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Abstract

Multi-particle form factors of local operators in integrable models in two dimensions seem to have the
property that they factorize when one subset of the particles in the external states are boosted by a large
rapidity with respect to the others. This remarkable property, which goes under the name of form factor
clustering, was first observed by Smirnov in the O(3) non-linear σ -model and has subsequently found
useful applications in integrable models without internal symmetry structure. In this paper we conjecture
the nature of form factor clustering for the general O(n) σ -model and make some tests in leading orders of
the 1/n expansion and for the special cases n = 3,4.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we will investigate certain properties of form factors of integrable models in two
dimensions. This class of models allow a unique field theoretical insight because they admit spe-
cial non-perturbative methods to their solution known as the S-matrix bootstrap approach [1,2].
In particular once the spectrum of stable (massive) states has been identified a well-motivated
S-matrix can be postulated. Going further one can then attempt to solve equations for the form
factors of local operators and finally compute correlation functions of these operators by satu-
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rating with a complete set of intermediate states. There are many examples of such applications.
Of particular interest are the uncovering of structural relations which may have corresponding
validity or inspire similar relations in models in higher dimensions.

We will in this paper consider mainly the non-linear O(n) σ -models which have the additional
interesting feature that they are asymptotically free. In particular for the case n = 3 many form
factors are explicitly known and one can compute vacuum 2-point functions up to rather high
energies and compare the results with numerical MC and analytic perturbative results [3].

One of our main motivations for the present paper arose from our recent work on structure
functions in these models [4]. A result that particularly intrigues us concerns the small Feynman
x behavior (Q2 fixed); we found that this was of the form f (x)A(Q2) where the behavior of
f (x) at small x reflects the high energy behavior of the scattering amplitudes and the function
A(Q2) is determined in terms of the vacuum 2-point function. We speculated that this structure
may be universal in asymptotically free field theories, in particular for QCD.1 One of the key
properties in the derivation of the result (for the σ -model) is the property of clustering of form
factors, and it may be that at least this property has some analogy in QCD.

Roughly, form factor clustering says that if one considers a multi-particle form factor of a
local operator and one boosts a subset of particles A uniformly with respect to the rest B by a
large rapidity �, then to leading order the form factor factorizes into a function of � times a
product of two functions, one depending only on the rapidities of A and the other only on the
rapidities of B . The functions appearing here are again themselves form factors.

To our knowledge the first observation of FF clustering was by Smirnov [1] for the O(3) non-
linear σ -model. Thereafter investigations of this structure were mainly pursued for S-matrices
without internal symmetry structure (see e.g. [5–12]). Recently it was used in the construction of
local operators in the sinh-Gordon model by Delfino and Niccoli [13]. FF clustering appears to
be an extra constraint on form factors which can be imposed in addition to the usual axioms. Its
main application so far has been to identify the operator associated with a particular solution of
the FF equations i.e. clustering can be useful in model building.

A systematic study of clustering properties for models with internal symmetry has not ap-
peared in the literature so far. It is the purpose of this paper to make steps to fill this gap for the
case of the O(n) non-linear σ -models. In order to be able to make non-trivial tests of the cluster-
ing properties of the form factors we first had to work out some σ -model form factors explicitly.
In particular while considering the test in O(4) we had to work out details of the 3-particle spin
form factor and this is presented in Appendix D. While the structure (a tensor product of SU(2)
form factors) was given previously by Smirnov [14], he only considered the case of form factors
with an even number of particles. We also work out a number of form factors in leading orders
of the large n expansion both by applying bootstrap techniques for this case and by the stan-
dard saddle point expansion of the functional integral. A by-product of our investigation is the
verification of the (expected, but non-trivial) equivalence of the two methods.

The organization of the paper is as follows. In the next section we give a brief introduction to
the model, in particular the S-matrix is described and form factors of some familiar operators are
defined. In Section 3 we remind the reader of the FF axioms, give the 2-particle form factors of
operators introduced in Section 2 and consider the specific case of the 3-particle spin form factor.
In Section 4, for comparison, we first briefly review FF clustering for models without internal
symmetry. Thereafter we consider the structure of FF clustering in the O(n) non-linear σ -models.

1 It holds for example in approximations like naive vector meson dominance.
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We motivate an ansatz for the general form for various cases encountered, and conjecture a
relation of the leading FF clustering behavior to the anomalous dimensions of the operators which
is reminiscent to the form of operator product expansions valid at short distances. In Section 5 we
consider solutions for the form factors in leading orders of the 1/n expansion, and in Section 6
we verify that these solutions are indeed identical with results derived from the quantum field
theoretic formalism. Tests of the ansatz in the leading order of the 1/n-expansion are described
in Section 7 and tests in the particular cases n = 3,4 in Section 8. Various technical details are
relegated to appendices.

2. O(n) non-linear σ -model S-matrix and operators

2.1. The Zamolodchikov S-matrix

Particles in the O(n) model are characterized by their mass M and the quantum numbers
(a, θ), where a = 1,2, . . . , n is an O(n) vector index and θ is the rapidity of the particle in terms
of which the components of its momentum are p0 = M cosh θ and p1 = M sinh θ . When two
particles scatter there is no particle production and the bootstrap S-matrix proposed by Zamolod-
chikov and Zamolodchikov [15] is of the form

(2.1)Scd
ab(θ) = σ1(θ)δ

cdδab + σ2(θ)δ
c
aδ

d
b + σ3(θ)δ

d
a δ

c
b,

where

(2.2)σ1(θ) = −2πiχ

iπ − θ
σ2(θ), σ3(θ) = −2πiχ

θ
σ2(θ)

and

(2.3)σ2(θ) = −θ

θ − 2πiχ
exp

{
iδ(θ)

}
,

where the phase appearing here is given by

(2.4)δ(θ) = 2

∞∫
0

dω

ω
sin(θω)K̃n(ω)

with kernel

(2.5)K̃n(ω) = e−πω + e−2πχω

1 + e−πω
.

We have used the notation χ = 1
n−2 in the above formulae.

It is useful to introduce the invariant amplitudes corresponding to s-channel “isospin” I =
0,2,1:

S0(θ) = nσ1(θ) + σ2(θ) + σ3(θ),

S2(θ) = σ2(θ) + σ3(θ) = − exp
{
iδ(θ)

}
,

(2.6)S1(θ) = −σ2(θ) + σ3(θ),

which obey unitarity SI (θ)SI (−θ) = 1.
The particular cases n = 3,4 are discussed in more detail in Appendix A.
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2.2. Operators and form factors

In this subsection we discuss the form factors of the most important operators in the model,
those of the O(n) spin field, the Noether current and the energy–momentum tensor. We also
define the form factors of a symmetric, traceless scalar operator.

2.2.1. The O(n) field
The conventional normalization of the O(n) field is given by its one-particle matrix elements:

(2.7)〈0|Φa(0)|b, θ〉 = δab.

The general r-particle matrix elements define its form factors by

(2.8)〈0|Φa(0)|b1, θ1; . . . ;br, θr 〉in = Λnf
a
b1...br

(θ1, . . . , θr ),

where

(2.9)Λ3 = 2√
π
, Λn = 1, n > 3.

The physical “in” states correspond to the rapidity ordering θ1 > θ2 > · · · > θr . The form factors
are originally defined for this ordered set of real rapidities but can be extended to the complete
complex (multi-)rapidity space by analytic continuation. See Section 3. We use the state normal-
ization

(2.10)

in〈a′
1, θ

′
1; . . . ;a′

r , θ
′
r |a1, θ1; . . . ;ar , θr〉in = (4π)rδa′

1a1
· · · δa′

r ar
δ(θ ′

1 − θ1) · · · δ(θ ′
r − θr).

2.2.2. The Noether current
The normalization of the Noether current operators J ab

μ (x) is fixed by the equal time commu-
tation relations

(2.11)
[
J ab

0 (0, x),Φc(0, y)
] = itabcd δ(x − y)Φd(0, y),

where

(2.12)tcdab = δcaδ
d
b − δda δ

c
b.

The current form factors are given by

(2.13)〈0|J ab
μ (0)|b1, θ1; . . . ;br, θr 〉in = −iεμαq

αf ab
b1...br

(θ1, . . . , θr ),

where

(2.14)qα = (p1 + p2 + · · · + pr)
α, pi = (

p0
i , p

1
i

) = (M cosh θi,M sinh θi)

and ε01 = −ε10 = 1. The normalization (2.11) implies2 the following result for the one-particle
expectation value:

(2.15)〈c, θ |J ab
μ (0)|d, θ〉 = −2ipμt

ab
cd .

2 Recall that for particles with rapidity θ corresponding to ‘bra’ vectors in the expectation value the form factor func-
tions have to be analytically continued to the complex rapidity value θ + iπ .
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2.2.3. The energy–momentum tensor
The energy–momentum tensor is normalized so that its space integral

(2.16)H =
∞∫

−∞
dx T00(0, x)

is the Hamiltonian of the system with one-particle eigenvalues given by H |b, θ〉 = Mcosh θ |b, θ〉.
The energy–momentum tensor form factors are

(2.17)〈0|Tμν(0)|b1, θ1; . . . ;br, θr 〉in = (
ημνq

2 − qμqν
)
fb1...br (θ1, . . . , θr ),

where ημν is the (1 + 1)-dimensional metric characterized by η00 = −η11 = 1.
The case n = 3 is discussed in further detail in Appendix B.

2.2.4. Symmetric, traceless tensor operator
Finally we define the form factors of a Lorenz scalar and symmetric, traceless iso-tensor

operator Σcd

(2.18)〈0|Σcd(0)|b1, θ1; . . . ;br , θr〉in = f̃ cd
b1...br

(θ1, . . . , θr ).

2.3. Two-particle form factors

Using O(n) symmetry and Poincaré invariance, the two-particle form factors can be parame-
terized as follows

〈0|J cd
μ (0)|a,α;b,β〉 = iεμνq

νψ1(α − β)tcdab ,

〈0|Σcd(0)|a,α;b,β〉 = −iψ2(α − β)t̃cdab ,

(2.19)〈0|Tμν(0)|a,α;b,β〉 = i

2

(
qμqν − q2ημν

)
ψ0(α − β)δab,

where

(2.20)scdab = δcaδ
d
b + δda δ

c
b, t̃ cdab = scdab − 2

n
δcdδab.

It can be shown that the normalization of the operators defined above implies the following
singularity structure for the functions ψi(θ)

ψ0(θ) ≈ −4i

(θ − iπ)2
, θ ≈ iπ,

ψ1(θ) ≈ 2

θ − iπ
, θ ≈ iπ,

(2.21)ψ2(θ) regular at θ = iπ.

3. Form factor axioms

In this section we recall the functional equations [1] satisfied by the scalarized form factors,
which we generically denote by Fa1...ar (θ1, . . . , θr ) in this section. It turns out to be convenient
to introduce the Faddeev–Zamolodchikov operators Z+

a (θ) satisfying the exchange relation

(3.1)Z+
a (θ)Z+(θ ′) = S

yx
(θ − θ ′)Z+

x (θ ′)Z+
y (θ).
b ab
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Now we can define the multi-index matrix Sba1...ar ;b1...br a(β|θ1, . . . , θr ) by the relation

(3.2)Z+
b (β)Z+

a1
(θ1) · · ·Z+

ar
(θr ) = Sba1...ar ;b1...br a(β|θ1, . . . , θr )Z

+
b1
(θ1) · · ·Z+

br
(θr )Z

+
a (β).

