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Abstract 

The off-shell dynamics of the 0 (3 )  non-linear sigma model is probed in terms of spectral 
densities and two-point functions by means of the form factor approach. The exact form factors 
of the spin field, Noether current, EM tensor and the topological charge density are computed 
up to six particles. The corresponding n ~< 6 particle spectral densities are used to compute the 
two-point functions, and are argued to deviate at most a few per mille from the exact answer 
in the entire energy range below 103 in units of the mass gap. To cover yet higher energies we 
propose an extrapolation scheme to arbitrary particle numbers based on a novel scaling hypothesis 
for the spectral densities. It yields candidate results for the exact two-point functions at all energy 
scales and allows us to exactly determine the values of two, previously unknown, non-perturbative 
constants. @ 1997 Elsevier Science B.V. 

PACS: ll.10.Kk; ll.15.Tk; ll.10.Jj 
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1. Introduction 

The O ( N )  non-l inear sigma (NLS)  models describe the dynamics of  "spin" fields 

S = ($1 . . . . .  SN) taking values in the ( N -  1)-dimensional  unit sphere and governed 

by the action 

S=-~g~ d2xO,  S .O~S,  S . S = I ,  (1.1) 
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where go is a dimensionless coupling constant. Classically it has two important symme- 

tries: first the invariance under the action of the internal O(N)  group rotating the spins, 
and second the invariance under space-time conformal transformations. The QFT is 
thought to describe an O(N)  multiplet of stable massive particles, the mass scale being 

non-perturbative in the coupling constant [ 1,2]. Thus, the first of the above classical 
symmetries is preserved, but the second is lost. 

It may be worthwhile to briefly recapitulate the physical picture behind this phe- 

nomenon, which is most succinctly done in the lattice formulation. The action (1.1) is 
replaced by a discretized version on some finite L × L square lattice. The functional in- 

tegral is then well defined and can be approximately evaluated by means of Monte Carlo 

simulations. The continuum limit is taken by driving the system into a critical point. For 

the bare coupling constant it is generally believed that the only critical point is go --+ 0. 

(See however Refs. [3,4] for the possibility of a Kosterlitz-Thouless (KT) type phase 

transition for go > 0.) There exist non-trivial spin configurations whose energy goes 
to zero as L ---, oc for fixed go and which therefore in infinite volume are present at 

arbitrarily small go. These so-called super-instanton configurations can be thought of 
being the "enforcers" of the Mermin-Wagner theorem [3,4]. They disorder the spins, 

forbidding a spontaneous magnetization in two dimensions. In QFT language this means 

that the O(N)  symmetry is unbroken and (in the absence of a KT-phase transition) 
the theory has a mass gap. It also means that perturbation theory (PT), known to be 

renormalizable in finite volume [ 1 ], has infrared problems as it starts from a fictitious 

ordered ground state. Nevertheless, for O(N)  invariant correlation functions a result by 
Elitzur and David [5] guarantees that (using periodic or Dirichlet boundary conditions) 

the coefficients of  the bare lattice PT expansion have finite L ~ ee limits. The bare PT 

expansion can then be converted into a renormalized one, and the renormalized one into 
an expansion in the running coupling constant, where the running is defined through 

the perturbative beta function [2]. It must be emphasized that all this can be (and is) 
done regardless whether or not the final expansion coefficients have any relation to, and 
significance for, the unknown exact correlation functions. The hypothesis of asymptotic 

freedom is that they do have. Namely, if one were given the exact correlation functions 
and tried to perform an asymptotic expansion in the running coupling constant (the 
running again defined by the perturbative beta function) the claim is: (i) this expansion 

exists and (ii) the coefficients obtained coincide with the ones computed in PT. 
This is a mathematically precise statement which is either true or false. It is true that 

it is commonly believed to be true - though not everyone might wish to take this as 
a substitute for a proof. Indeed, the correctness of the claims (i) and (ii) has been 
challenged in a series of papers [3,4], stimulating some controversy [6]. Evidently 
the problem cannot be addressed within the perturbative frame. It is also difficult to 
even come close to conclusive results on the basis of Monte Carlo simulations alone; 
the presently available data cover only the energy range below 50m, where m is the 
mass gap of the model. This is far too low to study the elusive high energy properties. 
The purpose of this and an accompanying technical paper [7] is to study the off-shell 
dynamics of the 0 ( 3 )  NLS model via the form factor approach. Form factors in this 
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context are the matrix elements of some local operator between the physical vacuum 
and some asymptotic multi-particle states. In a QFT with a factorized scattering theory 

they can in principle be determined exactly by solving a set of recursive functional 
equations [8,9] that use the exact two-particle S-matrix as an input. Once the form 
factors are known, off-shell quantities, e.g. two-point functions, can be computed by 
inserting a resolution of the identity in terms of multi-particle states. For models whose 
S-matrix is diagonal in isospin space, the resulting low energy expansion has been seen 
to converge rather rapidly [ 10-12]. Models with a non-diagonal S-matrix are technically 
much more demanding. However, they also provide a much better testing ground for 
4-dimensional QFT scenarios and deserve more dedicated attempts to gain insight into 
their exact off-shell dynamics. 

In the 0 ( 3 )  NLS model we computed the exact form factors of the spin field, Noether 
current, EM tensor and the topological charge density up to six particles. Their two-point 

functions are evaluated by means of a K~llen-Lehmann spectral representation [ 13]. 
The n ~< 6 particle spectral densities are argued to provide results for the two-point 
functions that differ only about 3 to 10 per mille from the exact answer in the entire 
energy range below 103m-104m, depending on the quantity considered [ 14]. In the low 
energy range the agreement with the Monte Carlo data of Patrascioiu and Seiler [ 15 ] 
is excellent. At higher energies we compare with the renormalization group improved 
2-loop PT. Within the range considered 2-loop PT yields an (within 1%) accurate 
description of the system only for energies above 50m-100m, provided one uses the 
known exact value of the Lambda parameter [ 16] to fix its absolute normalization. 
Based on the low energy Monte Carlo data alone, however, one would be tempted to 
maximize the apparent domain of validity of PT by tuning the Lambda parameter such 
as to match the relevant part of the Monte Carlo data. Doing this in the NLS model the 
Lambda parameter comes out wrong by about 10%. Generally speaking this emphasizes 
the importance to have an independent estimate for the onset of the (2-loop) perturbative 
regime. In the case at hand this is provided by the form factor results. 

A major challenge remains the computation of the extreme UV properties of the 
model independent  of PT. For the important case of a two-point function this amounts 
to summing up all multi-particle contributions to their spectral resolution. The short- 
distance asymptotics of the two-point functions is related to the/z --+ e~ asymptotics of 
the corresponding spectral density p ( ~ ) .  We approach the problem by taking advantage 
of a remarkable self-similarity property of the n-particle spectral densities: for large n 
and A > 1 they appear to behave like 

m . 1 / , ~ + ~  p<'~")(~) ~ -~7(./m) p<"> (m(.Im)l"~'+:), (1.2) 

where m is the mass gap and T and a are certain "critical" exponents. Given p(n)(t.t  ) 

for some initial particle number n, (1.2) can be used - without actually doing the 
computation (which for large N is practically impossible) - to anticipate the structure 
of all N > n particle spectral densities. We promoted (1.2) to a working hypothesis and 
explored its consequences. The results obtained and the status of the hypothesis may be 
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surveyed as follows: 

( i )  It is a statement about the spectral densities of  the exact theory at all energy scales. 

( i i )  Its consequences for the UV behavior are consistent with PT. 

( i i i )  It produces new exact non-perturbative results like the normalization of  the spin 

two-point  function at short distances. 

( iv)  It allows one to compute numerically the two-point  functions at all energy/ length  

scales. 

The paper is organized in the following way. In Section 2 we describe general features 

of  the spectral representation of  two-point  functions and their asymptotic expansions. 

Appl ied  to the 0 ( 3 )  NLS model we prepare various results on the four operators under 

consideration. The next section contains a summary of  our results on the 0 ( 3 )  form 

factors, form factor squares and their properties, as well as an exact expression for the 

asymptotics of  the n-particle spectral densities. The results on the two-point functions 

based on the n ~< 6 particle form factors are described in Section 4. The extrapolation 

to arbitrary particle numbers by means of  the above scaling hypothesis is implemented 

in Section 5, to be followed by brief conclusions. 

2. Spectral representation of two-point functions 

2.1. Spectral representation 

The form factors characterize an (integrable as well as non-integrable) QFT in a 

similar way as the n-point  functions do. Assuming the existence of  a resolution of  the 

identity in terms of  asymptotic multi-particle states, the n-point functions can in principle 

be recovered from the form factors. In the important case of  the two-point  functions 

this amounts to the well-known spectral representation. For the Minkowski  two-point  

function (Wightman function) of  some local operator (,9 one obtains in a first step 

WO(x - y)=~-~ 1 / r I  ~-~0~J exp ( - i ( x °  - Y°)Po(n)(O) - i ( x l  -- Yl)PI(n)(o)) 
n/>l ' j= l  

x IU (") (O)I 2, (2.1) 

where ~'(n)(o) = (O]O(O) lOn . . . . .  01) are the form factors o f  O and P(~n)(o) = 
~ip~,(Oi), with po(O) = mchO, Pl (0)  = m s h 0 ,  are the eigenvalues o f  energy and 

momentum on an n-particle state. 2 The local operators are classified by various quan- 

tum numbers, in particular by their Lorentz spin s and their mass dimension A. It 

2 Our kinematical conventions are: (x °, x I ) are coordinates on the 2-dimensional Minkowski space 1i l't with 
bilinear form x • y = Xarlavy v, r/= diag( 1, - l ). The lightcone coordinates are x ± = (x ° + x I )/v"2 = x: F ; 
the norm is IlxJ] = ~ = ~ ,  -bx 2 /> 0. The antisymmetric tensor is a01 = -elo = 1. 
The normalization of the one-particle states is (0! J82) = 41r~(01 - 82), which corresponds to the standard 
normalization in d + 1 dimensions, specialized to d = I. For simplicity we assume that all particles are of the 
same mass m and suppress internal indices in Section 2.1. 
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turns out tO be convenient to parametrize their form factors in terms of "scalarized 

form factors", which are functions of the rapidity differences only and carry quantum 

numbers 4 = s = 0. For an operator with quantum numbers (A, s) we shall use the 
parametrization 

f'(n) (0) = L ( P ( n ) ( o ) ) f ( n ) ( O ) ,  (2.2) 

where in the cases of interest £ is a polynomial of degree d ~> Isl in the n-particle 
momenta p(n)(0) of integer spin s, i.e. 

£ (  P(n) ( O ) ) = e-SU £ (  P(n) ( O + u) ). (2.3) 

The Wightman function (2.1), considered as a distribution, can then be obtained by 
differentiation, 

W °  (x - y) = ~.(iOx)£(iOy)W(x - y) ,  (2.4) 

where W ( x - y )  is defined as the r.h.s, of (2.1) with I~'(n)(0)l 2 replaced by If(")(0)12. 
We shall refer to W(x)  as the "scalarized Wightman function of O". Let us emphasize 
that in general W (x  - y) cannot be interpreted as the two-point function of some local 
(scalar) field; it is only a useful auxiliary function from which the physical two-point 
function can be obtained through differentiation. 

