .  n )  

= ( _ l ) n - l t e ( t - l )  r l a  n k )  (43) *aA2...AnAI\ ~o . . . .  

Using the identification (37) and assuming that G (") 
satisfies the Smirnov axioms it is easy to understand 
the meaning of these consistency equations. However, 
what we need is to prove them directly by using the 
definitions (35),  (36) and the fact that the ( n - 2 ) -  
particle form factors G ("-  2) entering these definitions 
satisfy the Smirnov axioms. Indeed, one can show that 
if the two-particle S-matrix possesses all the properties 
( 2 ) - ( 6 )  and all the ( n - 2 )  and the ( n - 4 ) - p a r t i c l e  
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reduced form factors (from which the H 's  are gener- 
ated) satisfy the four Smirnov's axioms, then (38 ) -  
(43) are satisfied. 

Before turning to the special case of the 0 (3 )  model 
we note that the Smirnov axioms alone cannot deter- 
mine the form factors completely. Indeed, it is easy to 
see that from a set of solutions G (n) we can generate 
new ones if we multiply the form factors by scalar 
functions which are if-symmetric 

O(")( (0~  . . . . .  0.)  ~) = O(") (0t  . . . . .  0 . ) ,  

V g ~  (44) 

and satisfy 

g2u'+z)(/3+i'rr, /3, Ol . . . . .  On) 

=/2~")(0~ . . . . .  On). (45) 

An important example of such functions is provided by 
the invariant squared mass of the n-particle state: 

~[-~2 ( 01 . . . . .  On) 

From now on we consider the 0 ( 3 )  o-model, where 
our considerations lead to the complete determination 
of the form factor functions. The S-matrix of the model 
is given by [2]: 

gAB; CD (O) = S 1 (O) ~AB ~CD "~ 82 (O) 6 A C 6BD 

+ S3( O) BAD&~C, (47) 

where 

2i~0 
S 1 (O) -~- 

( O+ i~)  ( O -  2iTr) ' 

o( o -  i~) 
$2(O) = 

( O+ ior) ( O -  2iTr) ' 

2ior( iTr-  O) 
8 3 ( 0 )  = ( 4 8 )  

(O+ior) ( 0 -  2i7r) 

and we choose the well-known two-particle form factor 
for q*: 

~ (  0) = O-  i"tr 0 (49) 
O( 2i,rr- O) tanhZ 2 '  

E(0) = ( 0+  iTr) ( 0 -  2i7r) . (50) 

The fact that makes the form factors explicitly cal- 
culable in this case is that the function E is identical to 
the denominator of the S-matrix (48). From this it 
follows that the R-matrix is ( - lx) the numerator of 
S, thus it is a polynomial of 0. Since both E and R are 
polynomials, the matrix Tentering (32) is also a pol- 
ynomial of the rapidities. One can easily check that its 
degree is ( 2 n - 5 )  in/3 and that it is quadratic in the 
other rapidities. From this it follows that if G ("- 2) is a 
polynomial, the function H C2) is also a polynomial and 
it is straightforward to prove that all the H{k)s are pol- 
ynomials. 

More precisely the following statement holds: if 
G (n-2) satisfies the axioms and it is a polynomial in 
all its variables of maximum degree ( n - 4 ) ,  then the 
H(k)s are polynomials of maximum degree (2n - 5) in 
Ok and (n - 2) in the other arguments. 

Now it is a natural assumption that G(n) is also a 
polynomial and we can write the following Ansatz: 

G(n)(12 ... n) 

- -  n) f l  (,i) 
. . .  (51) 

k=2 l=2 
lq=k 

where 

(kO - (Ok - 0,).  (52) 

(51 ) is the main result of this paper. Together with the 
definitions (35) and (36) it provides a recursive pol- 
ynomial solution for all the form factors of the model. 
In writing down (51) we have made use of the fact that 
a polynomial of degree (n - 2) (which we assume G (n) 
is in the variable 0t) is determined by its values at 
(n - 1 ) different points. This is precisely the informa- 
tion contained in (37). 