The form factor axioms are the following five functional equations [1]

(3.3)Fa1...ar (θ1, . . . , θr ) =Fa1...ar (θ1 + λ, . . . , θr + λ),

(3.4)F···xy···(· · · θ, θ ′ · · ·) = Svw
xy (θ − θ ′)F···wv···(· · · θ ′, θ · · ·),

(3.5)Fa1a2...ar (θ1 + 2πi, θ2, . . . , θr ) =Fa2...ar a1(θ2, . . . , θr , θ1),

lim
ε→0

εFaba1...ar (β + iπ + ε,β, θ1, . . . , θr )

(3.6)= 2i
{
δabFa1...ar (θ1, . . . , θr ) − Sba1...ar ;b1...br a(β|θ1, . . . , θr )Fb1...br (θ1, . . . , θr )

}
,

(3.7)Fa1...ar (θ1, . . . , θr ) = wpFar ...a1(−θr , . . . ,−θ1).

In the last equation wp is the parity of the scalarized form factors. It is equal to unity for all
operators considered above except for the Noether current, for which it is equal to −1.

Next we define a new type of reduced form factors3 by

(3.8)Fa1...ar (θ1, . . . , θr ) = Fa1...ar (θ1, . . . , θr )

Cr(θ1, . . . , θr )
,

(3.9)Cr(θ1, . . . , θr ) ≡
∏

1�i<j�r

cosh

(
θi − θj

2

)
.

Three of the form factor equations for Fa1...ar (θ1, . . . , θr ) are of the same form as (3.3), (3.4) and
(3.7) and the equation corresponding to (3.5) is only modified by a sign factor (−1)r−1. Finally
the residue axiom (3.6) is rewritten as

Faba1...ar (β + iπ,β, θ1, . . . , θr )

=
(

i

2

)r r∏
j=1

sinh(β − θj )
{
Sba1...ar ;b1...br a(β|θ1, . . . , θr )Fb1...br (θ1, . . . , θr )

(3.10)− δabFa1...ar (θ1, . . . , θr )
}
.

3.1. Two-particle form factors

Two of the form factor equations, (3.3) and (3.7), are automatically satisfied by the ansatz
(2.19). The residue equation (3.6) does not apply to two-particle form factors, but one has to
satisfy the normalization conditions (2.21) instead. Finally (3.4) and (3.5) become (I = 0,1,2)

(3.11)ψI (θ) = SI (θ)ψI (−θ)

and

(3.12)ψI (θ + 2πi) = (−1)IψI (−θ)

respectively where the SI are defined in (2.6).

3 Here “new” is w.r.t. those usually defined by factoring out the product of 2-particle scalar form factors e.g as in
Appendix B.
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A useful building block in the construction of form factors is the function

(3.13)�(θ) =
∞∫

0

dω

ω
K̃n(ω)

cosh[(π + iθ)ω] − 1

sinhπω
.

Its main properties are

(3.14)�(iπ + θ) = �(iπ − θ), �(iπ) = 0, �(θ) = �(−θ) + iδ(θ)

and its asymptotic behavior for large positive θ is given by

(3.15)�(iπ + θ),Re�(θ) ≈ −θ

2
K̃n(0) − ln θ

π
K̃ ′

n(0) + O(1).

If in (2.4) we substitute K̃n(ω) by the function k̃α(ω) = −e−παω we get

(3.16)eiδα(θ) = iαπ + θ

iαπ − θ
.

We denote the related building block by �α(θ).
Using the building blocks defined above we find

ψ1(θ) = tanh
θ

2
exp

{
�(θ) + �2χ (θ)

} ≈ c1θ
−χ ,

ψ2(θ) = sinh
θ

2
exp

{
�(θ)

} ≈ c2θ
χ ,

(3.17)ψ0(θ) = −2i

iπ − θ
ψ1(θ) ≈ c0θ

−(1+χ).

Here we also indicate the asymptotic behavior of the form factors ψI (θ) for large positive θ .

3.2. Three-particle form factors

In this section we write down the form factor equations for the three-particle form factors of
the O(n) field operators. We start with the definition

(3.18)f d
abc(α,β, γ ) = Fd

abc(α,β, γ )

cosh(α−β
2 ) cosh

(α−γ
2

)
cosh

(β−γ
2

) .
The form factor equations (3.3)–(3.7) in this special case become (n > 3)

(3.19)Fd
abc(α,β, γ ) = Fd

abc(α + λ,β + λ,γ + λ),

(3.20)Fd
abc(α,β, γ ) = S

yx
bc (β − γ )F d

axy(α, γ,β),

(3.21)Fd
abc(α,β, γ ) = Fd

bca(β, γ,α − 2πi),

(3.22)Fd
abc(β + iπ,β, γ ) = i

2
sinh(β − γ )

{
Sad
bc (β − γ ) − δabδ

d
c

}
,

(3.23)Fd
abc(α,β, γ ) = Fd

cba(−γ,−β,−α).

(3.19) and (3.21) are satisfied by the following ansatz
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Fd
abc(α,β, γ ) = δadδbcX(α − β,α − γ ) + δbdδacX(β − γ,β − α + 2πi)

(3.24)+ δcdδabX(γ − α + 2πi, γ − β + 2πi).

We can also rewrite (3.22) and (3.23) in terms of this single function X. We get

X(u,v) = X(2πi − v,2πi − u),

X(θ, iπ) = i

2
sinh θσ3(θ),

(3.25)X(θ, iπ + θ) = i

2
sinh θ

[
σ2(θ) − 1

]
.

Finally (3.20) is equivalent to

X(u,v) = [
nσ1(v − u) + σ2(v − u) + σ3(v − u)

]
X(v,u)

(3.26)+ σ1(v − u)
[
X(u − v,2πi − v) + X(2πi − u,2πi + v − u)

]
and

X(v − u,2πi − u) = σ2(v − u)X(2πi − u,2πi + v − u)

(3.27)+ σ3(v − u)X(u − v,2πi − v).

4. Form factor clustering

4.1. Models without internal symmetry

We first briefly review clustering properties of form factors for models without internal sym-
metry for which the majority of detailed investigations have been carried out so far. In [9] Delfino,
Simonetti and Cardy studied models defined as perturbations of conformal invariant theories i.e.
those formally defined by the action

(4.1)A = ACFT + g

∫
d2x φ(x),

where the operator φ(x) is of dimension 2δ < 2. Further attention is restricted to those perturba-
tions where an infinite number of integrals of motion survive and the resulting massive model is
integrable.

Consider first the case when there is only one species of massive particle of mass m and 2-
particle S-matrix element S(θ). The cluster hypothesis proposes that multi-particle form factors
of a scaling operator Φ of dimension 2δΦ < 2 in such a theory factorize according to

lim
Λ→∞FΦ

r+l(θ1 + Λ, . . . , θr + Λ,θr+1, . . . , θr+l)

(4.2)= 1

〈Φ〉F
Φ
r (θ1, . . . , θr )F

Φ
l (θr+1, . . . , θr+l).

Actually, (4.2) is only valid for operators corresponding to primaries in the conformal limit. More
generally, conformal operators can be classified as

(4.3)LmL̄m̄Φ,

where Lm is a combination (at level m) of the left Virasoro operators and similarly L̄m̄ is built
from right Virasoro operators. Identifying operators in the massive theory with their conformal
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limit, the generalization of (4.2) for descendant operators reads [16]

lim
�→∞ e−m�F

LmL̄mΦ
r+l (θ1 + �, . . . , θr + �,θr+1, . . . , θr+l)

(4.4)= 1

〈Φ〉F
LmΦ
r (θ1, . . . , θr )F

L̄mΦ
l (θr+1, . . . , θr+l).

Ref. [9] made the validity of (4.2) highly plausible by considering the massless limit to the
UV critical point in which the mass m → 0 and rapidities of the particles are simultaneously
taken to ∞ such that momenta are fixed. The basic assumptions4 are that (i) limθ→∞ S(θ) = 1
so that massless left and right movers decouple and (ii) that the operator space of the conformal
point and that of the perturbed theory have the same basic structure. In particular to the scaling
operator Φ(x) in the off-critical theory there is an associated conformal operator Φ̃ of the same
scaling dimension 2δΦ . The property has been noticed in the past to be fulfilled by various FF
solutions in specific models [5–13], and many examples and tests of FF clustering have been
successfully performed.

Tests of the hypothesis for a given S-matrix, involve solving the general functional equations
together with the cluster constraints and seeing whether the number of independent solutions
equals the number in the corresponding Kac table of the associated CFT. Once this has been
established one can identify the operators corresponding to the solutions by computing the di-
mensions δΦ either by studying the short distance behavior of the 2-point function computed by
saturation by lowest states, or using the DSC [9] sum rule

(4.5)δUV
Φ − δIR

Φ = − 1

4πδ

∫
d2x

〈
Θ(x)Φ(0)

〉
c
,

where Θ(x) is the trace of the energy–momentum tensor which is related to the perturbing field
by Θ = 4πg(1 − δ)φ(x). In a massive theory δIR

Φ = 0.

4.2. FF clustering in the non-linear sigma model

To our knowledge FF clustering in the O(3) non-linear sigma model was first discussed
by Smirnov [1]. A more detailed exposition of this case was presented by Balog and Nie-
dermaier [3]. In the following we consider the general O(n) case which exhibits a rather rich
structure.

4.3. Clustering (leading term)

Let us divide the particles into two subsets and boost the particles in the first set by a large
(positive) rapidity �. Form factor clustering means that the scalarized, dimensionless form fac-
tors have universal large � asymptotics (which usually behave as a power in � instead of the
constant behavior exhibited by the models considered in the previous subsection):

fa1...akb1...bl (α1 + �, . . . , αk + �,β1, . . . , βl)

(4.6)∼= hk;l (�)ga1...ak;b1...bl (α1, . . . , αk;β1, . . . , βl)

4 Note that assumption (i) is not always satisfied in specific models.
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where the clustering function

(4.7)hk;l (� + λ) ∼= hk;l (�)

and also the functional form (and the dependence on �) of the sub-leading terms depend on the
type of the operator. These sub-leading terms are often suppressed by some negative power of
�, see Section 4.6.