For many purposes it is useful to rewrite (2.1) in terms of a K~illen-Lehmann spectral 
representation [ 13 ]. Changing integration variables according to 

ui=Oi-Oi+l,  1 <~ i <. n - 1 ,  

( m ( e ° ' + . . . + e ° " ) )  

[ M ( n ) ( u ) = m  n + 2 ~ c h ( u i + . . . + u j - 1 )  , (2.5) 
i<j 

one obtains for the scalarized Wightman function 

O 0  

W(x  - y) = - i  / d l zp ( l . t )D(x  
i i  

y; I.t ) , 
, , 1  

o 

p( I . t )=~~p(n) ( t i . ) ,  p(l) (/.t) = 8(/x - m) If(1)12 , 
n/>l 

O 0  

f dUl . . .dun-1 p(n)(Iz) = -(~r-)-ffS-(_ 1 [f(n)(u)128(l.t -- M(n)(u) ), n >/2. (2.6) 

o 

Note that no problem of convergence arises for the spectral density. First, each n-particle 
contribution exists because, for fixed /z, the integrand has support only in a compact 
domain V(/z) C IR~ -f  in which the form factors are bounded functions so that the 
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integration is well defined• Viewed as a function of/Z one observes that p~n)(/z) has 

support only fo r / z  ~> mn. Summing up the n-particle contributions to p(/z)  therefore 
only a finite number of terms (those with n <~ [/z/m],  Ix] being the integer part of 
x) contribute• Under some mild assumptions on the growth of p(/z) (for example it 
is sufficient to require that p(/z)  is polynomially bounded in /z) the existence of the 
spectral density guarantees that of the two-point function, as defined through (2.6). The 
integration kernel is given by 

i 2 D(x;  rn) = 10(x2)  [sign(xo)Jo(mllxll ) - iYo(mlIx[I)] + ~---~O(-x )Ko(mllxll ) 

(2.7) 

and coincides with the two-point function of a free scalar field of mass m. We use 
the conventions of Ref. [ 17] for the Bessel functions. The differentiation (2.4) is a bit 
cumbersome in the general case; usually however one will be interested in the behavior at 
spacelike distances in which case only higher order modified Bessel functions Kn (mJIxll) 

arise. Alternatively one can use the Fourier representation of D ( x ; m )  and write 

oo  

T-~O(po)S(p  -/z2)ff_.(p)£.(_p)e-ip'(x-y)" 
o 

(2.8) 

On general grounds the Fourier transform of W ° ( x )  must have support only inside 
the forward lightcone V + = {p C RI'11 p2 > 0, P0 > 0}. From (2.8) one finds indeed 

TrP(llPll) E ( p ) E ( - p )  p E v + 
~O(p) = I l p l ~  ' ' 

o, p ~ V  +. 

Thus, up to kinematical factors the spectral density can also be viewed as the Fourier 
transform of the two-point Wightman function• 

For comparison with perturbation theory one needs the time-ordered two-point func- 
tion and its Fourier transform. Its spectral representation is easily read off from (2.6) 
and (2.8), 

G °  (x  - y) = - i  e - i p ' ( x - Y ) £ ( p ) £ ( - p ) l ( - p  2 - iE), (2.9) 

where 
c ~  

f d P( /z )  I ( z )  = j /zz  + /z2" (2.10) 
0 

The definition of I ( z )  has been chosen such that it has a cut along the negative real 
axis and one can recover the spectral density from the discontinuity along this cut, 

p(/z)  = qZdisc I ( - # 2 ) .  
,IT 
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Conversely, disc I (z)  determines I ( z ) up to a polynomial ambiguity. 
The spectral representation of the Euclidean two-point function (Schwinger func- 

tion) is obtained similarly. The Schwinger function can be defined by S°(xl ,  x2) := 
WO(-ix2,xl)  for x2 > 0 and then by analytic continuation to x2 < 0. By construc- 

tion it also coincides with the analytic continuation of G°(x) .  In a momentum space 
integral this formally amounts to the replacement (P0, Pl ) = ( i P  E, pE). The Euclidean 

counterparts of (2.8) and (2.9) thus are 

d 2 _ . .  _,  
s O ( x -  y)= f ~ e  tp(x )) fE(p)LE(_p)I(p2) 

=/~E (iax)/2E(iay) S(x - y). (2.11 ) 

We shall also use the notation (O(x)O(y))  for S°(x  - y ) .  The integration in (2.11) 

is now over the Euclidean momenta (pl ,p2) = (pE,pE) and £E(pl ,P2)  := £(ip2,Pl ). 
The "scalarized Schwinger function of O" entering the second line is 

,/ ..l,> S(x) = ~ dtzp(tx)Ko Iz 

o 

Note that the spectral density pox)  and hence the function I (z)  is the same in the 
Minkowski and in the Euclidean situation. Given either pox)  or l ( z )  for a specific 
operator, all two-point functions can be computed - scalarized and physical, Minkowski 

and Euclidean ones. 
As an example, consider the case of the energy-momentum (EM) tensor. It is of 

additional interest, because its spectral density is closely related to the Zamolodchikov 
C-function. In 1 + 1 dimensions, the symmetric and conserved EM tensor can always 

be parametrized in terms of a non-local scalar field 7", the "EM potential", 

Tu~,(x ) = E~z,,(iOx)7"(x), E~z~(p) := -p~zp,, + ~Tjzz, P 2. (2.13) 

The defining relation (2.2) for the scalarized EM form factors thus reads 

(01T~,,(0)10,, ,01)= [-P(")tt)~P(')(O) + ~,,~P(')(O)P(")P(O)] 

x f  (n) (On... 01 ), (2.14) 

and the scalarized form factors can be interpreted as that of the scalar field 7-. Using (2.6) 

the spectral representation of the Minkowski two-point function is 

O O  

(OlTu,,(x)T,~#(y)lO) = -i~zp(icgx)ff..af(icgy ) j d~pOz)O(x- 
I "  

y;/z) ,  (2.15) 

0 

and similarly for the time-ordered two-point function. Their analytic continuations to 
xo = -ix2 coincide and yield the Schwinger function according to the rules (2.11) 
and (2.12) with/~E (p) = _p,,p~ + 6,,#p2. Explicitly, 
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(T~z~,( x ) T,~(y ) ) = / _ ~ 2  e-ip.(x-y) ) _ 6u u p2] [p,~p~ _ t3al~ p2 ] l (p2) 

= £E~(iOx)£E~(iC)y)S(x -- y). (2.16) 

The lightcone components correspond to the SO( 1, 1 )-irreducible pieces. In particular, 
T++ and the trace t = 2T+_ have polynomials £++(p) = _p2+ and 2£+_ = pC, re- 
spectively. Combining (2.7) and (2.6) one finds for the behavior at small spacelike 
distances 

C ( X - )  2 1 X2 X2 (OIT++(x)T++(O)IO)=~-~ 2 ~ ( - ~ +  . . . .  < 0 ,  ---~ 0, (2.17) 

where the dots stand for less singular terms whose form is model dependent. The 
coefficient c is given by 

oo 
/ i  

c = 127r /d / zp ( / z )  (2.18) 
, /  

0 
and coincides with the central charge of the Virasoro algebra in the conformal field theory 
describing the UV fixed point of the model. This latter fact is part of the statement 
of Zamolodchikov's C-theorem [18]. 3 The proof of the C-theorem is particularly 
transparent from the viewpoint of the spectral representation in the Euclidean case [ 19]. 
In particular, using (2.16) and (2.12), the properties of the modified Bessel functions 
and the definition (2.18), it is easy to arrive at the "C-theorem sum rule" [20] for 
theories with a mass gap 

c = 3~rfd2xx2(t(x)t(O)), 

where (t(x)t(O)) is the Euclidean correlator of the trace. 

2.2. Asymptotic expansions 

Suppose that in a QFT the validity of asymptotically free perturbation theory has been 
established in the sense outlined in the introduction. Then PT allows one to compute 
the asymptotic expansion of the Fourier transform of the two-point functions for large 
Euclidean momenta. This can be translated into the language of the spectral density using 
the defining equation (2.10). Motivated by the asymptotically free case, we define L(s ~) 
by 

1 ~ (ln --~-~) (2.19) l(z) =z  

and R(( )  by 

p(/z) = 1 R  (ln ~ ) .  (2.20) 
/z 

3 In particular c is finite; for other operators the integral over the spectral density will in general not converge. 
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Using relation (2.10) we can compute the asymptotic expansion of R(s c) in terms of 

t(s c) and its derivatives, 

OQ 
~-~rr .(2s+l) 

R ( t ~ ) ~ - ~ L . . n 2 s + l ~ ,  (~),  (2.21) 
s=0 

1, H3 = -~sr (2)  and all the numerical coefficients H2s+l are polynomials where H1 = 
in 

k 1 
( ( k )  = - -  k/> 2. (2.22) 

n k , 
n=l 

In (2.21) the symbol ~ denotes that both sides of the equation have the same asymptotic 
expansion in 1/s c, i.e. their difference is smaller than any power of 1/s c for large s c. In 
addition to the asymptotic relation (2.21), there is a relation between the integral of 
R( ( )  and the leading term in the asymptotic expansion of t(s c) (provided, of course, 
both are finite), 

O O  O O  

(2.23) 
o '  

0 0 

In perturbation theory the asymptotic expansion is usually given with the help of some 
running coupling constant, in terms of which the expansion is a power series and which 
goes to zero as the momentum goes to infinity. There are many functions having these 
properties. A simple and convenient choice is e(~) defined by 

1 
- -  + K l n  e(~:) = s c, (2.24) 
e(~:) 

where the parameter K is related to the first two beta function coefficients of the model. 
We shall refer to e(s ¢) as the universal running coupling function because only the 
universal part of the beta function enters its definition. Any other running coupling 
function can then be expressed as a power series in e(s~). In particular, this would hold 
for the lattice-measurable running coupling (for various possible definitions of the latter, 
see Ref. [ 21 ] ). 

If the expansion of the function t starts off at the pth power of e, 

t ( ~ ) ~ t ,  oe  p -Jr- tl ep+l -4- t,2 ep+2 Jr- . . . .  

we can write, using (2.21), 

R ( ~ ) ~ r o e  p+l + r l e  p+2 + r2e p+3 + . . . .  