It can be proven that (51) indeed defines a polyno- 
mial solution of the Smirnov axioms. First, one can 
show that if the ( n -  2)-particle form factor satisfies 
Smirnov's axioms and it is a polynomial of maximal 
degree ( n - 4 )  in all variables, then the function G (") 
constructed by (51) is a polynomial in all its variables 
of maximal degree ( n - 2 ) .  Here one has to use (38) 
and the counting of the degrees is straightforward. One 
can then check that Eq. (10) is satisfied by (51) by 
verifying it at ( n -  1 ) points (which is sufficient since 
both sides are polynomials of degree ( n - 2 ) ) .  Here 
one uses (39) - (41) .  (11) is also satisfied at these 
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points as a consequence of  (42) and (43).  Finally, the 
last Smirnov axiom is satisfied by (51) by construction. 

To summarize, (51 ) provides us with a whole family 
of form factor functions corresponding to the matrix 
elements of  the local field operator between the vacuum 
and an increasing number of  particles, provided a start- 
ing element of  this family (corresponding to n parti- 
cles) is known, it is a polynomial satisfying Smirnov's 
axioms and its degree is not higher than (n - 2). 

Studying the one- and two-particle form factors of  
the model, we have found that the four basic operators 
(spin-field, current, energy-momenum tensor, topolog- 
ical charge) all have matrix elements of  the type 
described above. 

We define the reduced form factors of  these four 
operators, respectively, as: 

f~A1...A,,(1 . . .  n) = qtoG~a~P!.n)a~(1 . . - n ) ,  (53) 

± ; a  
f mL. .a , (1  . . .  n )  

= ( ~  e±a~] ,r, cz_( . . . .  )or,  n) (54) 
x 0 ~ J A I . . . A  n \ J- . . .  

\ 1 / i =  

+ 5 :  f 21...A,,( 1 ... n) 

= e±~ e ± o i  1/t, / ' 2 ( E - M )  ( 1  / , / )  
~l'O ~"n A1 . . . A n k  J" ' • " 

_ - =  

(55)  

fAL . .A . (1  . . .  rt) 

,r, r~Ctop.) t l  n) (56) = ( ] .L  2 -  1 )  "r t : 'O~l tAl . . .ank  . . . .  

where 

% = r l  't"( o, - o j ) .  (57)  
i <j 

Note that the operators are defined by their Lorentz- 
and isospin transformation character. In case of the 
Lorentz-vector and (1, l)- tensor the conservation is 
included in the definition. The current and E-M tensor 
have non-vanishing form factors for an even number 
of particles only, whereas the spin and topological 
charge operators have odd particle form factors only. 
Since there is no invariant isovector, the family of  form 
factors of  the topological charge begins with the three- 
particle case and that is why the/z 2 - 1 factor has been 

introduced here to cancel the unwanted poles of the 
three-particle matrix element. 

The starting elements of  the respective families are: 

G <asPi")~(0) ---- 3 ~ ,  (58) 

G( . . . .  )az 01 ' 0 2  ) ---~ ~aAIA2 , (59) A1A2 ~, 

1 
G(E-M)( 01 ' 02 ) = t~A1A2 (60) A 1 A 2  k • ' 

~ ' -  (0, - 02) 

G(tOp.) r a  02, 03)-- • (61) A I A 2 A 3 \  V l  ~ E A I A 2 A 3  

It is easy to see that these functions satisfy the axi- 
oms. The form factors of the current and topological 
charge are really polynomials of the right degree and 
the recursion works automatically. In the case of  the 
spin and E-M tensor this condition does not hold, but 
one can show that the Ansatz (51 ) does give the next 
element of  the family (i.e. the function we get satisfies 
the axioms as well) and the three-particle spin and four- 
particle E-M tensor form factors are polynomials of 
degree 1 and 2, respectively. This means that we can 
use our recursive construction also for these operators. 

We think that the recursive formula (51) will prove 
to be useful in the problem of studying the correlation 
functions in the 0 ( 3 )  NLS model. The problem of 
constructing the correlation functions by summing over 
an infinite number of  possible intermediate states is 
discussed in Refs. [ 11,13] for the case of integrable 
models with no internal quantum numbers. Some pre- 
liminary results in the case of  the more difficult problem 
of the 0 ( 3 )  model are discussed in [ 14]. 
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