Using the asymptotic properties of the S-matrix,

(4.8)Sab
cd (θ)

∼= δac δ
b
d + 2πiχ

θ
tacbd + · · · ,

we can show that the expressions

(4.9)ga1...ak;b1...bl (α1, . . . , αk;β1, . . . , βl)

satisfy the form factor axioms (3.3)–(3.6) in the variables corresponding to the first set while the
dependence on the particles belonging to the second set are playing the role of dummy parame-
ters. This is almost trivial for (3.3)–(3.5), and for (3.6) we get

faba1...akb1...bl (γ + iπ + ε + �,γ + �,α1 + �, . . . , αk + �,β1, . . . , βl)

∼= hk+2;l (�)gaba1...ak;b1...bl (γ + iπ + ε, γ,α1, . . . , αk;β1, . . . , βl)

∼= 2i

ε

{
δabfa1...akb1...bl (α1 + �, . . . , αk + �,β1, . . . , βl)

− S
ba1...akb1...bl;ã1...ãk b̃1...b̃la

(γ + �|α1 + �, . . . , αk + �,β1, . . . , βl)

×f
ã1...ãk b̃1...b̃l

(α1 + �, . . . , αk + �,β1, . . . , βl)
}

∼= 2i

ε
hk;l (�)

{
δabga1...ak;b1...bl (α1, . . . , αk;β1, . . . , βl)

(4.10)− Sba1...ak;ã1...ãka(γ |α1, . . . , αk)gã1...ãk;b1...bl (α1, . . . , αk;β1, . . . , βl)
}
.

From this we see that, because of the uniqueness of the solution of the set of form factor axioms,

(4.11)hk+2;l (�) = hk;l (�)

and for k � 1

gaba1...ak;b1...bl (γ + iπ + ε, γ,α1, . . . , αk,β1, . . . , βl)

∼= 2i

ε

{
δabga1...ak;b1...bl (α1, . . . , αk;β1, . . . , βl)

(4.12)− Sba1...ak;ã1...ãka(γ |α1, . . . , αk)gã1...ãk;b1...bl (α1, . . . , αk;β1, . . . , βl)
}
,

which is nothing but the residue axiom for the first set of particles where the quantum numbers
of the particles belonging to the second set are dummy parameters.

Similarly we find that

(4.13)hk;l+2(�) = hk;l (�)

and the axioms (3.3)–(3.6) are satisfied in the variables corresponding to the second set, for fixed
{a1 . . . ak}, {α1, . . . , αk}.

Using the recursion relations (4.11) and (4.13) we see that there are three clustering families,
the cases of odd–odd, even–odd and even–even clustering.
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The function ga1...akb1...bl is essentially a product of two scalarized form factors, corresponding
to the operators B and C. Denoting the original operator by A, the clustering relations can be
symbolically represented as

(4.14)A ∼ h(�)B • C,

or, since in the O(n) model h(�) is always a power, more explicitly as

(4.15)A ∼ 1

�κ
B • C.

The residue axiom is applicable for clustering for k � 3 only but from [4] we see that for O(n)

non-singlets

(4.16)h2;l (�) = 1

�

since

(4.17)FA
ab;b1...bl

(� + iπ + ε,�,β1, . . . , βl) ∼= 4πχ

ε�
tabABFB

b1...bl
(β1, . . . , βl),

where tabAB are O(n) generators in the representation under consideration. Similarly

(4.18)hk;2(�) = 1

�

and

(4.19)gA
a1...ak;ab(α1, . . . , αk;γ + iπ + ε, γ ) ∼= −4πχ

ε
tabABf B

a1...ak
(α1, . . . , αk).

For k odd, using the uniqueness of the solution, we can solve the problem step by step, starting
from the k = 1 case:

(4.20)ga;b1...bl (α;β1, . . . , βl) = Gab1...bl (β1, . . . , βl).

Then

(4.21)ga1...ak;b1...bl (α1, . . . , αk;β1, . . . , βl) = f a
a1...ak

(α1, . . . , αk)Gab1...bl (β1, . . . , βl),

where f a
a1...ak

(α1, . . . , αk) is the form factor of the basic field Φa .
Similarly for l odd

(4.22)ga1...ak;b1...bl (α1, . . . , αk;β1, . . . , βl) = Ha1...akb(α1, . . . , αk)f
b
b1...bl

(β1, . . . , βl),

where

(4.23)ga1...ak;b(α1, . . . , αk;β) = Ha1...akb(α1, . . . , αk).

4.4. Odd–odd clustering

The simplest case is the odd–odd clustering. Starting from

(4.24)ga;b(α;β) = Tab

we can build

(4.25)ga1...ak;b1...bl (α1, . . . , αk;β1, . . . , βl) = Tabf
a
a ...a (α1, . . . , αk)f

b
b ...b (β1, . . . , βl).
1 k 1 l
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In the case of the current operator J cd

(4.26)h(�) = c1�
−χ

and

(4.27)Tab → −tcdab .

Similarly for the symmetric tensor Σcd

(4.28)h(�) = c2�
χ

and

(4.29)Tab → −it̃ cdab .

Finally for the energy–momentum tensor T we have

(4.30)h(�) = c0�
−(1+χ)

and

(4.31)Tab → − i

2
δab.

We can represent the above clustering relations symbolically as

J ab ∼ 1

�χ
tabcd Φ

c • Φd,

Σab ∼ �χ t̃abcd Φ
c • Φd,

(4.32)T ∼ 1

�1+χ
Φa • Φa.

4.5. 3 → 2 + 1 clustering

This is the simplest case of even–odd clustering. In the odd–odd case we could afford the
luxury of using the exact solution of the 2-particle form factors to obtain the 2 → 1+1 clustering
relations. The exact 3-particle form factor is not known for general n (except for n = 3,4 and
in the large n limit), but the form factor equations can be solved in the clustering limit. We start
from the representation

(4.33)f x
abc(�,β, γ ) =

(
� − β + γ

2

)−κ{
Ax

abc(β − γ ) + Ãx
abc(β − γ )

� − β+γ
2

+ · · ·
}
.

The functional form of the ansatz (4.33) is motivated by the following considerations. First of all,
it is easy to show [8] using the known short distance asymptotics of the 2-point function and the
spectral representation that the spin form factor must not grow faster than any power of the mo-
menta, i.e. it is smaller than eε� for any ε. This observation, the known behavior of the 2-particle
form factors and the fact that the theory is asymptotically free, taken together make plausible that
for large momenta also the 3-particle (and higher) form factors vary logarithmically.

Now we impose the form factor axioms in the large � limit. This gives for the leading coeffi-
cient Ax

abc the equations

(4.34)Ax
abc(2πi − θ) = Ax

acb(θ)
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and

(4.35)Ax
abc(θ) = Svu

bc (θ)A
x
auv(−θ),

which means that, as expected, Ax
abc satisfies the 2-particle form factor equations in the last two

variables. The general solution is

(4.36)Ax
abc(θ) = k0ψ0(θ)δ

x
a δbc + k1ψ1(θ)t

xa
bc + k2ψ2(θ)t̃

xa
bc ,

where the kI are constants. In the κ = 1 case we also have to satisfy the residue axiom

(4.37)Ax
cab(iπ + ε) ∼= −4πχ

ε
tabxc ,

which gives k1 = −2πχ .
At the next order we find that Ãx

abc also satisfies (4.35) but instead of (4.34) we have in this
case

(4.38)Ãx
abc(2πi − θ) − Ãx

acb(θ) = −iπκAx
acb(θ) + 2πiχtvaubA

x
vcu(θ).

Let us define

(4.39)Kx
abc(θ) ≡ Ãx

abc(2πi − θ) − Ãx
acb(θ).

Obviously,

(4.40)Kx
acb(2πi − θ) + Kx

abc(θ) = 0.

There is no solution for Ãx
abc unless the right-hand side of (4.38) is also antisymmetric under this

operation. Thus the consistency of the next-to-leading order gives an additional condition on the
leading order:

(4.41)χtvbuaA
x
vuc + χtvbuc A

x
vau − κAx

bac = 0.

This purely algebraic relation restricts the possible solutions (4.36) so that only one of the coef-
ficients kI can be different from zero and fixes the exponent κ as follows:

I = 0 case (k0 �= 0): κ = 0,

I = 1 case (k1 �= 0): κ = 1,

(4.42)I = 2 case (k2 �= 0): κ = 1 + 2χ.

Furthermore, the residue conditions give additional restrictions. First of all, since ψ0(θ) has a
double pole at θ = iπ , this excludes the k0 �= 0 (κ = 0) solution. In the I = 1 (κ = 1) case the
residue conditions fix k1 as given above. Finally, since ψ2(θ) is regular, the coefficient k2 cannot
be determined by this method.

Putting everything together, we get for the 3 → 2 + 1 clustering the following result:

(4.43)f x
abc(�,β, γ ) ∼= −2πχ

�
ψ1(β − γ )txabc + iχH2

(
2π

�

)1+2χ

ψ2(β − γ )t̃xabc + · · · .
Here we have reparameterized the constant k2 (in terms of the new constant H2) for later conve-
nience.

(4.43) can also be written in terms of the full 2-particle form factors as

(4.44)f x
abc(�,β, γ ) ∼= 2πχ

f xa
bc (β, γ ) − χH2

(
2π

)1+2χ

f̃ xa
bc (β, γ ) + · · · .
� �



272 J. Balog, P. Weisz / Nuclear Physics B 778 [FS] (2007) 259–309
Note that the second piece in the clustering formula (4.44) is always subleading to the first.
Actually, it makes sense only for n > 4, since for n = 3,4 it is not dominant over the 1/�2

correction corresponding to the first term. On the other hand, the two terms are close for larger n
values and they become degenerate in the large n limit. In Section 7 we check (4.44) in the large
n expansion.

Now we calculate these 1/�2 correction terms in the large rapidity expansion. We take κ = 1
and get from (4.33)

(4.45)f x
abc(�,β, γ ) ≈ 1

� − β+γ
2

{
Ax

abc(ξ) + 1

�
Ãx

abc(ξ) + · · ·
}
,

where ξ = β − γ . The leading term is:

(4.46)Ax
abc(ξ) = −2πχψ1(ξ)t

xa
bc .

To calculate the next term we first write

(4.47)Ãx
abc(ξ) = 2iπ2χψ1(ξ)

{
λ1(ξ)δ

x
a δbc + λ2(ξ)δ

x
b δac + λ3(ξ)δ

x
c δab

}
.

We also introduce

(4.48)λ± = λ2 ± λ3, λ̄ = nλ1 + λ+.

We now rewrite (4.38) and (4.35) for Ãx
abc in terms of these variables and get

λ+(ξ) = 2πiχ − ξ

2πiχ + ξ
λ+(−ξ), λ+(2πi − ξ) + λ+(ξ) = 2,

λ−(ξ) = λ−(−ξ), λ−(2πi − ξ) − λ−(ξ) = 0,

(4.49)λ̄(ξ) = iπ + ξ

iπ − ξ
λ̄(−ξ), λ̄(2πi − ξ) + λ̄(ξ) = 4(1 + χ).

From the residue equations we get

(4.50)λ+(iπ) = 1, λ−(iπ) = −2, λ̄(iπ) = 2(1 + χ).

This results from expanding the residue equation

(4.51)f x
abc(α,β,�) ≈ 2i

ξ − iπ

{
δabδ

x
c − Sax

bc (β − �)
}

for large � using the expansion

(4.52)S
xy
ab (�) = δxa δ

y
b + 2πiχ

�
txayb − 2π2χ2

�2
tuavb t

xu
yv + · · · .

It is easy to find the general solution of (4.49) and (4.50). We get

(4.53)λ−(ξ) = �−(cosh ξ), �−(−1) = −2.