(2.25) 

(2.26) 

where 

ro = - p  to, 

r l  = - p K t o  --  ( p  + 1 ) t j ,  
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r2 = 1LO((2)p(p + 1 ) (p + 2) -- pt¢2~0 -- (p + 1 ) t¢~ l -- (p + 2)t,2. 
q. (2.27) 

2.3. 0(3) non-linear sigma model 

The 0 ( 3 )  non-linear o--model is asymptotically free in perturbation theory and admits 
an exact on-shell solution via the bootstrap method. The asymptotic single particle states 
are assumed to consist of an 0 (3 )  triplet of massive particles with mass m: la, 0), 
a = 1,2, 3. In this paper we will study the properties of the four most interesting local 

operators in the 0 ( 3 )  model: the spin field 4~, the Noether current J~, the EM tensor 
Tu,, and the topological change density q. In the following we shall discuss these four 

operators consecutively. 
Spinfield: We normalize our spin field operator ~a(x)  by 

(01q~a(0) ]b, 0) = ~,,o. (2.28) 

~a is proportional to the Lagrangian field renormalized in (say) the MS scheme 

@a (x) = (S~-g(x), (2.29) 

where ( is some unknown finite renormalization constant. The n-particle form factor of 

q~a is defined by 

2 a (olcP"(O)la.,O.;...;a~,01) = - ~ f l , a , . . . a , ( O n  . . . . .  01) (n odd). (2.30) 

Here we introduced the normalization factor 2 / v ~  for later convenience (cf. Sec- 
tion 3.2). The subscript "1" on the r.h.s, indicates that under an 0 (3 )  rotation these 
functions are intertwiners 3 ®n --, 3 onto the irreducible representation 3 of isospin 1. 
Only the odd particle form factors are non-vanishing because ,~" is odd under the inter- 
nal parity reflection of the 0 ( 3 )  variable. In addition they depend only on the rapidity 
differences. As a consequence one can write 

8abFl(n)(U) := Z fl,a""'a'(On'" * O a . . ,01) fl,a,,...,,,(O, . . . . .  0~). (2.31) 
a I . , .an 

The spectral density is given by 

O<3 

pSpm(/./,) = 7r -- 2._., Pl (/x), (2.32a) 
k-=0 

f duj . . .dun_l F(n)(u)8(t z M(,) pl ") (/z) = ~,i~_)---227_ 1 - (u)) .  (2.32b) 

0 

F r o m  pSpin (/j~) or its Stieltjes transform 

O O  

pspin ( /~)  ( 2 . 3 3 )  
/ sp in (z )  = d/z z + /x  2 

0 
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all two-point functions of the spin field can be computed. 
For example, the Schwinger function is 

(cIga(x)cISb(y)) = t ~ a b s s p i n ( x  _ y) 

d 2 
=8 ab f (--~P)2e-ip'(x-Y)Ispm(p2). (2.34) 

In the time-ordered Minkowski two-point function _//spin( _p2 _ ie) would enter. The 
normalization (2.28) is thus equivalent to the usual (re-)normalization condition on the 
Fourier transform of the time-ordered Minkowski two-point function 

i p2 m 2. _//spin( _p2 _ ie) - p2 _ m 2 + ie + . . . .  "~ (2.35) 

It also implies that for large (spacelike) distances all two-point functions decay like in 
the free theory. In particular, for the Schwinger function this means 

1 
- - m r [ l + O ( 1 / r ) ]  r V/-~l+x~. (2.36) s so in (x )  -- ~ e  , = 

We will later determine the spin-spin spectral density and two-point function by the 
form factor bootstrap method. We will then be able to compare their asymptotic behavior 
with the results obtained in perturbation theory. We shall denote the universal running 
coupling function for the 0 (3 )  model by a ( p ) ,  which is defined as in the previous 
subsection to be the solution of 

1 + lna (p )  = In p - -  --. (2.37) 
a ( p )  m 

(The i< parameter of (2.24) is equal to unity for the 0(3)  model.) Perturbation theory 
at 2-loop order predicts for the large p asymptotics [22] 

p2lspin(p2) = A1 -+- (2 + ~:0) + (2 + SO0) or(p) + O (ot2(p) . (2.38) 

Here the overall constant A1 is related to the unknown finite renormalization in (2.29), 
while the parameter so0 gives the connection between the perturbative mass parameter 
A~-g and the exact mass gap m. In the 0(3)  model the latter is known exactly [ 16], 

~:0 = In ---m--m = In8 - 1 ,.~ 1.07944. (2.39) 
A~--g 

Finally, using the results (2.25)-(2.27), we obtain the perturbative prediction for the 
asymptotic expansion of the spin-spin spectral density, 

flspin(//,) = ~-_~_l (1 -[- o~(/t/,) -~ O (t~2(//~))}. (2.40) 
/x 

In Section 5 we shall find the value of the undetermined non-perturbative constant Ai 
to be 

4 
,~l - 3 ~ .  2 • ( 2 . 4 1 )  
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Note that the perturbative series for both the Fourier transform and the spectral density 
contain integer powers of the running coupling only. This fact, which will play an 
important role in what follows, is a special feature of the 0 (3 )  model, since for the 
otherwise rather similar O(N) models with N > 3 one has 

• 1 [a(/z)] (u-3)/(0-2) (2.42) p 2 1 s p i n ( p 2 )  ~ [a(p)] -1 / (O-2)  pSpm(/'z) /Z 
, r - ~  - -  

Noether current: In terms of the Lagrangian variable the Noether current is 

3~ = ~o~:abcsbops c. (2.43) 

In the QFT we fix the normalization such that its time components satisfy the equal 
time commutation relations 

[J~(O,x), Job(O, y)] = ie"bcJ~(O, y )~ (x  - y).  (2.44) 

In 1 + 1 dimensions a conserved current can always be parametrized in terms of a 
(non-local) scalar field, the "current potential" j~ via 

eu.O j .  (2.45) 

The scalarized form factors of J~ can be identified with that of the field j a .  Their 
defining relation is 

(OlJ~z (0)[an, On;.. .  ;al,  Oj) = ~_.~(p(n)(0) )f~,a,,...a, (On . . . . .  01) (n even), 

(2.46) 

where £ u ( P )  = - i e ~ p " .  Note that no confusion can arise here from using the same 
symbol f~,,,,...,,~ as in (2.30) since there it is defined for an odd number of particles 
only. We also note that (2.44) fixes the residue of the two-particle form factor 

_ 2Eaa2al 
f'~,~2a~ (02, 01 ) - 02 - 01 - i~" + . . . .  02 ,-~ Ol + iTr. (2.47) 

If we now extend the definitions (2.31) and (2.32b) for even values of n as well, 
the spectral density in the case of the Noether current is given by 

O O  

pC"~r(/x) = Z p l Z k ) ( / z ) .  (2.48) 

k=l 

Finally, the Fourier transform for the current is defined as in (2.33) with the operator 
superscript 'spin' replaced by 'curr'. Using pcur~ and icurr one can represent all the 
two-point functions of the Noether current. For example, the Schwinger function is 

d2 
( J ~ ( x ) j b ( y ) )  = t~ ab ~ e - i p ' ( x - y ) [ p u p  v --p26u~]leurr(p2). (2.49) 
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Perturbation theory predicts for the Fourier transform [23] 

p2ICUrr(p2) = ~ 4- (~:0 - 1) 4- (sCo - 1 ) a (p )  4- O (a2(p))  (2.50) 

and, using (2.25)-(2.27),  for the spectral density 

1 pcurr(/~) = ~ {1 + a ( ~ )  + 0 (~2( /z))} .  (2.51) 

Topological charge density: In terms of the Lagrangian variable the topological charge 

density reads 

q = ~----~eabcel'Lusaoi.tSboq~,SC. (2.52) 

We shall use a different symbol for its Euclidean version, 

k= 8-~eab% f~) S~ O~SbO~S c (2.53) 

(where _(E) (E) = l)  to emphasize that it differs by an extra factor - i  from the e l 2  = - - e21  

Euclidean continuation of q: k = _iq(E). This extra factor of - i ,  which is a consequence 

of the linearity of q in the time derivative, is responsible for the important fact that 
the Euclidean two-point function of k is a strictly negative function for all non-zero 
Euclidean distances. 

A result of the form factor approach is that the topological charge density operator 
can be parametrized in terms of a dimensionless non-local scalar field • as follows 
(cf. Section 3): 

q = ([7 + m2)~. (2.54) 

The scalarized form factors of q can be identified with that of q0. Their defining relation 
is 

(Olq(O)la.,O.;...;al,01) = V~oC(P(n)(O))fo,a,,,..~,(On . . . . .  01) (n odd), 

( 2 . 5 5 )  

where f_,(p) = _p2 + m 2. The subscript "0" indicates that under an 0 ( 3 )  rotation 
these functions are intertwiners 3 ®n ~ 1 onto the singlet (isospin zero) irreducible 
representation. The normalization of the topological charge operator between physical 
states of fixed particle number is not known a priori. In Section 5 we shall determine 
the non-perturbative normalization constant to be 

1 
,~0 = - .  (2.56) 

4 

Introducing the squares 

F(on)(u) = Z Ifo,,,,,...,~,(O,, . . . . .  0 , )12  , (2.57) 
al ...an 

we can write the spectral density for this operator as 
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o c )  

pt°p(/z) = 'h'0 Z _(2k+l) P0 (/Z), (2.58a) 
k=0 

oo 

p(o, ) (# )  = / dul . . 4~r_) n-zdu"- j F(o, ) ( u) ~(Iz - M (m ( u) ) . (2.58b) 

o 

Finally, if  we define/top similarly as in (2.33),  the Euclidean two-point function of the 
Euclidean topological charge density is given as 

( k ( x ) k ( y ) )  = - a-p e_ip.(x_y)( .2 + m2)21tOp(p2). (2.59) 
(2rr)2 t" 

Perturbation theory predicts 

p21tOp(p2) =L~o p _ or(p____)) + O ( a 2 ( p ) )  
16"rr 

1 {a2( /z  ) + O ( a 3 ( / z ) ) } ,  (2.60) ~pt°p (/.z) = 

top where t 0 , being the coefficient of  a contact term in the two-point function, cannot be 

calculated in PT. 

Energy-momentum tensor: Since we already discussed the EM tensor in Section 2.1, 
here we can be brief. From the Lagrangian one obtains 

1 ,~ 
T,~. = -g~ol { 3~SaO.Sa - -~7~pOa~3 Sa) . (2.61) 

In the QFT we fix the normalization such that the Hamiltonian f~_~oodxToo(x) has 

the eigenvalue V/p 2 + m 2 on an asymptotic single particle state of  momentum p. The 

scalarized form factors can be identified with that of  the EM potential ~" as introduced 
in (2.13).  To fix the notation we repeat their defining relation 

(OlT~,(O)[an, On;. . . ;al ,01)  =Eu~(P(n)(O)) fo  ........ ,(On . . . . .  OI) (n even) 

(2.62) 

with £~,~(p) as in (2.13).  Again we can use the same symbol here as for the scalarized 
form factors of  the topological charge density since the latter are non-vanishing only 
for odd particle numbers. The above normalization of Tu~ corresponds to the following 
constraint on the scalarized two-particle form factor: 

--2~a2al 
fo,a2a~ (02, 01 ) = (02 - 01 - izr) 2 + . . . .  02 ~ 01 + iT"r. (2.63) 

I f  we now extend the definitions (2.57) and (2,58b) for even values of  n, we can write 

pEM(l~ ) = ~ '  p0 (2k> (/z),  (2.64) 
k=l 
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and define IEM in terms of pEM(/z) as in (2.10). The various two-point functions can 

then be computed along the lines described in Section 2.1. 
Finally, the perturbative results for the EM tensor are 

1 + o 
PZ lEM (p2 ) = 6~  47r 

1 {a2(/~ ) + O (a3(/x))} (2.65) /zpEM(/z) = ~ 

In addition, the integral of the spectral density is constrained by (2.23), 

O O  / l 
d/x pZM (/x) 6~ '  (2.66) 

0 

expressing the fact that the UV central charge of the 0(3)  model is equal to 2. 

3. Results for the 0(3)  form factors 

In this section we collect our results for various 0(3)  form factors, form factor 
squares and their properties and we give an exact expression for the asymptotics of the 
n-particle spectral densities. We refrain from going into the details of the derivation and 
giving proofs, which can be found in Ref. [7]. 

The most remarkable feature of the NLS model is its integrability. Assuming asymp- 
totic freedom one can establish the existence of non-local conserved charges and the 
absence of particle production [24]. The matrix elements of the non-local charges be- 
tween physical particle states together with the 0(3)  symmetry determine the S-matrix 
up to a Castillejo-Dalitz-Dyson (CDD) ambiguity [26], and the result agrees with that 
obtained from the S-matrix bootstrap [25]. For an overview of these issues see also 
Ref. [27]. The O(3) bootstrap S-matrix has been tested (at low energies) in lattice 
studies [28] and used as an input for the thermodynamic Bethe ansatz (TBA) to com- 
pute the exact m / A  ratio [ 16]. As a by-product of the TBA considerations the CDD 
ambiguity can be resolved. The construction of the non-local charges has been extended 
to the full quantum monodromy matrix in Ref. [29]. More recently the algebraic struc- 
ture underlying these non-local charges has been considerably generalized [ 30] and has 
also been identified directly in the context of the form factor bootstrap [ 31 ]. 