Since we know that λ−(ξ) must not grow exponentially for large ξ and it should be regular we
conclude that

(4.54)λ−(ξ) = −2.
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We also get

(4.55)λ̄(ξ) = �̄(cosh ξ)

iπ − ξ
− i(1 + χ)

π
(iπ + ξ); �̄(−1) = 0

and requiring regularity here gives

(4.56)λ̄(ξ) = − i(1 + χ)

π
(iπ + ξ).

Similarly we can find the regular solution of the λ+ equations:

(4.57)λ+(ξ) = i
2πiχ − ξ

π(1 − 2χ)
+ ω(χ) cosh

ξ

2
e−�2χ (ξ),

where regularity at infinity requires that ω(χ) is constant. (4.57) is only valid for n �= 4, because
for n = 4 it becomes singular. For n = 4 the solution of the λ+ equations is

(4.58)λ+(ξ) = 2i

π
(iπ − ξ)

{
g0 + 1

4
Ψ

(
1

2
+ ξ

2πi

)
+ 1

4
Ψ

(
1

2
− ξ

2πi

)}
,

where, again, regularity requires that g0 cannot depend on the relative rapidity ξ .
ω(χ) can be calculated for χ = 1 and χ = 0 (corresponding to n = 3 and n = ∞ respectively)

from the known solutions or for general n �= 4 from the consistency of the next-to-next-to-leading
order equations in the large rapidity expansion. Consistency would not fix the value of g0 for
n = 4, and, as we will see later, it is actually not a constant, but depends (linearly) on log�. In
the light of the 1/(n − 4) singularity in (4.57) the presence of the logarithmic term in (4.58) is
not surprising. For n = 4 (and only in this case) the 1/�2 subleading term is accompanied by
a log(�)/�2 term. One can see that this is consistent here, because the term containing g0 is
exactly the same as the one corresponding to the constant H2, the coefficient of the κ = 1 + 2χ
term in (4.43). The only way to determine g0 is to solve the full O(4) form factor equations
explicitly. We will consider this problem in Section 8 and Appendix D.

4.6. General clustering

What we can learn from the three-particle example is that it is useful to include in (4.6)
some of the subleading terms as well. Thus we have to allow for the occurrence of several terms
(labeled by an index ρ) of the form

fa1...akb1...bl (α1 + �, . . . , αk + �,β1, . . . , βl)

(4.59)∼=
∑
ρ

h
(ρ)

k;l (�)g
(ρ)

a1...ak;b1...bl
(α1, . . . , αk;β1, . . . , βl),

where, as before, the coefficient functions g(ρ) have to solve the form factor equations for both
sets of variable.

In the case of odd–odd clustering the sum contains only one term so the results in Section 4.4
do not change. But the general even–odd clustering formula (k odd, l even) consists of two terms:
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f x
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

∼= 2πχ

�
f u
a1...ak

(α1, . . . , αk)f
xu
b1...bl

(β1, . . . , βl)

(4.60)− χH2

(
2π

�

)1+2χ

f u
a1...ak

(α1, . . . , αk)f̃
xu
b1...bl

(β1, . . . , βl) + · · · .

This can be symbolically represented as

(4.61)Φx ∼ 1

�
Φu • J xu + 1

�1+2χ
Φu • Σxu.

4.7. A conjecture

We have seen that clustering relations can be represented in the form

(4.62)A ∼ 1

�κ
B • C

or as a sum of similar terms on the right-hand side. We found that the value of the exponent κ
depends on the anomalous dimensions of the operators involved. In all cases we studied so far
we have the relation

(4.63)κ = dB + dC − dA (mod 1),

where

(4.64)dO = γO

2β0
.

Here γO is the coefficient of the first term (in perturbation theory) of the anomalous dimension
of the operator O and β0 is the coefficient of the first term of the perturbative β-function.

Explicitly,

dΦ = 1

2

γ0

2β0
= 1

2
(1 + χ),

dJ = dT = 0,

(4.65)dΣ = γΣ

2β0
= 2χ.

Here we used the results

(4.66)γ0 = n − 1

2π
, β0 = n − 2

4π
, γΣ = 1

π
.

Using this conjecture, it is possible to write down the formula for even–even clustering without
doing any calculation. For the current operator we get

f
xy
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

∼= 2πχ

�

[
f

xq
a1...ak (α)f

yq
b1...bl

(β) − f
yq
a1...ak (α)f

xq
b1...bl

(β)
]

(4.67)+ Ωχ

(
2π

�

)1+4χ [
f̃

xq
a1...ak (α)f̃

yq
b1...bl

(β) − f̃
yq
a1...ak (α)f̃

xq
b1...bl

(β)
]
.
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Here we have used (beyond O(n) symmetry) the fact that isospin 0 form factors cannot occur
here (they would give a double pole in the residue axiom) and that the residue axiom fixes the
coefficient of the 1/� term containing the current form factors. The power 1 + 4χ is consistent
with the conjecture and is uniquely fixed by the requirement that the two terms should be degen-
erate in the large n limit. The constant Ω is not fixed by these considerations, but by studying
the k = l = 2 case in the large n limit we can show that

(4.68)Ω = 1 + O

(
1

n

)
.

Analogously for the tensor form factor we get

f̃
xy
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

∼= −2πχ

�

[
f

xq
a1...ak (α)f̃

yq
b1...bl

(β) + f
yq
a1...ak (α)f̃

xq
b1...bl

(β)
]

+ 2πχ

�

[
f̃

xq
a1...ak (α)f

yq
b1...bl

(β) + f̃
yq
a1...ak (α)f

xq
b1...bl

(β)
]

+ Ω̃χ

(
2π

�

)1+2χ[
f̃

xq
a1...ak (α)f̃

yq
b1...bl

(β) + f̃
yq
a1...ak (α)f̃

xq
b1...bl

(β)

(4.69)− 2

n
δxyf̃

pq
a1...ak (α)f̃

pq
b1...bl

(β)

]
,

where

(4.70)Ω̃ = −2 + O

(
1

n

)
.

5. Bootstrap form factors in leading orders 1/n expansion

In this section we consider the solution of the form factor equations in leading order 1/n
expansion. We start with the 1/n expansion of the S-matrix and 2-particle form factors.

5.1. S-matrix and 1/n expansion

The 1/n expansion of the coefficients in (2.1) is of the form

(5.1)σi(θ) = δi2 + ai(θ)

n
+ bi(θ)

n2
+ O

(
1

n3

)
, i = 1,2,3,

with

(5.2)a1(θ) = − 2πi

iπ − θ
, a2(θ) = − 2πi

sinh θ
, a3(θ) = −2πi

θ
,

(5.3)b1(θ) = −4π

iπ − θ

(
i + π

sinh θ

)
, b3(θ) = −4π

θ

(
i + π

sinh θ

)
,

and (Ψ (z) = �′(z)/�(z))
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b2(θ) = − 4πi

sinh θ
− 2π2

sinh2 θ
+ 1

2

[
Ψ ′

(
1

2
+ iθ

2π

)
− Ψ ′

(
1

2
− iθ

2π

)

(5.4)− Ψ ′
(

1 + iθ

2π

)
+ Ψ ′

(
− iθ

2π

)]
.

Later we will need the combination

(5.5)b1(θ) + a2(θ) + a3(θ) = θ + iπ

θ − iπ

(
2πi

θ
− 2πi

sinh θ

)
.

5.2. Large n expansion of the two-particle form factors

The large n expansion of the two-particle form factors is given by the expansion of the func-
tions ψI in (3.17):

ψ0(θ) = 2i tanh θ
2

iπ − θ

{
1 + 2π

n

[
a(θ) + b(θ)

] + O

(
1

n2

)}
,

ψ1(θ) = tanh
θ

2

{
1 + 2π

n

[
a(θ) + b(θ)

] + O

(
1

n2

)}
,

(5.6)ψ2(θ) = i

{
1 + 2π

n

[
a(θ) − b(θ)

] + O

(
1

n2

)}
,

where

(5.7)a(θ) = 1

2π
+ θ − iπ

2π sinh θ

and

(5.8)b(θ) = i

2θ
− 1

4π

[
Ψ

(
iθ

2π

)
+ Ψ

(
− iθ

2π

)
− 2Ψ

(
1

2

)]
.

5.3. Large n expansion of the spin 3-particle form factor

We assume that for large n the function X appearing in (3.24) has an expansion of the form:

(5.9)X(u,v) = f (u, v)

n
+ g(u, v)

n2
+ O

(
1

n3

)
.

The form factor equations (3.25) have to be satisfied order by order in the expansion. On the
other hand, (3.26) and (3.27) mix the expansion coefficients (beyond leading order). At leading
order they lead to

(5.10)f (u, v) = [
1 + a1(v − u)

]
f (v,u),

(5.11)f (u, v) = f (v,2πi + u)

and at next-to-leading order we have

g(u, v) = [
1 + a1(v − u)

]
g(v,u)

+ [
b1(v − u) + a2(v − u) + a3(v − u)

]
f (v,u)

(5.12)+ a1(v − u)
[
f (u − v,2πi − v) + f (2πi − u,2πi + v − u)

]
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and

g(v − u,2πi − u) = g(2πi − u,2πi + v − u) + a2(v − u)f (2πi − u,2πi + v − u)

(5.13)+ a3(v − u)f (u − v,2πi − v).

5.3.1. Leading order solution
We here summarize the equations the leading order form factor f (u, v) has to satisfy.

(5.14)f (u, v) = f (2πi − v,2πi − u),

(5.15)f (θ, iπ) = i

2
sinh θa3(θ) = π sinh θ

θ
,

(5.16)f (θ, iπ + θ) = i

2
sinh θa2(θ) = π,

(5.17)f (u, v) = v − u + iπ

v − u − iπ
f (v,u),

(5.18)f (u, v) = f (v,2πi + u).

Defining the function

(5.19)R(θ) ≡ π sinh θ

iπ − θ
,

with properties

(5.20)R(iπ − θ) = π sinh θ

θ
, R(iπ) = π, R(2πi − θ) = R(θ),

we now take the ansatz

(5.21)f (u, v) = R(v − u)
[
s(u, v) + 1

]
and verify that (5.14)–(5.18) require

s(u, v) = s(v,u) = s(2πi + u,v) = s(−u,−v),

(5.22)s(θ, iπ) = s(θ, iπ + θ) = 0.

It is easy to see that regularity and boundedness at infinity allows the trivial solution s(u, v) = 0
only leading to the unique leading order solution

(5.23)f (u, v) = R(v − u).

5.3.2. Next-to-leading order solution
Using the leading order solution (5.23) the form factor equations (5.12) and (5.13) can be

simplified a little. We list here the complete set of next-to-leading order (NLO) form factor
equations after this simplification.

g(u, v) = [
1 + a1(v − u)

]
g(v,u)

+ [
b1(v − u) + a2(v − u) + a3(v − u)

]
R(u − v)

(5.24)+ a1(v − u)
[
R(u) + R(v)

]
,

(5.25)g(u, v) = g(v,2πi + u) + a2(u)R(v − u) + a3(u)R(v),
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(5.26)g(u, v) = g(2πi − v,2πi − u),

(5.27)g(θ, iπ) = i

2
sinh θb3(θ),

(5.28)g(θ, iπ + θ) = i

2
sinh θb2(θ).

We present the NLO solution in several steps in order to make the checking of Eqs. (5.24)–
(5.28) easier. We start with

g(u, v) =
{
G(u,v) + iπ

v − u
− iπ

sinh(v − u)
− π

R(u)
− π

R(v)

}
R(v − u)

(5.29)− R(u) − R(v).

It is easy to show that (5.24) is satisfied if G satisfies

(5.30)G(u,v) = G(v,u).

Next we write

G(u,v) = S(u, v) + v − u

sinh(v − u)
− k(u − v) − k(v − u)

+ sinhv

sinh(v − u)

{
u − iπ

iπ − v
+ 2k(u) − k(v + iπ) − k(v − iπ)

}

(5.31)− sinhu

sinh(v − u)

{
v − iπ

iπ − u
+ 2k(v) − k(u + iπ) − k(u − iπ)

}
.

Here

(5.32)k(θ) = 1

2
Ψ

(
− iθ

2π

)
.

Eqs. (5.24) and (5.25) are satisfied if

(5.33)S(u, v) = S(v,u) = S(u + 2πi, v).

In the next step we write

S(u, v) = Σ(u,v) + iπ

2 sinh(v − u)

{
coshu − coshv + sinhv(1 + coshu)

sinhu

(5.34)− sinhu(1 + coshv)

sinhv

}
.

In addition to (5.24) and (5.25), (5.26) is also satisfied if

(5.35)Σ(u,v) = Σ(v,u) = Σ(u + 2πi, v) = Σ(−u,−v).

Finally in the last step we represent Σ as

(5.36)Σ(u,v) = coshu + coshv

1 + cosh(u − v)
+ 3 + Ψ

(
1

2

)
+ σ(u, v).

It now follows that all Eqs. (5.24)–(5.28) are satisfied if σ(u, v) satisfies the same equations as
s(u, v) in (5.22).

Although the form factors are bounded and regular functions for all n, the large n expansion,
as can be seen from (5.2), introduces some singularities at rapidity differences equal to 0 or iπ .
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Nevertheless, one can show that (5.22) has only trivial solution for s(u, v) even if one allows
(first order) poles at these special rapidity differences. Thus σ(u, v) = 0 and the NLO solution is
unique.

5.4. n = ∞ form factor equations

In this section we write down the form factor equations in the leading order of the large n

expansion. In this limit the homogeneous equations take the form

(5.37)Fa1...ar (θ1, . . . , θr ) = Fa1...ar (θ1 + λ, . . . , θr + λ),

(5.38)F···xy···(· · · θ, θ ′ · · ·) = 1

n
a1(θ − θ ′)F···zz···(· · · θ ′, θ · · ·)δxy + F···yx···(· · · θ ′, θ · · ·),

(5.39)Fa1a2...ar (θ1 + 2πi, θ2, . . . , θr ) = (−1)r−1Fa2...ar a1(θ2, . . . , θr , θ1),

(5.40)Fa1...ar (θ1, . . . , θr ) = wpFar ...a1(−θr , . . . ,−θ1).

In (5.38) the first term on the right-hand side is of O(1) if the contracted indices belong to the
same Kronecker delta. Otherwise it is of order 1/n and can be dropped.

To calculate the residue equation to leading order we first note the recursion relation

(5.41)Sba1...ar ;b1...br a(β|θ1, . . . , θr ) = Sba1...ar−1;b1...br−1x(β|θ1, . . . , θr−1)S
abr
xar

(β − θr).

Starting from the r = 1 case

Sba1;b1a(β|θ1) = δabδa1b1 + 1

n
a1(β − θ1)δab1δba1

(5.42)+ 1

n
a2(β − θ1)δabδa1b1 + 1

n
a3(β − θ1)δaa1δbb1 + O

(
1

n2

)

it is easy to show by induction that the residue equation takes the form

nFaba1...ar (β + iπ,β, θ1, . . . , θr )

=
(
i

2

)r
{

r∏
j=1

sinh(β − θj )

}[{
r∑

k=1

a2(β − θk)

}
δabFa1...ar (θ1, . . . , θr )

+
r∑

k=1

a1(β − θk)δbakF
(k)

a1...a...ar
(θ1, . . . , θk, . . . , θr )

+
r∑

k=1

a3(β − θk)δaakF
(k)

a1...b...ar
(θ1, . . . , θk, . . . , θr )

(5.43)

+ 1

n

∑
l<k

a1(β − θl)a3(β − θk)δaak δbalF
(l)(k)

a1...z...z...ar
(θ1, . . . , θl, . . . , θk, . . . , θr )

]

in the leading order of the large n expansion. Again, the last term is of the same order as the other
terms only if the contracted indices belong to the same Kronecker delta and has to be dropped in
all other cases.
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5.5. Solution of the leading order equations for the spin field operator

In this subsection the number of particles, r , is an odd number and we will use the notation
ν = (r − 1)/2. For the leading order form factor we take the following ansatz

(5.44)Fx
a1...ar

(θ1, . . . , θr ) =Nr

∑
σ

δxaσ(1)
Rσ

23 · · ·Rσ
r−1rQr(θσ(1), . . . , θσ(r)),

where

(5.45)Nr = 1

nν

1

2νν!
(

i

2

)ν(ν−1)

and σ runs over the r! permutations of the particles. Finally we used the shorthand notation (ε is
the sign function)

(5.46)Rσ
ij = δaσ(i)aσ(j)

R
[
ε
(
σ(j) − σ(i)

)(
θσ(i) − θσ(j)

)]
,

which for physical (real, ordered) rapidities reduces to

(5.47)δaσ(i)aσ(j)
R

[|θσ(i) − θσ(j)|
]
.

We require that the scalar function Qr(θ1, . . . , θr ) is symmetric under the exchanges 2 ↔ 3,
4 ↔ 5, . . . , r − 1 ↔ r and is totally symmetric under permutation of these pairs of variables.
Further we require that Qr is 2πi periodic in all variables and is even under simultaneous sign
change of all variables. Then it is almost obvious that the ansatz (5.44) satisfies the homogeneous
equations (5.37)–(5.40).5 It is also possible to write

Fx
a1...ar

(θ1, . . . , θr )

(5.48)

= 1

nν

(
i

2

)ν(ν−1)

δxa1
δa2a3R(θ2 − θ3) · · · δar−1arR(θr−1 − θr)Qr(θ1, . . . , θr ) + · · · ,

where the final dots stand for all similar terms, corresponding to such permutations of the vari-
ables not leaving the first term invariant. Finally (5.43) will also be satisfied by (5.44) if the set
of scalar functions Qr obeys the following three relations for r � 3

Qr+2(θ1, β + iπ,β, θ2, . . . , θr )

(5.49)=
{

r∏
j=1

sinh(β − θj )

}{
r∑

k=1

1

sinh(β − θk)

}
Qr(θ1, . . . , θr ),

(5.50)Qr+2(β + iπ,β, θ1, . . . , θr ) =
{

r∏
j=2

sinh(β − θj )

}
Qr(θ1, . . . , θr ),

Qr+2(θ1, β + iπ, θ2, β, θ3, . . . , θr )

(5.51)= sinh(θ2 − θ3)

{
r∏

j �=2,3

sinh(β − θj )

}
Qr(θ1, . . . , θr ).

5 Note the relation R(θ) = R(−θ)[1 + a1(θ)].
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Using the results of Section 5.3 we see that

(5.52)Q3(θ1, θ2, θ3) = 1.

For r = 5 we have

Q5(θ1, θ2, θ3, θ4, θ5)

= −1

2

[
1 +

∑
k<l

cosh(θk − θl) + cosh(θ2 + θ3 − θ4 − θ5) + cosh(θ1 + θ3 − θ4 − θ5)

(5.53)

+ cosh(θ2 + θ3 − θ1 − θ5) + cosh(θ2 + θ3 − θ4 − θ1) + cosh(θ2 + θ1 − θ4 − θ5)

]
.

It is easy to check that this satisfies (5.49)–(5.51) for r = 3. Because of the 2πi periodicity the
scalar function Qr is really a function of the exponential variables xk = eθk , k = 1,2, . . . , r .
Using the fact that the form factors are regular functions that are also regular at infinity and
also taking into account the presence of the denominator in (3.8) we can show that Qr , as
function of one of the variables, say x2, is a finite Laurent polynomial consisting of the terms
xν−1

2 , xν−2
2 , . . . , x1−ν

2 . Applying this to the r + 2 case, we see that xν
2Qr+2(θ1, . . . , θr+2) is a

polynomial of degree r − 1 in x2 hence it is determined by its values at r different points. If Qr

is given, these data are provided by (5.49) and (5.51) and we can use them as recursion relations
to determine Qr+2. The solution is given by the explicit formula

Qr+2(θ1, θ2, θ3, . . . , θr+2)

(5.54)=
r+2∑
k=3

Qr+2(θ1, θk + iπ, θ3, . . . , θr+2)

(
−xk

x2

) r−1
2 ∏

l �=1,2,k

xl + x2

xl − xk
.

We have applied (5.54) to determine Q7. We have checked that the function Q7 constructed
this way is also a polynomial in all the other variables and satisfies all symmetry requirements
together with (5.50) (which was not used in the construction (5.54)). It would be interesting to
show analogous results for general r .

5.6. Noether current and symmetric tensor form factors

The leading order form factors of the Noether current and the symmetric, traceless isotensor
operator are given by the ansatz

(5.55)F
xy
a1...ar (θ1, . . . , θr ) =Mr

∑
σ

T σRσ
34 · · ·Rσ

r−1rQr(θσ(1), . . . , θσ(r)),

where r is even, μ = (r − 2)/2,

(5.56)Mr =
(

i

n

)μ 1

2μ+1μ!
(

i

2

)μ2

and

(5.57)T σ = T
xy
aσ(1)aσ(2) (θσ(1) − θσ(2)),
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where

(5.58)T
xy
a1a2(θ) =

{
t
xy
a1a2 sinh θ (current),

s
xy
a1a2 (tensor).

For even r the scalar function Qr(θ1, . . . , θr ) is symmetric under the exchanges 1 ↔ 2, 3 ↔
4, . . . , r − 1 ↔ r and is totally symmetric under permutation of the last μ pairs of variables.
Further Qr is 2πi antiperiodic in all variables and is invariant under simultaneous sign change
of all variables. The ansatz (5.55) with Qr satisfying the above symmetry requirements satisfies
the homogeneous equations (5.37)–(5.40). We introduce the functions P

(o)
r for o = c, t

(5.59)Qr(θ1, . . . , θr ) =
{
P

(c)
r (θ1, . . . , θr ) (current),

2 cosh
(
θ1−θ2

2

)
P

(t)
r (θ1, . . . , θr ) (tensor).