The form factor bootstrap method was initiated in Ref. [8] and has been further 
developed by Smirnov [ 32,9]. Using the exact S-matrix as an input the form factors get 
constructed as solutions of a system of functional equations known as Smirnov axioms. 
These equations recursively relate the n-particle form factors to the ( n -  2)-particle form 
factors and (provided the S-matrix also has bound state poles) to the ( n -  1)-particle 
form factors. The method is reviewed in Smirnov's book [9] and, for the special case 
of the 0 (3 )  model, in Refs. [23,33]. Solutions of the form factor equations with the 
0 (3 )  invariant S-matrix have been obtained by Kirillov and Smirnov [32], but for the 
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given in Ref. [7]. 

3.1. Reduced  f o r m  fac tors  
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[ 14] we regard them as unsatisfactory. More details will be 

Let us recall the simplest non-trivial case, i.e. the result for the two-particle scalarized 
form factor of the Noether current [8], 

a 7r2 
ft,a2a~ (02, 01 ) = -~-!(02 -- 01 ) e  aa2a' , (3.1) 

where 

if(g)  = 0 -  &r tanh 2 -.0 (3.2) 
O(2~ri - O) 2 

Here the normalization condition (2.47) has been taken into account. The product of 
the two-particle solutions for all possible pairs of rapidity differences, 

g~(O. . . . . .  0~) = I I  i ( O i  - Oj),  (3.3) 
i>j 

will play an important role in what follows. Actually, if there were no internal in- 
dices, (3.3) would be a solution for the n-particle case. All the following complications 
(absent in integrable models with diagonal S-matrices) are due to the presence of 
these internal quantum numbers. Using (3.3) we can define the reduced form factors 
g~.a,,...a~ (0 .  . . . . .  Ol ) for the spin and current operators as 

,.ir(3n/2)-I 
• 0 a a 0 ~P'(O n . . . .  1)gl,a,,...a,(On . . . . .  0 1 )  (3.4) f l ,¢ , .a , (  n . . . . .  0~) = 2 

and similarly for the TC density and EM tensor operators as 

,/3.( 3 n / 2 ) -  1 

fO,a,,...a,(On . . . . .  0 1 )  -- - - " " ~ 3 P ' ( O n  . . . . .  Ol)go,a,,...aj(On . . . . .  0 1 ) .  ( 3 . 5 )  

The first few reduced form factors are 

g~,,,~ (O,) = ~a2al, (3.6a) 
a g',a2,~ (02' Oi ) = ~aa2a,, (3.6b) 

~a2al 

g0,a:at (02, al ) = 02 - oj - irr' (3.6c) 

gO,a3a2al (03,02,  gl ) = Ea3a2m , (3.6d) 

where the normalization conditions (2.28), (2.47) and (2.63) have been used. Note 
that we have not found the normalization condition for the topological charge density 
operator yet. Its lowest reduced form factor (3.6d) was chosen here to satisfy the 
clustering relations in the form described below. The still unknown normalization of the 
physical operator is given by (2.55). 



J. Balog, M. Niedermaier/Nuclear Physics B 500 (1997) 421-461 437 

What makes the reduced form factors useful is the fact that (with the notable exception 
of the two-particle form factor of the EM tensor (3.6c)) they are all polynomial in the 

rapidities, with specified total degree N ( n )  and partial degree p ( n )  given by [ 14] 

N ( n )  = l ( n2  - 3n) + 1, p ( n )  = n - 3 + l, l = 0, 1. (3.7) 

By partial degree we mean the degree in an individual rapidity variable and l = 0, 1 
correspond to the isospin 0 and 1 families, respectively. Expressions for the 0 ( 3 )  
form factors were first written down in Ref. [32]. Exploiting their polynomiality and 
the intertwining property, they were recast in Refs. [23,33] into a form more suitable 
for practical purposes. The fact that suitable reduced form factors are polynomials in 
the rapidities is a special feature of the 0 ( 3 )  model that fails to hold for the higher 
O(N) ,  N > 3 models and which considerably facilitates their explicit construction. We 

have computed the form factors for both families of operators (spin and current, and TC 
density and EM tensor) up to six particles. The complexity of these reduced form factors 
grows very rapidly with the particle number, because the number of components (with 
respect to the internal quantum numbers), the number of independent rapidity differences 
and the degree of the polynomials all grow very fast with increasing particle number. 
For five and six particles the polynomials are already too large to be communicated in 
print. 4 Below we complete the list (3.6) for up to four particles. 

Spin and current: 
n = 3 :  

g~,a3a2a, (0 )  = ~aa, t~a3a2g 1 (0) + ~aa2 ~a3a' g2 ( O ) "}- 6aa' t3a2a' g3 ( O ) , 

g2( O) = 031 - 2 i ¢ r  . 

g3(O) 012 

n = 4 :  

g~,a4ma2a, ( 0 ) = 6 a4a3 •aa2a, gl ( 0 ) -~- ~ a402 e aa3al g2 (O) + 6 °~a' e aa'a= g3 (O) 

..}_(~a3a2 eaa4a, g 4 (O) q- t5 "aaa' e atua2 g5 ( O ) + {~a2al eaa4ax g 6 ( 0 ) ,  

gl(O) 
g2(0) 
g3(0) 
g4(O) 
gs(O) 

g6(O) 

--irr(u 2 + v 2 -- irru -- izrv + 2rr 2) '~ 

(u  -- i z r )v (v  -- irr) 

I (u - irr) (u + 2irr) (icr - v) 
u v ( 3 i c r -  v)  

u (u  - i~r)v 

2i~r( iTr - u ) v  

4 For example the six-particle polynomial of the current has about 3.4 Mbytes, i.e. about 700 A4 pages. 



438 J. Balog, M. Niedermaier/Nuclear Physics B 500 (1997) 421-461 

--477" 2 --  i r r (u  + v )  -- ( u  -- v )  2 

- 2 ¢ r  2 - 3irrv + v 2 

--4¢r 2 + i r r (u  -- 2v) -- u 2 
+(043 -- irr) 2rr 2 + i r r (u  + 2v) -- 2uv  

-- irr(  2u + v )  + 2uv  

--277 -2 + i r r (u  -- 3v) 

0 

0 

+ ( 0 4 3  __ irr) 2 0 
--U 

v - 2irr 

lg -- U 

where u = 032, and v = 031. 

EM tensor and TC density: 

n = 4 :  

go,ua,,,~2a, (0)  =g l  (0) ~/1a2~/304 + g2(  O) ~5"a4a23a~a' + g3(  0 )  3"aaal~a3a2 , 

g2(0)  = 032041 + 021043 - -  2i¢r(041 -- ira-) . 

g3 (0 )  --032041 + 2irr(032 + icr) 

Here we used the shorthand notation Oij for Oi - Oj. 

3.2. C l u s t e r i n g  p r o p e r t i e s  

A remarkable property of  the form factors is asymptotic clustering. I f  we divide the 

set of  rapidities into two disconnected clusters and boost one of  them with respect to the 

other, for asymptotical ly large boosts the form factors factorize into a sum of  products 

of  form factors corresponding to the two clusters separately. In formulae, 

gr{,ak...a,b,,...b I ( Ol k + A . . . . .  Oq + A,  t~m . . . . .  i l l )  

= Akin- 1 ~:abcgb c l,ak...a,(O'k . . . . .  al)g l ,b , , . . .b l ( f lm . . . . .  i l l )  + O (  Akm-2 ) (3.8) 

and similarly 

gO,ak...a~b,,...b, ( al~ + a . . . . .  Oq + A, tim . . . . .  f l l  ) 

. .  O"  a = Akm-Zg~,ak. , . ,~(ak," , l )g l ,b , , . . .b , ( f lm . . . . .  i l l )  + O(Ak'n-3).  (3.9) 

Note that in (3.8) members of  the isospin 1 family are mapped onto themselves, while 

in (3.9) members of  the isospin 1 family are l inked to members of  the isospin 0 family. 

Observe also that there is no distinction between even and odd members of  the same 

family, their factorization properties are the same. Thus even and odd members of  the two 

families are very closely related. We already anticipated this close interrelation (again 
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a special 0 ( 3 )  property) by using the same notation for even and odd form factors 

and we introduced the non-perturbative constants 2/v/-~ and A0 in (2.30) and (2.55), 

respectively, in order to have this simple form for (3.8) and (3.9). 
For the special case of k = 1, m = n - 1, the clustering relations read 

• ~ n - 2  aa,,b b 
a (On,On--I . .  ,01)  =V n 6 gl,a,,_,...al(On-1 . . . . .  01) +O(Onn-3 ) ,  gl ,a,. . .al ' • 

go,a,,...al(On, On-I . ,01) , ~n -3  an . . . .  V n gl,a,,_,...,,~(On-1 . . . . .  01) +O(0nn-4), (3.10) 

from which one sees that the reduced form factors are polynomials of partial degree 
(n - 2) and (n - 3) in the isospin 1 and 0 case, respectively. 

Since the product (3.3) also factorizes under clustering, the full (scalarized) form 
factors also satisfy the clustering relations, which are similar to (3.8) and (3.9). For 
the l = 1 family they can be found in Smirnov's book [9]. Similar clustering relations 

were recently discussed in Ref. [34]. 
The clustering relations closely resemble some classical equations satisfied by our 

operators. For example, dividing an even number of particles into two odd clusters, (3.8) 
can be interpreted as the quantum counterpart of (2.43), the classical definition of the 
current in terms of the spin operators. (Remember that we are dealing with scalarized 
objects so that all information on the Lorentz structure is lost.) The division of an even 
number of particles into two even clusters, on the other hand, resembles the classical 
relation 

o , . J  a . .  2 . b c - O - c  - = zgoe a-ua ~. (3.11) 

Finally, the clustering of an odd number of particles corresponds to 

¢91zS a 2 a b c , ~ b . c  = - g o  e ~ as,. ( 3 . 1 2 )  

Similarly, (3.9) corresponds to the defining equation (2.61) or either of 

2 o 1 
T~zv = go J~Jv - ~rlu,  JaJ  q = (3.13) 

3.3. Form fac tor  squares 

The quantity entering the spectral densities and two-point functions is the absolute 
square of the form factors, summed over the internal symmetry indices. For the reduced 
form factors the corresponding quantities are 

1 a 0 . . .  G~")(O, . . . . .  O1)=~ ~ Igl,a,,...a,( , ,  ,01)12, 
aan...al 

1 
G~o'O(O, . . . . .  O1) =-~ Z Igo,a....a,(On . . . . .  Ol)l 2. (3.14) 

an...al 

Here are the results for the first few reduced form factor squares: 
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G l l ) ( 0 t )  = 1, 

GI2) (02, e~ ) = 2, 

GI 3) (03, 02, 01 ) = 2(022 + 021 + 02, ) + 127r 2, 

1 
Go(2) (02, 01) 

- 02zl + 7r e '  

6 0 ( 3 ) ( 0 3 ,  0 2 , 0 1  ) ---- 2 ,  

2 2 2 2 Go (4) (04, 03, 02,01) = 2(04230221 + 04203t + 041032) 

2 2 + 0 ~ 2 + 0 2 1 + 0 2 2 ) + 2 8 7 r  4. (3.15) +477"2(0423 nt- 042 n t- 041 

The reduced form factor squares G} n) (l = 0, 1) are symmetric, boost invariant 

polynomials o f  total degree n 2 - 3n + 2l and partial degree 2(n  - 3 + l).  They satisfy 

the clustering relations 

Gff+m)(ak + A . . . . .  a l  + A,/3,,, . . . . .  /31) 

..~ (I  q- I ) A 2km-4+2l a Ik) ( Olk . . . . .  Oll )a lm)  ( ~  m . . . . .  J~ l )  -+- O( A2km-5+21), 

(3.16) 

which follow from (3.8) and (3.9).  Again note that the members of  the spin and current 
series (l = 1 ) are mapped onto themselves under clustering, while the members of  the 

EM tensor and TC density series (l = 0) are linked to the I = 1 series. 