(5.55) also satisfies the residue equation (5.43) if for r � 4

P
(o)
r+2(θ1, θ2, β + iπ, θ3, β, θ4, . . . , θr )

(5.60)= −i sinh(θ3 − θ4)

{ ∏
j �=3,4

sinh(β − θj )

}
P (o)
r (θ1, . . . , θr ),

and for r � 2

P
(o)
r+2(θ1, θ2, β + iπ,β, θ3, θ4, . . . , θr )

(5.61)= −i

{
r∏

j=1

sinh(β − θj )

}{
r∑

k=1

1

sinh(β − θk)

}
P (o)
r (θ1, . . . , θr ),

P
(c)
r+2(β + iπ, θ1, β, θ2, . . . , θr )

(5.62)= −i sinh(θ1 − θ2)

{
r∏

j=3

sinh(β − θj )

}
P (c)
r (θ1, . . . , θr ),

P
(t)
r+2(β + iπ, θ1, β, θ2, . . . , θr )

(5.63)= −2 cosh

(
θ1 − θ2

2

)
cosh

(
β − θ1

2

){
r∏

j=3

sinh(β − θj )

}
P (t)
r (θ1, . . . , θr ).

The P
(o)
2 functions are given by

(5.64)P
(c)
2 (θ1, θ2) = −1

2 cosh( θ1−θ2
2 )

, P
(t)
2 (θ1, θ2) = 1

2

and for r = 4 we have

(5.65)P
(c)
4 (θ1, θ2, θ3, θ4) = cosh

(
θ1 + θ2 − θ3 − θ4

2

)
,

P
(t)
4 (θ1, θ2, θ3, θ4) = − cosh

(
θ1 − θ3

2

)
cosh

(
θ1 − θ4

2

)

(5.66)− cosh

(
θ2 − θ3

2

)
cosh

(
θ2 − θ4

2

)
.
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Similarly to the case of field operators discussed in the previous subsection, the expression

x
r−1

2
3 P

(o)
r+2, treated as a function of the variable x3, is a polynomial of degree r − 1 and is de-

termined by its values at r different points. The recursion relations (5.60)–(5.63) can be used to
determine this expression at r different points and the Laurent polynomials P

(o)
r+2 can be calcu-

lated from a formula similar to (5.54).

6. 1/n expansion of the functional integral

In this section we check that the bootstrap solutions for the multi-particle form factors found
in leading order 1/n expansion in Sections 5.5, 5.6 do indeed correspond to those obtained by
quantum field theoretic calculations.6

The 1/n expansion of the functional integral of the O(n) non-linear σ -model has been de-
scribed in numerous papers. Starting from bare fields qa one imposes the constraint q2 = n by
introducing a Lagrange multiplier field λ. Here we just recall the resulting Feynman rules for
computation of the correlation functions of the elementary field:

(6.1)q propagator: = δabiD(p,m0), D(p,m0) = 1

p2 − m2
0 + iε

,

(6.2)λ propagator: = 2J (p,m0)
−1,

(6.3)q − λ vertex: = 1√
n
δab

with momentum conservation at each vertex

– for each external line a factor Z−1/2;
– for each closed q-loop there is a factor n;
– only q-loops with more than 2 vertices should be drawn;

– integration
∫ d2k

(2π)2 over all internal momenta k for which a cutoff Λ is imposed (e.g. Pauli–
Villars for the q-propagator).

Renormalization of the bare parameters order by order in 1/n is given by

(6.4)m2
0 = M2

(
1 −

∞∑
s=1

αs

ns

)
, αs = αs(Λ/M),

(6.5)Z = 1 +
∞∑
s=1

Zs

ns
, Zs = Zs(Λ/M).

The λ inverse propagator function J (q,m) is a special case of the 1-loop integrals:

(6.6)Jr(q1, . . . , qr ,m) =
∫

d2k

(2π)2

r∏
j=1

D(k + lj ,m),

where

(6.7)qj = lj − lj−1, l−1 = lr ,

6 Checks of the S-matrix itself to leading orders in 1/n were performed much earlier [17].
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(6.8)
r∑

j=1

qj = 0,

which can be computed using the cutting rules. In particular we have

(6.9)J (q,m) ≡ J2(q,−q,m) = i

4m2R(θ)
for q2 = 4m2 cosh2

(
θ

2

)
.

We will also need the case r = 3:

(6.10)J3(q1, q2, q3,m) = − (q1q2)q
2
3J (q3,m)

D3(q1, q2, q3,m)
+ 2 perms,

(6.11)D3(q1, q2, q3,m) = q2
1q

2
2q

2
3 + m2λ

(
q2

1 , q
2
2 , q

2
3

) − iεq1q2,

(6.12)λ(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 2x1x2 − 2x2x3 − 2x3x1.

6.1. 3-particle spin form factor

The 3-particle form factor in leading order is, using the Feynman rules above, simply obtained
from a sum of tree graphs and amputating three of the external lines thereby obtaining:

(6.13)f a
b1b2b3

(θ1, θ2, θ3) = 2

n

i

q2 − M2

[
δab1

δb2b3J (p2 + p3)
−1 + 2 perms

] + O
(
1/n2),

where q = p1 + p2 + p3. Here and in the rest of this section we omit the argument M in the
functions Jr ,D i.e. J (s) = J (s,M). For three incoming (on-shell p2

i = M2) particles one has

(6.14)q2 − M2 = 8M2C3(θ1, θ2, θ3),

thus producing Eq. (5.44) for the case r = 3 with (5.52).

6.2. 4-particle current and isotensor form factors

Consider the current

(6.15)J ab
μ = qa∂μq

b − qb∂μq
a

whose 2-particle form factor is in leading order just given by the contact diagram (q = p1 +p2):

(6.16)−iεμαq
αf ab

b1b2
(θ1, θ2) = itabb1b2

(p1 − p2)μ + O(1/n),

yielding f ab
b1b2

(θ1, θ2) = −tabb1b2
tanh (θ1−θ2)

2 as required.
The 4-particle current form factor in leading order is a sum of tree diagrams:

−iεμνq
νf ab

b1b2b3b4
(θ1, θ2, θ3, θ4) = −2

n

∑
1�i<j�4

tabbibj
δbkblVμ(q,pi,pj )J (pk + pl)

−1

(6.17)+ O
(
1/n2),

where k < l and {i, j} ∪ {k, l} = {1,2,3,4}, q = ∑4
j=1 pj , and

(6.18)Vμ(q,pi,pj ) ≡ (2pi − q)μD(q − pi) − (2pj − q)μD(q − pj ).
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For on-shell momenta pi it is clear that qμVμ(q,pi,pj ) = 0 as required for current conservation,
and one can check that

(6.19)Vμ(q,pi,pj ) = 1

16M2
εμνq

ν
sinh(θi − θj ) cosh 1

2 (θi + θj − θk − θl)

C4(θ1, θ2, θ3, θ4)
,

thus deriving the 4-particle bootstrap solution in Section 5.6.
Similarly for the 4-particle isotensor form factor:

f̃ ab
b1b2b3b4

(θ1, θ2, θ3, θ4) = 2i

n

∑
1�i<j�4

sabbibj δbkbl
[
D(q − pi) + D(q − pj )

]
(6.20)× J (pk + pl,m)−1 + O

(
1/n2).

For on-shell momenta pi one has:

D(q − pi) + D(q − pj )

= 1

8M2

cosh(
θi−θj

2 )

C4(θ1, θ2, θ3, θ4)

(6.21)×
[

cosh

(
θi − θk

2

)
cosh

(
θi − θl

2

)
+ cosh

(
θj − θk

2

)
cosh

(
θj − θl

2

)]
,

again consistent with the corresponding result in Section 5.6.

6.3. 5-particle spin field form factor

The leading contribution to the 5-particle (in state) spin form factor is O(1/n2). It is a little
more complicated since there are two types of diagrams contributing: tree diagrams with two
λ-propagators and others involving a closed q-triangle connected to the external lines by three
λ-propagators. Using the 1/n rules outlined above one gets (q = ∑5

j=1 pj ):

f a
b1b2b3b4b5

(θ1, θ2, θ3, θ4, θ5)

(6.22)= − 4

n2

1

(q2 − M2)

[
δcb1

δb2b3δb4b5f
(5)(θ1, θ2, θ3, θ4, θ5) + 14 perms

] + O
(
1/n3),

where

f (5)(θ1, θ2, θ3, θ4, θ5)

= {D(p1 + p4 + p5) + D(p1 + p2 + p3)}
J (p2 + p3)J (p4 + p5)

+ {D(p2 + p3 + p4) + D(p2 + p3 + p5)}
J (q − p1)J (p2 + p3)

+ {D(p2 + p4 + p5) + D(p3 + p4 + p5)}
J (q − p1)J (p4 + p5)

(6.23)− 2
J3(p1 − q,p2 + p3,p4 + p5)

J (q − p1)J (p2 + p3)J (p4 + p5)
.

Using (6.10) this can be rewritten

(6.24)f
(5)
1 ( θ ) = U1 + U2 + U3

,

J (q2)J (q3) J (q1)J (q3) J (q1)J (q2)
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with

(6.25)U1 = D(p1 + q2) + D(p1 + q3) + 2(q2q3)q
2
1

D3(q1, q2, q3)
,

(6.26)U2 = D(p2 + q3) + D(p3 + q3) + 2(q1q3)q
2
2

D3(q1, q2, q3)
,

(6.27)U3 = D(p4 + q2) + D(p5 + q2) + 2(q1q2)q
2
3

D3(q1, q2, q3)
,

where

(6.28)q1 = p1 − q, q2 = p2 + p3, q3 = p4 + p5.

We note

(6.29)D3(q1, q2, q3) = 256M6C4(θ2, θ3, θ4, θ5) cosh

(
θ2 − θ3

2

)
cosh

(
θ4 − θ5

2

)
,

and then after some algebra it can be shown that

(6.30)U2 = 0 = U3,

and7

(6.31)U1 = − (q2 − M2)Q5(θ1, θ2, θ3, θ4, θ5)

256M4C5(θ1, θ2, θ3, θ4, θ5)
,

with Q5 defined in Eq. (5.53), thus reproducing the result in Section 5.5.

6.4. 6-particle current and isotensor form factors

Inspecting the diagrams contributing to the 6-particle current form factor in the leading order
1/n expansion we note that we can write these in terms of form factors of the spin field (here
q = ∑6

j=1 pj ):

−iεμνq
νf ab

b1b2b3b4b5b6
(θ1, θ2, θ3, θ4, θ5, θ6)

= i
[
tabb1c

(2p1 − q)μf
c
b2b3b4b5b6

(θ2, θ3, θ4, θ5, θ6) + 5 similar terms
]

+ i
[
tabcd (p1 + p2 + p3 − p4 − p5 − p6)μf

c
b1b2b3

(θ1, θ2, θ3)f
d
b4b5b6

(θ4, θ5, θ6)

(6.32)+ 9 similar terms
] + O

(
1/n3).