(3.16) is readily translated into the corresponding statement about the full form factor 

squares (2.31) and (2.57) 

El (k+m) (ak + A . . . . .  trl + A, 1~,,, . . . . .  H1 ) 

(12 - 4/)¢r2F(k) )F(m)(flm, jSl) + O ( A  -5+2t) 
- -A--i---~ l (trk . . . . .  a l  . . . . .  ( 3 . 1 7 )  

Next we discuss two further properties of  the polynomials G} n). First we present an 
explicit formula for the overall leading terms of  these polynomials, i.e. the terms with 
the maximal total degree, which is n 2 - 3n -4- 2l. These overall leading terms are given 

by 

~0;0  t v n , ' - - ,  n 
/ . .  / \ t > j  / o,~S, 

/ \ 

a(n) (On, .  01) = ( H 0 2 1  Z el(Oo-(n ) . . . .  0o-(1) ) .  ( 3 . 1 8 )  1;0 " ' ' 
/ ,  . / 
\ t > j  / trES, 

Here the summations range over all elements of  the permutation group Sn and the 
functions P0 and Pl are defined as 

1 
Po(O . . . . .  Ol)= z t~2 ~2 a2 ' 

' Onn_ 1 • . . v32~,21Vln 
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1 
Pl(On,. 01)= 2 2 2 ' (3.19) 

. . ,  O n n _  1 . . .  032021 

respectively. The overall leading terms G (n) by themselves satisfy the clustering rela- /;0 
tions (3.16). An equivalent expression for the leading terms (3.18) was obtained by 

Lehmann [35]. 
The second property concerns the analytic continuation of the squares G} n) to complex 

rapidities. For real, physical rapidities the polynomials G} n) are real valued and positive. 
Being polynomials one can also evaluate them for complex rapidities Oi. In particular 
they turn out to vanish if two consecutive rapidity differences are both equal to irr, 

G~")(O,-z+27ri, On-2+i~',On-2 . . . . .  01) =0 ,  n > . 4 - 1 .  (3.20) 

G} ") vanishes also at all other points in rapidity space obtained from the one in (3.20) 
by permutation of the arguments. 

Since the form factor squares - not the form factors themselves - are the objects 
entering the physically interesting quantities through the spectral representation it would 
be desirable to obtain them directly, without having to go through the tedious procedure 
of first computing the form factors and then squaring them. Indeed, for the first few 
n the information collected in this subsection is sufficient to determine G} n) directly. 
However, for particle numbers 5 and 6 these constraints - permutation symmetry, boost 
invariance, given total and partial degrees, given overall leading terms, clustering and the 
vanishing at points (3.20) - almost uniquely determine the solution, but not quite. So in 
these cases we had to work out the solution the tedious way. We hope to find additional 
general properties of the squares that will determine them completely. In Appendix A 
we list the results for the form factor squares of the EM tensor and TC density, and 
current and spin series up to six particles. 

3.4. Asymptotics of  spectral densities 

Let us now turn to the computation of the spectral densities for the four operators 
under consideration. The n-particle contributions are 

oo 

f duz . . .dun-~ F[n)(u)6(t z _ M(n)(u)) ' 

0 

qF3n --2 

Ft(")(u)= -~ ( 3 -  2l)G}")(u)l~(u)l  2. 

n~>2, 

(3.21) 

The integration in (3.21) can be done numerically. The graph of the resulting n-particle 
spectral densities is roughly "bell-shaped": Starting from zero at/x = mn they are strictly 
increasing, reach a single maximum and then decrease monotonically for large/x. Some 
typical plots can be found in Ref. [ 14]. 

Of particular interest is the /x ~ cx~ asymptotics of the spectral densities. One can 
show that an important consequence of the clustering relations (3.17) is the following 
expression for the asymptotic form of the n-particle spectral densities: 
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A~ n) 
p~n)(tz ) ~ /.~(ln/z)4_2t, /z ---* o~, (3.22) 

where the constants A} n) are computable from the integrals of the lower particle spectral 
densities. The integrals are 

(DO (2,0 

i ' 
= = -- dul . . .dun-I  GI n)(ul i#(ul l  2, c} 

o o 

n ~ 2 ,  

(3.23) 

and in terms of them the decay constants A~ n) are given by 

n -1  
Aln)= 8a(n) ~ (k)(n-k) 

3 " °  = 7 " r ~ c  I ci , 
k=l 

n/> 2, (3.24) 

if (3.23) is supplemented by the definition cl j) := ¢r/4. Note that (3.24) implies that 
the A} ") are strictly increasing with n (unless the cln)'s were rapidly decreasing). 
This implies that for sufficiently high energies the n-particle contribution overtakes the 
( n -  2)-particle contribution, i.e. p(n)(/z) > p(n-e)(/x), for/z  >/zn, where p(n)(/Zn) = 
p(n-:) (#n);  although the maximum of p(n)(/z) is expected to be much smaller than the 
maximum of p(n-2)(/z) (cf. Section 4). This is the "crossover phenomenon" observed 
in Ref. [ 14] for low particle numbers. Although (3.22) is an exact asymptotic equation, 
the way how the asymptotic behavior is approached is highly non-uniform in the particle 
number. That is to say, with increasing n one has to go to larger and larger/z in order 
to make the right-hand side of (3.22) a good description of the function p}n)(tz). 

A consequence of the crossover is that the asymptotic behavior of the exact spectral 
density (being the sum of all even/odd n-particle contributions) cannot be obtained by 
naively summing up the right-hand sides of (3.22), which in fact would be divergent. 
This divergence signals that the infinite series has a more singular high energy behavior 
than each of its terms separately. Indeed, according to PT, the high energy behavior of 
the full spectral densities is 

O = EM and top: p(/z) N - -  + O 
p, \ ( l n / z )  3 ' 

A ° [  ( + ) ]  
(.9 = spin and current: p(/x) ~ - -  1 + O , (3.25) 

/x 

where the values of the various decay constants can be read off from Eqs. (2.40), (2.51), 
(2.60) and (2.65). Clearly a finite number of terms, each decaying according to (3.22) 
can never produce the more singular UV behavior of (3.25). It is therefore a major 
challenge to develop resummation techniques for the spectral resolution and, for the 
reasons outlined in the introduction, compute the UV properties independent of PT. We 
shall meet this challenge in Section 5. 
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Knowing the form factor squares the evaluation of the n-particle contributions to the 
spectral densities and the two-point functions is in principle straightforward. For the 
spectral densities the integrations in (2.32b) and (2.58b) can be done numerically to 
good accuracy. Throughout we used an accuracy of 10 -3 for all numerical computations. 
For comparison with PT and MC data it is useful to consider the Fourier transform I (p) 

of the two-point function, which can be computed from the spectral density via (2.10). 
Of course l (p )  again decomposes into a sum of n-particle contributions of which in 
practice only the first few are known explicitly. It is important that an intrinsic estimate 
for the error induced by this truncation can be made, i.e. one which does not rely on 
comparison with other techniques. 

To discuss this qualitative error estimate let us first note some general features of the 
n-particle contributions to the spectral densities. As remarked before the graph of an n- 
particle spectral density is roughly bell-shaped: Starting from zero at/z =mn it is strictly 
increasing, reaches a single maximum and then decreases monotonically, the /z ~ c~ 
asymptotics being given by (3.22). With increasing particle number n the values of the 
maxima rapidly decrease. Generally speaking, the maximum of p(n) (i.L) is smaller by 1.5 
to 2.5 orders of magnitudes compared to the maximum of p( ,-2)( /z) ,  while its position 
is shifted to higher energies. Nevertheless, at sufficiently high energies the n-particle 
contribution overtakes the (n - 2)-particle contribution, i.e. p(n) (/z) > p(,,-2) (/z), iff 
/z > /Zn, where p(n)(IZn) = p(n-2)( tZn)  [14]. For n ~< 6 the positions and the values 
of the maxima are listed in Table 1 below. The results for the points of intersection 
( t z . / m ,  p(n-2)(I ,  Zn) = p(n)(l.~n) ) are as follows: 

Spin: 

Current: 

TC: 

EM: 

n = 5 :  ( 1 . 0 x  104,4.9 x 10-6), 

n = 4 :  ( 1 . 6x  102,3.9 x 10-4),  

n = 5 :  (7 .0×  103 , 3.8 x 10-8), 

n = 4 :  ( 1 . 6x  102,4.7 x 10-6), 

n = 6 : (1.0 x 106, 3.9 x 10-8), 

n = 6 : (4.6 x 105,2.5 × 10-1°). 

(4.1) 

It is natural to assume that the general trend depicted by these numbers continues to 
hold at higher particle numbers; a quantitative form of this assumption will be presented 
in Section 5. Here already the qualitative features (/zn increasing; maxima decreasing) 
are sufficient to conclude that the point of intersection/Xn provides an intrinsic measure 
for the quality of the approximation made by truncating the form factor series at the 
n-particle term: since/z,+2 >>/zn the (n +2)-particle contribution can safely be ignored 
up to energies /z </.tn in the sense that the correction to p(2)(/z) + . . .  + p(n}(/x) for 
/x < /zn should be at most a few per mille. Thus, the form factor series truncated at 
six particles should provide results accurate to within a few per mille for the spectral 
density at least up to energies of 7 x 103m for spin and TC and 5 x 105m for current 
and EM. It is not hard to see that for the functions l (p)  related to p(/x) by the 
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Fig. 1. Low energy region of spin two-point function. Comparison: form factor approach, Monte Carlo data 
and 2-loop perturbation theory; p2l(p 2) plotted against p/m. The normalization of the PT curve is fixed 
according to (2.41). 

Stieltjes transform (2.10) this implies accurate results for somewhat smaller ranges, 
about p ~ 103 for the spin and TC cases and about p ~ 104 for the current and 

EM tensor. Both of these energy/momentum ranges exceed that accessible through MC 

simulations by several orders of magnitudes. 
Below we shall restrict attention to the spin field and the Noether current. In both 

cases it is convenient to consider the low and the high energy region separately. In 

the low energy region non-perturbative effects are expected to become important. Here 
Monte Carlo simulations provide an alternative non-perturbative technique to probe the 
system [28,36-39,15]. Simulations for the two-point functions were made [ 15] using a 

Wolff-type cluster algorithm [22] on a 460 square lattice at inverse coupling/3 = 1.80 
(correlation length ~ = 65.05). A comparison between form factor results, MC data 

and PT in this low energy region is shown in Figs. 1 and 2 for the spin and current 

case, respectively. In the spin case the normalization of the PT curve is fixed according 
to (2.41), so that as in the current case no free parameter enters the comparison. 

The agreement between the MC data and the form factor results is excellent. In the 

spin case the statistical errors of the MC data are less than the size of the dots in 
Fig. 1. Above 30m they have a slight tendency to lie below the form factor curve, 
which (comparing e.g. with the data at /3 = 1.7 [ 15]) can be attributed to the still 
finite correlation length. The 1 + 3 ff curve is left out in Fig. 1 as it coincides with the 
1 + 3 + 5 ff curve below 30m and (incidentally) with the PT curve above 40m. In the 
current case the statistical errors are larger but within the errors the agreement with the 
form factor curve is perfect. One also sees that for energies between 30 and 45 the PT 
curve runs almost parallel to the MC data in Fig. 2. Without the guidance of the form 
factor result one would thus be tempted to match both curves by tuning the Lambda 
parameter appropriately. Doing this however, the Lambda parameter comes out wrong 
by about 10% (from below), as compared with the known exact result [ 16]. Generally 
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Fig. 2. Low energy region of current two-point function. Comparison: form factor approach, Monte Carlo data 
and 2-loop perturbation theory; p21(p2) plotted against p/m. 
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Fig. 3. Spin two-point function. Comparison: form factor approach versus 2-loop perturbation theory; log plot 
of p21(p2) against p/m. The normalization of the PT curve is fixed according to (2.41). 

speaking one sees that a determination of  the Lambda parameter (accurate to within 1% 

say) from MC data and (2- loop) PT alone is difficult because some assumption about 
the onset of  the 2-loop perturbative regime enters. It remains difficult even after 3-loop 

effects are taken into account [42] .  To investigate the onset of  a perturbative regime let 
us now consider the high energy regime of  the same quantities. 

In Figs. 3 and 4 again the Fourier transform l ( p 2 )  of  the two-point function of  the 
spin field and the Noether current are shown, but on a logarithmic energy scale. They 
are computed once in 2-loop PT and once via (2.10) by truncation of  the form factor 
series. Let us define the perturbative regime to be the energy range for which the 2-loop 
PT and the truncated form factor curve coincide within 1%. In both the spin and the 
current case a large perturbative regime is found to exist. Having fixed m / A  and A1 no 
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Fig. 4. Current two-point function. Comparison: form factor approach versus 2-loop perturbation theory; log 
plot of p21(p2) against p/m. 

adjustable parameters enter the PT results. The very existence of such a perturbative 

regime thus supports the proposed value of m/A as well as the exact value of the 
normalization constant (2.41). In the spin case the 2-loop perturbative regime is about 

50 < Iz/m < 5000 and in the current case it is about 100 < iz/m < 2 × 104. The 

lower bound of this interval will remain unaffected when higher particle form factor 

contributions are taken into account and thus is a genuine feature of the 0 ( 3 )  model. 

Note however that the onset of the 2-loop perturbative regime occurs at much higher 
energies (50-100 times the mass gap) than is sometimes pretended in the 4-dimensional 

counterpart of this situation. Probably this should be taken as a warning in 4-dimensional 

gauge theories. 
The upper bounds/z ~ 5000 for the (1 + 3 + 5)-particle spin curves and/z ~ 104 for 

the (2 + 4 + 6)-particle current curve are fully consistent with the intrinsic estimate for 
the validity of the truncated form factor results given at the beginning of this section. 
These upper bounds of the perturbative regime, of course, are expected to move up as 

higher particle form factor contributions are taken into account. Indeed, the hypothesis of 
asymptotic freedom is that they approach infinity, so that the entire high energy regime 

is perturbative. As emphasized in the introduction, the issue of asymptotic freedom can 

only be addressed if the high energy properties of the theory can be explored by means 
of a reliable technique independent of PT. Guided by the form factor results we formulate 
in the next section a conjecture about the structure of the n-particle spectral densities 
for general n. Assuming the validity of this conjecture the extreme UV behavior of the 
two-point functions can be computed. 
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The nmparticle contributions to the spectral densities appear to follow a remarkable 
"self-similarity" pattern. Suppose the scalarized n-particle spectral density of one of 
the four local operators considered to be given. Can one - without actually doing the 
computation (which for large k is practically impossible) - anticipate the structure of 
some k > n particle spectral density? We propose that the answer is affirmative and for 

large n and A > 1 is given by 

m 
p(an)(/z) ~ -~(Ix/m)l/a'+"p (n> (m(Ix/m)'/2+") , (5.1) 

where m is the mass gap and the exponents y and ce are given below. Taking ~ = 
(n + 2)/n for example yields a candidate for the (n + 2)-particle spectral density. In the 
following we shall first give a precise formulation of the scaling law (5.1) and present 
evidence for it. In Section 5.2 we then promote (5.1) to a working hypothesis and 
explore its consequences. The results obtained have an interesting interplay with both 
PT and non-perturbative MC data. All pieces of information are found to be consistent, 
which we interpret as further supporting the hypothesis. 

5.1. Evidence for self-similarity and scaling 

Since the leading asymptotics of the spectral densities is given by 1//z it is useful 
to consider I,~p (n) (/Z) instead of p(")(/z). Further, a logarithmic scale is convenient so 
that we are lead to introduce 

R}n)(x) :=meXp}")(meX), lnn ~ x < o<z, l = 0 , 1 .  (5.2) 

Here l = 0, 1 as before corresponds to the EM tensor and TC density and the spin 
and current series, respectively. The graphs of these functions are again roughly "bell- 
shaped": starting from zero at x = l n n  they are strictly increasing, reach a single 
maximum at some x = s#~ n) > Inn and then decrease monotonically for all x > sc~ ~). 

(n) (n) The position (}") of the maximum and its value M} n) := R t ( ~ : l )  are two important 
characteristics of the function, and hence of the spectral density. For n ~< 6 these data 
are collected in Table 1. 

The content of the scaling law (5.1) is most transparent if the ordinate and abscissa 
of the graph are rescaled such that both the value and the position of the maximum are 
normalized to unity. Thus define 

1 ~ ( n ) . ~ ( n )  . 
Yl(n)(Z):=~-~t(n)t~t ~¢;1 Z), (lnn)/sc~n)<z<oo, / = 0 , 1 .  (5.3) 

In order to have a common domain of definition we set Yt(m(z) = 0 for 0 ~< z ~< 
(In n)/~}n). The proposed behavior of the spectral densities is as follows: 
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Table 1 
Positions and values of the maxima 

2 0.953 317.3 1.155 27.33 
3 2.726 27.95 3.613 10.76 
4 4.720 7.870 6.631 6.736 
5 6.945 3.134 10.06 4.911 
6 9.344 1.517 13.79 3.867 

Scaling hypothesis: 
(a) (Self-similarity) The functions Yt~n)(z), n /> 2 converge pointwise to a bounded 

function I~ (z) .  The sequence of kth moments converges to the kth moments of 
Yt(z) for k +  l =0,  1, i.e. 

lim Yt(")(z) =Yt ( z ) ,  z ~ O, 
n ---* o Q  

O 0  O 0  

,im f f (5.4) 
o o 

(b) (Asymptotic scaling) The parameters ~:~n) and M~ ") scale asymptotically according 
to powers of n, i.e. 

~tn , M} n) ~ Ml n-r ' .  (5.5) 

Note that the convergence in (a) is weaker than uniform convergence. Feature (a) 
in particular means that for sufficiently large n the graphs of two subsequent members 
Y/("-J)(z ) and Yt(n)(z ) should become practically indistinguishable. This appears to be 
satisfied remarkably well even for small n = 4, 5, 6, as is illustrated in Figs. 5 and 6. 

To substantiate proposal (b) let us prepare some further characteristics of the functions 
R} ") (x),  l = 0, 1: its integral, its first, respectively minus first moment, and the strength 
of the asymptotic decay. In formulae 

O O  OO 

o o 

O0 0<3 

l 

o o 

A (O n, AC n) 
g(on) (x )  ~') x4 , x "--+ oo,  g l n ) ( x )  ,~ x2 x ---+ oo. (5.6) 

In practice of course one will evaluate the constants c~ n) and h~ ") directly as ( n -  1 )-fold 
unconstrained integrals, as in (3.23), rather than first computing the spectral densities 
and then evaluating their moments. For n ~< 6 the results for these constants are listed 
in Table 2. 
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Fig. 5. Illustration of the self-similarity property of  the rescaled l = 0 spectral densities. The plots show 
y0 (") ( z ) (dashed)  compared with Y0 ("+1) ( z ) (solid) for n = 2, 3 ,4 ,  5. 
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Fig. 6. Illustration of the self-similarity property of the rescaled l = 1 spectral densities. The plots show 
(n) (n+l) YI (z )  (dashed) compared with YI (z)  (solid) for n = 2,3,4,5.  

(1) = ~- /4 .  The decay constants A} n) are difficult to c o m p u t e  In addit ion one  has c 1 
directly s ince  the truly asymptot i c  behavior  o f  the spectral densit ies  sets in only  at 
as tronomica l ly  large energies  /x ,-~ me 1°n5/4. U s i n g  the exact  relations ( 3 . 2 4 )  they can 
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Table 2 
Integrals, d: first moments and decay constants 

(n) 102h(n) A(O n) (n) 10h]n) A(I n) YI ¢11 C 1 

2 1.6027 8.231 0.727 1.009 3.958 1.938 
3 0.4104 5.251 1.866 1.140 1.693 4.977 
4 0.1943 4.140 3.308 1.242 1.054 8.821 
5 0.1117 3,430 5.006 1.327 0.761 13.35 
6 0.07185 2.930 6.938 1.400 0.594 18.50 

however accurately be computed from the integrals cl m. 

Making use of  the convergence (5.4) one can deduce scaling laws for the quanti- 

ties (5.6) .  To this end we introduce the corresponding quantities for the universal shape 

functions ~ ( z )  

o o  o o  

• / , /  c o = 12~ d z Y o ( z ) ,  c I = d z Y j ( z ) ,  

o o 

h o dz  z Y o ( z ) ,  h l  = z 

o o 

A~ A~{ 
t o ( z )  ~ - ~ z ,  z - +  0 0 ,  r~ ( z ) ~ - i f ,  z - +  ~ .  (5.7) 

For large enough n we can approximate R~") (x )  pointwise and with respect to the 

moments by 

nTt ~ " 
(5.8) 

Combining ( 5 . 5 ) - ( 5 . 8 )  one finds 

C~o.) _ c~Mo~:o.'+~o-.o c ?  ) ~ ¢ i M l e t . ' + ~ , - ~ ,  

h(on)~h~MosC~n 2+2ao-~'o, hln) ~ h i M , n - "  , 

A(o n) ~ "~o'v' 0~'0 ' ' '4"4+`a°-y° , AI n) ,-o ATMisCZn 2+2'~,-~'," (5.9) 

Two important constraints arise from the non-linear relations (3.24) for the asymptotic 

a(n) Combined with (5.9) this yields the following relations among decay constants , l  l . 

the parameters: 

* F ( a l  + 1) 2 
Yl = 1, - - A t  - 7r (5.10a) 

(c~)2Mt F(2at +2) '  

Y0 = 3 + 4ao - 2a t ,  A~Mo~o = 3 A ~ M , ( ~ .  (5.10b) 
8 
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(5.10b) follows trivially from AI n) 3-a(n) To arrive at (5.10a) we approximated 
= 8 , ~ 0  • 

1 
n - I  

P 

Z [ k ( n -  k)]~  ~ n 2 j z + l / d y [ y ( 1  - y ) ] U ,  
, I  

k=! 0 

which is valid for large n. The exponents Yt are determined in terms of ee0 and eel, 

which will later turn out coincide, 

a0 =eel =: ee. (5.11) 

Re-inserting (5.10) and (5.11) into (5.9) one arrives at a simplified set of scaling 

relations. In particular, 

1 1 
¢ x a  - -  • 

h~ ") h ln '  hi .= hjM],  

1 1 h0 := o 0~0, - -  h*M ,.2 
h (o n) ho n, 

[C(on)] -l/(2+a) ,'~con, co := (c~Mo(o) -1/(2+a), (5.12) 

are predicted to scale linearly with n. The same holds for the following two ratios, 

which provide a convenient way to determine the remaining exponent a from the slope 

of the linear function 

A~ n) 8 A(o n) F ( a +  l )  2 
[cl")]-----S = 3 [cl")]z ~ ~ r (2e e  + 2) n" (5.13) 

The predicted linear scaling in (5.12) and (5.13) appears to be satisfied fairly well 
even for small n = 4, 5, 6 as is illustrated in Fig. 7. 