Using the expressions previously obtained we get

−iεμνq
νf ab

b1b2b3b4b5b6
(θ1, θ2, θ3, θ4, θ5, θ6)

= − i

4n2

{
tabb1b2

δb3b4δb5b6R(θ34)R(θ56)

×
[
(2p1 − q)μQ5(θ2, θ3, θ4, θ5, θ6)

C5(θ2, θ3, θ4, θ5, θ6)
− (2p2 − q)μQ5(θ1, θ3, θ4, θ5, θ6)

C5(θ1, θ3, θ4, θ5, θ6)

7 The vanishing of U1 as q goes on-shell is consistent with the absence of particle production.
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− 4

(
(p1 + p3 + p4 − p2 − p5 − p6)μ

C3(θ1, θ3, θ4)C3(θ2, θ5, θ6)
− (p2 + p3 + p4 − p1 − p5 − p6)μ

C3(θ2, θ3, θ4)C3(θ1, θ5, θ6)

)]

(6.33)+ 44 similar terms

}
+ O

(
1/n3).

One can check that contracting the rhs with qμ is zero and then obtain the representation for the

6-particle current form factor with P
(c)
6 given in Appendix C.

Similarly for the isotensor:

f̃ ab
b1b2b3b4b5b6

(θ1, θ2, θ3, θ4, θ5, θ6)

= [
sabb1c

f c
b2b3b4b5b6

(θ2, θ3, θ4, θ5, θ6) + 5 similar terms
]

(6.34)+ [
sabcd f

c
b1b2b3

(θ1, θ2, θ3)f
d
b4b5b6

(θ4, θ5, θ6) + 9 similar terms
] + O

(
1/n3)

= − 1

4n2

{
sabb1b2

δb3b4δb5b6R(θ34)R(θ56)

×
[
Q5(θ2, θ3, θ4, θ5, θ6)

C5(θ2, θ3, θ4, θ5, θ6)
+ Q5(θ1, θ3, θ4, θ5, θ6)

C5(θ1, θ3, θ4, θ5, θ6)

− 4

(
1

C3(θ1, θ3, θ4)C3(θ2, θ5, θ6)
+ 1

C3(θ2, θ3, θ4)C3(θ1, θ5, θ6)

)]

(6.35)+ 44 similar terms

}
+ O

(
1/n3).

The expression for P
(t)
6 thus obtained agrees with the corresponding bootstrap solution as ex-

pected.

7. Large n clustering tests

7.1. 3 → 2 + 1 clustering in the large n expansion

We have already computed the 2-particle and 3-particle form factors in the first two orders of
the large n expansion so we are able to check the clustering formula (4.44) in this limit.

For the 2-particle form factors we have

(7.1)ψI (θ) = FI (θ) + 1

n
GI (θ) + · · · , I = 1,2,

where

(7.2)F1(θ) = tanh
θ

2
, F2(θ) = i

and

(7.3)G1(θ) = 2π tanh
θ

2

[
a(θ) + b(θ)

]
, G2(θ) = 2πi

[
a(θ) − b(θ)

]
.

In the case of the 3-particle form factors we first write

f x
abc(� + β,β, γ ) ∼= 8e−�

eθ + 1

{
δxa δbcX(�,� + θ)

(7.4)+ δxb δacX(�,2πi − θ) + δxc δabX(θ,� + θ)
}
,
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where θ = β − γ . From here it is easy to calculate that the coefficient of the leading (1/n) term
on the right-hand side of (7.4) is

(7.5)−2π

�

{
F1(θ)t

xa
bc − iF2(θ)s

xa
bc

} + · · · .
Comparing it to (4.43) we see that

(7.6)H2 = 1 + χω + O
(
χ2),

where ω is a real number. Using this result and (4.43) the predicted form of the NLO (1/n2)
coefficient on the right-hand side of (7.4) becomes

(7.7)−2π

�

{
(2F1 + G1)t

xa
bc − isxabc

(
2F2 + G2 − 2F2 ln

�

2π
+ ωF2

)
+ 2iF2δ

x
a δbc

}
.

(Here the argument of all the functions FI , GI is θ .)
Now we use the large � asymptotic expansions

g(�,� + θ) ∼= π

2�
e�

(
1 + eθ

)
,

g(�,2πi − θ) ∼= − π

2�
e�

{
eθ

[
2 + 2πa(θ)

] + (
eθ + 1

)[
Ψ

(
1

2

)
− ln

(
�

2π

)]
− 2πb(θ)

}
,

(7.8)

g(θ,� + θ) ∼= − π

2�
e�

{[
2 + 2πa(θ)

] + (
eθ + 1

)[
Ψ

(
1

2

)
− ln

(
�

2π

)]
− 2πb(θ)eθ

}

and calculate the large � asymptotics of our NLO large n 3-particle form factor explicitly. We
find that it is indeed exactly of the form (7.7), if we choose

(7.9)ω = 2Ψ

(
1

2

)
.

7.2. Odd–odd clustering

Specifying the odd–odd clustering formula for the current form factors at the leading order in
the large n expansion gives

Fcd
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

(7.10)

∼= −
(

e�/2

2

)kl

tcdab exp

{
l

2

k∑
i=1

αi − k

2

l∑
j=1

βj

}
Fa
a1...ak

(α1, . . . , αk)F
b
b1...bl

(β1, . . . , βk).

Note the appearance of prefactors which arise because we are considering reduced form factors
here.

Analogously for the leading large n form factors of the symmetric tensor we get

F̃ cd
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

(7.11)

∼=
(

e�/2

2

)kl

scdab exp

{
l

2

k∑
i=1

αi − k

2

l∑
j=1

βj

}
Fa
a1...ak

(α1, . . . , αk)F
b
b1...bl

(β1, . . . , βk).
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Using the explicit solution of the current and symmetric tensor as well as the spin field form
factors we can prove that the k = 1 special case of the clustering relations implies

(7.12)Kl(β1, β2, . . . , βl) = −
(

−1

2

) l−1
2

exp

{
1

2
β1 − 1

2

l∑
j=2

βj

}
Ql(β1, β2, . . . , βl)

and

(7.13)Ll(β1, β2, . . . , βl) = −
(

−1

2

) l+1
2

exp

{
−1

2

l∑
j=2

βj

}
Ql(β1, β2, . . . , βl).

Here the functions Kl and Ll are defined by the asymptotic relations

(7.14)P
(c)
l+1(�,β1, . . . , βl) ∼= exp

{
�(l − 2)

2

}
Kl(β1, . . . , βl)

and

(7.15)P
(t)
l+1(�,β1, . . . , βl) ∼= exp

{
�(l − 1)

2

}
Ll(β1, . . . , βl).

We have checked the clustering relations (7.12) and (7.13) for l = 3,5 explicitly.

7.3. Odd–even clustering

Using the general odd–even clustering formula we can calculate the reduced form factor clus-
tering in the large n expansion at leading order:

Fx
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

∼= 2π

n�

(
e�/2

2

)kl

exp

{
l

2

k∑
i=1

αi − k

2

l∑
j=1

βj

}
Fa
a1...ak

(α1, . . . , αk)

(7.16)× {
Fxu
b1...bl

(β1, . . . , βl) − F̃ xu
b1...bl

(β1, . . . , βl)
}
.

(Here k is odd and l is even.)
We define the function Ml by the asymptotic formula

(7.17)Ql+1(β1,�,β2, . . . , βl) ∼= exp

{
�(l − 2)

2

}
Ml(β1, β2, . . . , βl).

In the special case k = 1 (7.16) leads to the following recursion relation:

e−β2Ml(β1, β2, . . . , βl)

=
(

1

2

) l−2
2

exp

{
−1

2

l∑
j=1

βj

}

(7.18)×
{

2 cosh

(
β1 − β2

2

)
P

(t)
l (β1, . . . , βl) − sinh(β1 − β2)P

(c)
l (β1, . . . , βl)

}
.

We have checked this relation for l = 2,4,6.
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Similarly the l = 2 special case corresponds to the recursion relation

(7.19)

Nk(β1, β2, α1, . . . , αk) =
(

−1

4

) k−1
2

exp

{
k∑

i=2

αi − k − 1

2
(β1 + β2)

}
Qk(α1, . . . , αk),

where

(7.20)Qk+2(β1 − �,β2 − �,α1, . . . , αk) ∼= exp
{
(k − 1)�

}
Nk(β1, β2, α1, . . . , αk).

We have checked (7.19) for k = 3,5.

7.4. Even–even clustering

In this case the leading order reduced form factor clustering is of the form

F
xy
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

∼=
(

2π

n�

)(
e�/2

2

)kl

exp

{
l

2

k∑
i=1

αi − k

2

l∑
j=1

βj

}

× {
F

xq
a1...ak (α)F

yq
b1...bl

(β) − F
yq
a1...ak (α)F

xq
b1...bl

(β)

(7.21)+ F̃
xq
a1...ak (α)F̃

yq
b1...bl

(β) − F̃
yq
a1...ak (α)F̃

xq
b1...bl

(β)
}

and

F̃
xy
a1...akb1...bl

(α1 + �, . . . , αk + �,β1, . . . , βl)

∼= −
(

2π

n�

)(
e�/2

2

)kl

exp

{
l

2

k∑
i=1

αi − k

2

l∑
j=1

βj

}

× {
F

xq
a1...ak (α)F̃

yq
b1...bl

(β) + F
yq
a1...ak (α)F̃

xq
b1...bl

(β)

− F̃
xq
a1...ak (α)F

yq
b1...bl

(β) − F̃
yq
a1...ak (α)F

xq
b1...bl

(β)

(7.22)+ 2F̃ xq
a1...ak (α)F̃

yq
b1...bl

(β) + 2F̃ yq
a1...ak (α)F̃

xq
b1...bl

(β)
}
.

Using the asymptotic relations

P
(c)
l+2(α1 + �,β1, α2 + �,β2, . . . , βl) ∼= exp

{
(l − 2)�

}
Xl(α1, α2, β1, . . . , βl),

(7.23)P
(t)
l+2(α1 + �,β1, α2 + �,β2, . . . , βl) ∼= exp

{(
l − 3

2

)
�

}
Yl(α1, α2, β1, . . . , βl)

we have established the recursion relations

Xl(α1, α2, β1, . . . , βl)

=
(

−1

4

) l−2
2

exp

{
l − 2

2
(α1 + α2) −

l∑
j=3

βj

}
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× 2 cosh

(
β1 − β2

2

){
cosh

(
α1 − α2

2

)
P

(t)
l (β1, . . . , βl)

(7.24)− sinh

(
α1 − α2

2

)
sinh

(
β1 − β2

2

)
P

(c)
l (β1, . . . , βl)

}
and

e
1
2 (β1−α1)Yl(α1, α2, β1, . . . , βl)

=
(

−1

4

) l−2
2

exp

{
l − 2

2
(α1 + α2) −

l∑
j=3

βj

}

× cosh

(
β1 − β2

2

){[
sinh

(
α1 − α2

2

)
− 2 cosh

(
α1 − α2

2

)]
P

(t)
l (β1, . . . , βl)

(7.25)+ cosh

(
α1 − α2

2

)
sinh

(
β1 − β2

2

)
P

(c)
l (β1, . . . , βl)

}
.

We have verified the above relations for l = 2,4.