The fits are always two-parameter linear fits (slope and ordinate) on the largest three 
data points n = 4, 5, 6. Using (5.13) the exponent ee turns out to be 

ee ~ 0.273. (5.14) 

Using this value in the fitting of [ C(o n) ] -1/(2+,) the predicted linear scaling is confirmed. 
The quality of the 1/h(o n) fit confirms (5.11). For later use let us also note the values 

of the slopes in (5.12), 

I/hi  = 3.674, 1/ho = 4.988, co = 0.5643. (5.15) 

Similar fits can be made for the values and the positions of the maxima, given numeri- 
cally in Table 1. They are similarly convincing; we refrain from displaying them. 

5.2. Summation of n-particle contributions 

Having at hand candidate expressions for the n-particle spectral densities as given 
in (5.8), one can evaluate their sum. Suppose that for n < no the n-particle spectral 
densities have been computed explicitly; in our case no = 7. Decomposing the sum 
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Fig. 7. Two-parameter linear fits for the n-dependence of various parameter combinations. 

no-- 1 oo 

Rt(x) = Z R} n,(x) + ~ R}n'(x)' (5.16) 
n=2-I n=no 

we wish to evaluate the second term. Using (5.8) the sum can be expressed in terms of  
a suitable integral transform of  the shape function ~ ( z ) .  Here we shall need only the 
large x asymptotics of  the sum, in which case it is sufficient to approximate the sum 
over n by an integral. One finds for the large x behavior 

OQ 

Z= R~n)(x) ~ 1 MI+ o~----~l \~l,I ( X ~ ('-'r,)/(l+,~,) f dZz z'('r'-I)/(l+az)Yt( 
n=no 0 

~ ) ~  X ~ (2K3,~ 

(5.17) 

where the corrections are at least one power down in x. Clearly the physical spectral 
densities can be evaluated similarly; summing only over odd/even particle numbers will 
simply result in an extra factor 1/2 in the asymptotic expression (5.17).  In particular 
in the isospin 1 case the exponent Yr = 1 yields the asymptotics RI (x)  --~ A~. One can 
show that the asymptotics of  Ro(x) must always be down by two orders in x, compared 
to that of  Rl(x). This is related to, although not a direct consequence of  (3.22).  One 
concludes that the x --* c~z asymptotics in the isospin zero case must be Ro(x) --~ Ao/x 2. 
Comparing with (5.17) this requires a0 = oq, as claimed before. Moreover, one obtains 
the relations 

Acurr = 77"Aspi  n = hl (5.18a) 
4 2(1 + a ) '  

AE M = 4Atop _ h0 (5.18b) 
2(1 + a ) '  
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which have various interesting consequences. (5.18a) relates A cur~ to A spin. This is inter- 

esting because A curt is accessible to perturbation theory, while A spin is some previously 

unknown non-perturbative constant, which via (2.38) and (2.40) determines the short- 
distance normalization of  the spin two-point function. On the other hand, both constants 

also get expressed in terms of  the scaling hypothesis. Using (5.14) and (5.15) one finds 
(A curt) sn = 1/9.3553 = 1.007/37r. Since perturbation theory gives (A curt) PT = 1/3zr one 

sees that not only the functional form of the asymptotic behavior obtained from the re- 
summation of  the spectral resolution agrees with that predicted by PT, but also the 

numerical value of  the leading coefficient agrees with an accuracy better than 1%. De- 

pending on the viewpoint one can interpret this as supporting the validity of  PT and/or  
our scaling hypothesis.5 Accepting the PT value for A curt we get the exact prediction 
for the non-perturbative constant A1 = A spin anticipated in (2.41),  

4 
~-1 = Aspin = ~ = 0.135095. (5.19) 

The similar behavior of  the spin and current two-point functions and spectral densities 
for large energy is again an 0 ( 3 )  speciality, as can be seen from (2.42).  

A similar pattern underlies (5.18b).  Now both A EM and A top can be computed in PT. 

The results are given in (2.60) and (2.65) and yield in particular (AEM)pT = 4(At°P)pT. 

The non-perturbative result now is that this transfers to relations for the exact spectral 

densities at all energy scales, 

pEM (/Z) = ~ p(o 2k) (tZ), 
k=l 

which is the announced result 

1 X-~ (2k+l)(.) 
ptOp(/~) = 4 , ~ P o  ~ ' 

k=l 
(5.20) 

(2.56).  Consistency then requires that the numerical 
value for A EM computed via the scaling hypothesis coincides with the perturbative 
value. Combining (5.14),  (5.15) and (2.65),  one finds 

(AEM)sH = 1/12.700 = 0.989/47r, (AEM)r,r = 1/4zr. (5.21) 

Note that here the matching between full and perturbative dynamics already concerns 

a l - loop coefficient and is accurate to 1%. Again this cuts both ways, supporting the 
validity of  PT and/or  our scaling hypothesis and thus also the proposed normalization 
constant A0 = 1/4  of  the topological charge density operator. 

Finally, consider the central charge as defined in (2.18).  In the spectral resolution it 
again decomposes into a sum of  n-particle contribution. The first few terms are given in 
Table 2, i.e. 

5 The extrapolation based on the scaling hypothesis contains a (negligible) numerical error as well as a 
systematic error. The latter is due to the uncertainty introduced by doing the fits for moderately large particle 
numbers n = 4, 5,6. In principle there may also be subleading (not powerlike) terms in the scaling laws (5.5). 
A rough feeling for the size of the systematic errors can be obtained by ad hoc changing a in (5.14) to 
a = 0.25. One finds (Acurr)sH = 1.026/37r, (AEM)sH = 1.008/4*r, CSH = 1.998. 
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Co{2} = 1.603, Co ~4) =0.194, Co (6) =0.072, 
0¢3 

P 

C (n) 127r / d/z p~ n) (/z). (5.22) = 

, J  

0 

The remainder of the series can be evaluated by means of the scaling hypothesis. 
Using (5.15) and (5.14), one finds 

(2) ~-~(2kco - 0.200)-(2+'~) 1.997. c s .  = Co + Co + Co + = ( 5 . 2 3 )  
k = 4  

Here we also used the ordinate of the linear fit. (Tree level) PT predicts cr,r = 2, 
corresponding to the two unconstrained bosonic degrees of freedom. The form factor 
computation shows that this is compatible with the non-perturbative low energy dynamics 
of the model and provides further support for the scaling hypothesis (see the footnote 

on page 453). An alternative non-perturbative consistency check is provided by the 

thermodynamic Bethe ansatz [43] and also yields c = 2. Let us point out that the value 
c = 2 does not carry much information about the nature of the UV limiting CFT. For a 

number of reasons it cannot be the Gaussian c = 2 model. 

5.3. Towards the exact two-point functions 

The scaling hypothesis also allows one to numerically compute the two-point functions 

at all energy/length scales. In coordinate space this simply amounts to performing 
the integral in the spectral representation, once the full spectral density is available 

via (5.16) and (5.8). In momentum space one can combine Eqs. (2.10) and (5.8) to 

evaluate the sum over all n-particle contributions to the functions l (p ) ,  basically giving 
the Fourier transform of the two-point function. The results are described in Ref. [44]. 

6. Conclusions 

In this paper we studied the two-point functions of the four physically most interesting 
operators in the 0 ( 3 )  NLS model. We have chosen the 0 ( 3 )  model because it is the 

simplest 2-dimensional theory that resembles in many aspects QCD. Concerning the 
on-shell features various exact results, in particular the exact two-particle S-matrix are 
known [25,24], due to its remarkable integrability properties. On the other hand, there 
exist a large number of MC studies of the model [28,22,36,15,37-39], not making use 
of this integrability. Here we employed the form factor bootstrap method for integrable 
QFFs to compute off-shell features that can be compared both with PT and with MC 
data. A simplifying feature of the 0 ( 3 )  model (as compared, say, to the higher O(N)  
models) is that the computation of the form factors is relatively straightforward due 
to their essentially polynomial nature. Once the form factors are known, the two-point 
functions can be evaluated in terms of a spectral resolution; that is as an infinite sum 
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where multiple integrals of the squares of the n-particle form factors enter, the sum 

running over all particle numbers n. In practice one has to truncate this infinite sum 
after the first few terms. In models with a diagonal S-matrix and a power-like approach 
of the UV limit, application of this technique showed extremely fast convergence of 
the truncated sum [10-12]. 6 In an asymptotically free theory one expects less fast 
convergence, because the approach to the asymptotic form is only logarithmic. Thus, in 
order to really check the validity of PT (which has been questioned [3,4] ) we needed 
to extrapolate our results beyond the largest particle number, presently six, for which 
we carried out the computations explicitly. The extrapolation was based on a novel 
scaling hypothesis. Using this hypothesis we have been able to compute the extreme 
UV properties independent of PT. Remarkably we found very good agreement with PT: 
within 1% for a RG improved tree-level coefficient in the case of the current and also 
within 1% for a RG improved l-loop coefficient in the case of the EM tensor. This is 
very strong evidence for PT. The agreement between our extrapolated data and PT also 
indirectly confirms the proposed exact value of the perturbative A parameter [ 16]. On 
the basis of the evidence presented in Section 5 we regard this scaling hypothesis as 
very plausible, although an analytical proof remains to be found and would be highly 
desirable. On the other hand, the nature of this hypothesis is completely independent of 
the assumptions underlying the derivation of the usual RG improved expressions based 
on PT, so that the agreement of the results is still remarkable. 

A further result is the exact determination of two, previously unknown, non-perturba- 
tive constants A0 and ,~1. Using the values of these numbers, we can write the exact 
three-particle matrix element of the properly normalized topological charge density 
operator q ( x )  as 

(01q (0) l a3, 03; a2, 02; a l ,  01) = ~ [m 2 - M ( 3 ) ( 0 3 , 0 2 ,  01 )2] 1/t (03 ' 02,01 )~:aaa2a,, 

(6.1) 

where M(3)(03, 02,01) is the three-particle invariant mass. Further the short-distance 
expansion of the spin two-point function is now unambiguously fixed to be 

1 
sspin(x) = ~ 3  (lnmr)2 + O ( ln lnmr .  lnmr) , (6.2) 

where m is the mass gap and r = ~ + x~. The values of the overall constants in (6.1) 
and (6.2) follow from the relations 4A curr = 'n-A spin, A TM = 4A t°p in (5.18) plus some 

condition on the n-particle spectral densities. This condition must guarantee that the 
sum over all even/odd particle contributions behaves according to PT for large/z. Our 
scaling hypothesis is sufficient for this, but probably also a slightly weaker condition 
would do. 

Finally, we remark that upon perturbation of the model, e.g. by a current-current 
interaction, our scaling hypothesis implies scaling laws [44] for particle production 

6 Nevertheless, we expect the convergence still to be non-uniform in the sense that the UV behavior of the 
infinite sum is different from that of each partial sum. 
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processes that are analogous to the KNO scaling in QCD [45]. We also expect that 
scaling hypotheses of a similar type can be formulated in many other 2-dimensional 
models, giving simultaneous access to their off-shell properties at all energy/length 
scales. 
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Note added 

Since submission of the paper the preprint [41 ] appeared, showing that the proposed 
exact value of .41 is consistent with MC data, strong coupling estimates and the 1IN  

expansion. The MC data in Figs. 1 and 2 have been extended to p / m  ~,, 80 [40]. In 
Ref. [39] Monte Carlo evidence against the Kosterlitz-Thouless scenario is presented. 
A confirmation of the proposed value for a0 is contained in Ref. [44]. 

Appendix A. List of form factor squares 

Here we list the results for the form factor squares for the EM tensor and TC density 
and the current the spin series up to six particles. The corresponding Mathematica files 
can be obtained from the authors upon request. The squares are boost invariant symmetric 
polynomials in the rapidities and are therefore conveniently described in terms of a basis 

in this space of polynomials. 
Let P(")(N, p) denote the space of homogeneous symmetric polynomials in n vari- 

ables that are of total degree N and partial degree p. By partial degree we mean the 
power with which an individual variable enters. A basis for p(n)(N, p )  can be obtained 
as follows. For fixed n let o-I n) . . . . .  on(n) denote the elementary symmetric polynomials 

in 81 . . . . .  On, i.e. 

o'~")= ~_, ei,...ei,. (A.1) 
ij <...<ik 

Let .4 = (.41 . . . . .  ,'Iv), .41 ~< .42 ~< • .. ~< .4,, be a partition of N into p parts less or equal 
to n, i.e. Y]i .4i = N, 1 ~ .4i ~ n ,  I ~ i ~ p. Running through all those partitions, the 
assignment 
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(,Al,. Zip) > t r  (n) o "(n) 
" " ' A l  " " " A v 

provides a basis of  P ( n ) ( N , p ) .  However, these functions are not boost invariant and 
one would like to have a description of the boost invariant subspace (n) Piny ( N , p )  of 
P(") ( N , p ) .  Boost invariance can be incorporated by switching to symmetric polynomi- 
als 7-(n) defined by 

7-(kn)(o, . . . . .  On) = o.~n)(O1 . . . . .  0".), 2 < k < n, 

7"1 (") = lo.(n)n 1 , OJ = Oj - l(Oln +""  + 0.). (A.2) 

All monomials in the 7-(kn)'S (k > /2)  are manifestly boost invariant. The price to pay is 
that the partial degree is no longer manifest. For a monomial in the o'~n)'s the partial 
degree is simply given by the number of  o.(k n) factors. This is no longer the case for 
monomials in the 7"(k n)'s. In fact, inverting the relation 

k 

k " , + Z  j=2 
k = 1 . . . . .  n (A.3) 

(here and henceforth the superscripts (n)  are suppressed), one sees that 7-k = ( --0"1 ) k (nk) 
× ( 1 -- k )n  -k + . . .  +o'k. Thus for a monomial in the 7-k's the total and the partial degree 
coincide. Linear combinations of  such monomials, however, may have a partial degree 
that is less than their total degree. 

The general structure of  the polynomials G~ ") (0)  can now be described as follows: 

( n )  
= + (0) + . . .  +  Ct;N(0), 

(n) (n) 
Gl;2k(O) E Piny ( N  - 2k, p ) .  (A.4) 

The overall leading terms G};~)(0) are given in (3.18). Below we list the results for the 

polynomials G~ ") (0) ,  n ~< 6 for the spin and current and the EM tensor and TC density 
series. 

Spin and current: 

G(li)(O) =1, GI2)(O) = 2 ,  GI3)(0) = 12[-7-2 +'~r2], 

614)(0)  = --4[67- 3 + 97-~ + 407-27-4] q- 87r2 [257- 2 + 447-41 -- 448~'47-2 + 27277"6, 

c 1 5 ) ( 0 )  = [_487-3, 2 _ 727- 5 + 1447-47-4 + 527-27-27-4 q-- 3527-227- 2 - 6407-34 

+6607-~r37-5 + 32007-37-47-5 + 45007-27- 2 ] - 4~r 2 [ 367-52 - 647-27-32 

+692r37-4 + 2957-27"4 + 807-27- 2 -q- 29257"27-37-5 + 43757- 2 ] + 167r4[ 1607- 4 

+977-27-~ + 9097-~7-4 - 207-42 + 19507-37-5] - 167r619787-~ + 3807-~ 
+19657-27-4] + 64~rS[6787-22 + 3957"4] - 55120~I°7"2 + 249607r z2, 
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GI6)(0)  =4[_247-3r27- 2 4 2 4 3  23  1767.27.4_ 320745 - 367"37"4 + 727"27"4 + 267"27"37"4 + 

+727"~7"~7"5 + 1087"~r5- 2287"47"37"47"5- 577"27"~7"47"5- 4467"27"37"42r5 

+22087"37"437"5 + 108rSr 2 -8017"27"27" 2 + 11827"37"47" 2 - 36157"27"47" 2 

-4307"27"427"2 + 18007"27"37 -3 + 56257" 4 - 1807"47-27" 6 - 6217"27"47"6 

+4807"~7-47"6 + 20827-227-27"47-6- 23447-~7-27-6- 17107-27"27"6- 1287"27"437"6 

+32047"~7"37"57-6 + 37537"~7-57-6- 7447"27-37-47-57"6 + 144907"27"27"6 

-349507-47-27"6 - 2887-47-62 + 132307"27-327" 2 - 186967"27"47"~ + 404647-27" 2 

+488707"37"57"62 + 619927-27-63 ] - 47r z t727-37- 4 + 1087" 6 - 3847"47- 7"4 

2 2 2  22487"37"43 + 18467"27"43 _ 15047"27"4 -4087-27"47-4 + 6007"57-] + 267"27"37" 4 + 

-2647-25'r37-5 - 5827-27-~7-5 - 35187-~7-3"r47-5 - 65257-~7-47"5 + 82587"27"37"27"5 

+55747"47"2- 116857"27-27"2 + 222207"27"47-2 

-144507"27" 2 + 326257"37"~ 

+10567"67-6 + 41107-~7-27-6 + 8917"47"6 + 27687"47-47"6 + 237667-27-27"47-6 

-544967"27-27-6 + 308487"437"6 + 861907"27"37"57-6- 540907"37"47"57"6 

+786007"27"27"6 - 476887"~7-62 + 1364047"~7- 2 + 514327"27"47"62 + 3780007" 3] 

+ 16~4[ - 1267"~7" 2 - 247"~7" 4 + 3367"67"4 - 12727"~-r27" 4 - 10207-47-4 

+38187"47"42 + 37697-27-~7"42 + 4267"~7-43 + 3767" 4 -6127"47"37".5- 62917"27"]7"5 

+63027"27"37-47-5 + 8767-37"27"5 + 214687"~7"2- 1357"~7"52 + 231857"27"47"2 

-k-56407"~7"6 -I- 293527"27"27-6- 291087"237"47"6 + 191497"~7-47-6 

-414527"27"27"6 + 1420747"27-37"57-6 + 330757"27"6- 939667"27"~ 

+1598827"47-62 ] - 82r614087"~ - 44827-47"2 - 65647"27" 4 + 182767"~7"4 

+ 100167-~'r~'r4 + 454847-~7- 2 + 203017-27- 2 - 51167-27"43 + 246287"~7"37-5 

-377557"~7-5 + 1174537"27"37"47-5 + 2640357-27"52 + 726757"47" 2 + 692367"47"6 

+3811477"27"27"6 - 5078727"27-47-6 - 176287"27"6 + 6236557"37"57-6 

-4184047"27"~ ] + 327-r 8 [29647" 6 - 34447"37"2 - 61387" 4 + 409007"47"4 

+309847"27"27"4 + 262117-27-42 -10487-43 + 694837-27-37"5 + 629737"37"47"5 

+ 1813657-27"2 + 339967-~7"6 + 1821877-~7"6 - 3539947"2T47"6 - 1297177"6 z] 

- 3 Z ~ r ' °  t313487"95 + 142057"927"~ + 1779307"37-4 + 607727"27"4 + 186867"27" 2 

+2376567-27"37"5 + 1849757" 2 - 63867"~7"6 - 3570827"47"6] 

+32 - 2t 1684127" 4 + 78879r27" 2 + 4188567"27-4 - 87727" 2 + 2608117-37"5 

-567847"27"6] - 16~rt4[ 10204607-23 + 1778557- 2 + 10479147"27"4 

+193627"6] + 128~1612201097" 2 + 705137"4] - 25589760¢r~87"2 

+92655367-r 2°. 



J. Balog, M. Niedermaier/Nuclear Physics B 500 (1997) 421-461 459 

EM tensor and TC density: 

| G(3) (0)  = 2, 
G ;  2) (0 )  77.2 __ 47"2 

G(O 4) (0)  =4[  12r4 + r22] - 7r2327"2 + 287r 4, 

(7(05) (0)  = 4 [ 2r2r 2 - 6r~r4 + 15r~r4 - 40r2~4 - 25r2r3r5 - 625r52 ] 

+8~r213r 4 - l lr2r] + 73r~r, + 60r 2 + 275r3rs] - 567r418r 3 + 5r~ 

+40r2r4] + 8~r61253r22 + 270r4] - 32807rSr2 + 16807r ~°, 

G~o6)(0) =414r2r3r42 2 2 _ 12r3r 3 + 30r2r 3 _ 807.2r 4 _ 127.2r~7.5 + 387.37.3r4r5 

--99r~r4r5 + 246r2r3r24r5- 18r4r 2 + 165r2r2r 2 -- 320r2r4r 2 

--450r2r 2 4- 1125r3r~ -b 30r3r2r6 + 8 1 r 4 r 6 -  80r4r4r6-  234r2727476 

+212,2r2r6 - 48,34r6 - 438r~r3rsr6 + 1530r3r4rsr6 - 9300r2r2r6 

-48r3r26 - 5022r2r  2 + 10332r2r4r~ - 59940736] + 87r 2 [6r22 r4 

-32r32r2r4 + 36rgr4 + 50r4r24- 197r2r2r 2 + 394r22r 3 + 2 1 6 r  4 

--22r4r3r5 + 3r2r~r5 -- 448r2r3r4r5 -- 390r3r2r5 + 5507-3r 2 

--2325r~r 2 + 4225r2r4r 2 + 88r52r6 + 246r~r~r6 + 444r~r4r6 

4-16837-274r6- 502072,276 q- 112207-2raT5,6 q- e2125, ,6- 10854r22r~ 

+ 8 7 3 0 r g r ~ l  + 8~r 4 [42r4r~ - 72r2r  4 - 112,5,4 -Jr- 8327"227"27"4 

- 1804r3r42 + 179r23 r2 - 1696r2r34 + 236r3r3r5 + 2943r~r5 

- 3 8 0 9 r 2 r 3 r 4 r 5 -  8 4 3 5 r 2 r ~ -  13075r4r52 - 1952r4 r6 -  10899r2r2r6 

+ 13288r2r4r6 + 5008r~r6 - 46035r3r576 + 38916r2r62 ] + 16,6[  34r 6 

- 4 8 0 r 3 r  2 - 597r 4 + 1790r4r4 + 424r2r~r4 + 4665r2r42 + 1182r34 

+3281r2r3r5 + 9435r3r4r5 + 17425r2r 2 + 2692r3r6 + 17979r2r6 

-29530r2rar6 - 25185r~] + 32¢rS[-Sa0r~ + 291r~r 2 - 6338r3r4 

-2488r~r4  - 4222r2r42 - 9908r2r3r5 - 9775r~ + 698r22r6 + 18322r4r6 ] 

+64¢rl°[2308r~ + 1170r2r~ + 9556r~r4 + 1012r42 + 6345r3r5 

-1980r2r6]  - 167r12135992r3 + 7683r 2 + 53924r2r4 + 372r6] 

+327r 14 [ 36053r~ + 152417"4] - 1148928vr16r 2 + 4401287r 18. 
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