8. Clustering in the O(3), O(4) models

8.1. n = 3

We recall the discussion in [3]. One has for the reduced form factors (see Appendix B):

ga
b1...bma1...ak

(β1, . . . , βm,α1 + �, . . . , αk + �)

(8.1)= �km−1εabcg
b
a1...ak

(α1, . . . , αk)g
c
b1...bm

(β1, . . . , βm) + O
(
�km−2),

and similarly

hb1...bma1...ak (β1, . . . , βm,α1 + �, . . . , αk + �)

(8.2)= �km−2ga
a1...ak

(α1, . . . , αk)g
a
b1...bm

(β1, . . . , βm) + O
(
�km−3).

Note that in (8.1) members of the isospin 1 family are mapped into themselves, while in (8.2)
members of the isospin 1 family are linked to members of the isospin 0 family. Observe also that
there is no distinction between the factorization properties between even and odd members of the
same family.

For the special case of k = 1, m = r − 1 the clustering relations read

(8.3)ga
a1...ar

(β1, . . . , βr ) = βr−2
r εaarbg

b
a1...ar−1

(β1, . . . , βr−1) + O
(
βr−3
r

)
,

(8.4)ha1...ar (β1, . . . , βr ) = βr−3
r gar

a1...ar−1
(β1, . . . , βr−1) + O

(
βr−4
r

)
,

which is in accordance with the property that the reduced form factors are polynomials of partial
degree (r − 2) and (r − 3) in the isospin 1 and 0 case, respectively. Since the product Ψr also
factorizes under clustering, the full (scalarized) form factors also satisfy clustering relations,
which are similar to (8.1) and (8.2). For the l = 1 family they can be found in Smirnov’s book [1].

The clustering relations closely resemble some classical equations satisfied by the operators.
For example dividing an even number of particles into two odd clusters, (8.1) can be interpreted
as the quantum counterpart of the current in terms of the spin operators. The division of an even
number of particles into two even clusters on the other hand, resembles the classical equation
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∂μJ
a
ν − ∂νJ

a
μ ∝ εabcJ

b
μJ

c
ν . Finally the clustering of an odd number of particles corresponds to

∂μs
a ∝ εabcs

bJ c
μ. Similarly (8.2) corresponds to the defining equation for the energy–momentum

tensor in terms of the spin fields or equivalently to its Sugawara form Tμν ∝ J a
μJ

a
ν − 1

2ημνJ
a
ρ J

a
ρ .

In Ref. [3] the clustering properties above were used in particular to deduce the clustering
properties of absolute squares of the form factors, summed over internal symmetry indices which
enter in the expressions for spectral densities.

8.2. O(4) form factors: A three-particle example

Just as the O(4) S-matrix (A.19) is (minus) the tensor product of two chiral Gross–Neveu
S-matrices, the O(4) form factors can be written as tensor products of two chiral Gross–Neveu
form factors. More precisely, the O(4) form factors can be written as linear combinations of
several such tensor products. This solution of the O(4) form factor equations, for the case of even
particle numbers, was given by F.A. Smirnov [14]. The odd particle form factors must have a
similar structure. The solution for the three-particle form factors of the O(4) field operator was
found by M. Karowski [18]:

(8.5)fP ;ABC(θ1, θ2, θ3) = D(θ1, θ2, θ3)
∑
ω

F̃
(ω)
p1;a1b1c1

(θ1, θ2, θ3)F̃
(ω̄)
p2;a2b2c2

(θ1, θ2, θ3).

Here F̃
(ω)
p;abc(θ1, θ2, θ3) for ω = ± are the spin s = ± 1

4 SU(2)-symmetric chiral Gross–Neveu
model form factors discussed in Appendix D. They satisfy the following homogeneous bootstrap
equations:

(8.6)F̃
(ω)
p;i1i2i3(θ1 + λ, θ2 + λ, θ3 + λ) = eωλ/4F̃

(ω)
p;i1i2i3(θ1, θ2, θ3),

(8.7)F̃
(ω)
p;i1i2i3(θ1, θ2, θ3) = S̃uv

i2i3
(θ2 − θ3)F̃

(ω)
p;i1vu(θ1, θ3, θ2),

(8.8)F̃
(ω)
p;i1i2i3(θ1 + 2πi, θ2, θ3) = −iωF̃

(ω)
p;i2i3i1(θ2, θ3, θ1)

and the residue equations

(8.9)F̃
(ω)
p;i1i2i3(α,β, θ3) ≈ −4

α − β − iπ

{
c̃i1i2 F̃

(ω)
p;i3(θ3) + iωc̃i1kS̃

kl
i2i3

(β − θ3)F̃
(ω)
p;l (θ3)

}
.

Here the chiral Gross–Neveu S-matrix S̃kl
ij (θ), the anti-symmetric charge conjugation matrix c̃i1i2

and the one-particle form factors F̃
(ω)
p;l (θ) are all defined in Appendix D.

It is easy to show that the homogeneous form factor equations are satisfied by (8.5) if the
scalar prefactor D is shift-invariant, anti-symmetric under the exchange of any pair of rapidities
and is 2πi-periodic in all rapidity variables. It also has to have a first order zero at points where
two rapidities differ by iπ in order to satisfy the residue equation as well. The solution is

(8.10)D(θ1, θ2, θ3) = −i

32

∏
i<j

coth

(
θi − θj

2

)
,

which also has the right normalization. With this choice we have
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fP ;ABC(α,β, θ) ≈ i

α − β − iπ

∑
ω

{
c̃a1b1 c̃p1c1 + iωc̃a1k1 c̃p1l1 S̃

k1l1
b1c1

(β − θ)
}

×{
c̃a2b2 c̃p2c2 + iω̄c̃a2k2 c̃p2l2 S̃

k2l2
b2c2

(β − θ)
}

= 2i

α − β − iπ

{
C̄ABC̄PC − C̄AKC̄PLS

KL
BC (β − θ)

}
.

Here the O(4) charge conjugation matrix C̄AB is defined in (D.10).
We parameterize the O(4) form factors as follows:

fP ;ABC(θ1, θ2, θ3) = C̄PAC̄BCg1(θ1, θ2, θ3) + C̄PBC̄ACg2(θ1, θ2, θ3)

(8.11)+ C̄PCC̄ABg3(θ1, θ2, θ3).

Using the tensor product solution we can write this as

g2 + g3 = 2DF
(+)
− F

(−)
− ,

g2 − g3 = D
(
F

(+)
+ F

(−)
− + F

(+)
− F

(−)
+

)
,

(8.12)4g1 + g2 + g3 = 2DF
(+)
+ F

(−)
+ .

For (θ1, θ2, θ3) = (�,α,β) and using the large � expansion of the components F
(ω)
± described

in Appendix D we find for the O(4) form factors

g2 + g3 ≈ −2π

�2
(iπ − ξ)ψ1(ξ)

{
g0 + 1

4

[
Ψ

(
1

2
+ ξ

2πi

)
+ Ψ

(
1

2
− ξ

2πi

)]}
+ · · · ,

g2 − g3 ≈ − 2πψ1(ξ)

� − α+β
2

{
1 + iπ

�
+ · · ·

}
,

4g1 + g2 + g3 ≈ 3π

2�2
ψ1(ξ)(ξ + iπ) + · · · ,

where ξ = α − β . We see that this is exactly the same expansion as the one we found by directly
solving the O(4) form factor equations asymptotically in Section 4.5. Only the value of g0 cannot
be determined from the asymptotic solution. This we found in Appendix D by expanding the
complete solution for large �:

(8.13)g0 = 1 − 1

2
ln

8�

π
.

9. Concluding remarks

In the course of this work various intriguing relations concerning form factor clustering in the
O(n) sigma-models were discussed and new structures revealed. The relationship of the pattern
of clustering to the classical field equations in the case of O(3) has been previously known [1,
3]. Some of these patterns in particular those involving the Sugawara structure of the energy–
momentum tensor and those involving the (non-Abelian) curl-freeness of the Noether current
(which is so important for integrability) probably extend to general n. We have further formulated
a conjecture in Section 4.7 concerning the (on-shell) nature of clustering to the operator product
expansion.

We have tested our ansatz in various examples. Firstly we checked that the solutions obtained
by solving the form factor equations in leading order 1/n coincided with those obtained by the
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field theoretical approach to the model. Although this is as generally expected, it constitutes yet
another test of the proposed equivalence of the S-matrix bootstrap construction and functional
integral definition of the models. We also found that the large n limit and limit of large rapidity
commute. Although this is observed in previous studies it is not an obvious fact (recall that there
are many examples where the large n limit and limit of small rapidity do not commute).

The case n = 4 is a special case. Here we studied in detail (to our knowledge for the first time)
the 3-particle spin form factor. The tensor product structure is probably particular to this case
but its general form involving the hypergeometric functions may give a hint to the outstanding
unsolved problem of the construction of form factors for general n > 4. Moreover in this case we
found that subleading terms in the form factor clustering involved also logarithms of the (large)
rapidity shift.

As mentioned in the introduction it is not completely implausible that some of the structural
properties found concerning form factor clustering in integrable 2d asymptotically free mod-
els have their analog in 4-dimensional models in particular for processes when the kinematics
effectively reduces the dimension to 1 + 1.
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Appendix A. Explicit S-matrices

A.1. The n = 3 case

For n = 3 the kernel K̃3(ω) = e−πω and the integral in (2.3) is easily done. The result is well
known [15]:

σ1(θ) = 2πiθ

(θ + iπ)(θ − 2πi)
,

σ2(θ) = θ(θ − iπ)

(θ + iπ)(θ − 2πi)
,

(A.1)σ3(θ) = 2πi(iπ − θ)

(θ + iπ)(θ − 2πi)
.

A.2. The n = 4 case

In this case (2.2) and (2.3) simplify to

σ1(θ) = iπθ

(iπ − θ)2
S(2)(θ),

σ2(θ) = θ

θ − iπ
S(2)(θ),

(A.2)σ3(θ) = iπ

iπ − θ
S(2)(θ), S(2)(θ) = −A2(θ),
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where

(A.3)A(θ) = − exp

{
2i

∞∫
0

dω

ω

sin(θω)

1 + eπω

}
.

The O(4) S-matrix is here given in the real basis

(A.4)|a, θ〉, a = 1,2,3,4.

It is useful to transform the particles into a complex SU(2) × SU(2) basis

(A.5)|A,θ〉, A = ++,−−,+−,−+.

The transformation and its inverse are given by

(A.6)|a, θ〉 = Ωa
A|A,θ〉, |A,θ〉 = KA

a|a, θ〉,
with KA

aΩa
B = δBA , Ωa

AKA
b = δba .

The transformation rule of the S-matrix is

(A.7)SCD
AB (θ) = KA

aKB
bΩc

CΩd
DScd

ab(θ).

Using the O(4) S-matrix explicitly we get

(A.8)SCD
AB (θ) = σ1(θ)P

CDRAB + σ2(θ)δ
C
AδDB + σ3(θ)δ

C
B δDA ,

where

(A.9)PCD = Ωx
CΩx

D, RAB = KA
xKB

x.

Next we define the SU(2) × SU(2) basis explicitly. The O(4) generators in the vector repre-
sentation are

(A.10)
(
τab

)
xy

= i
(
δaxδby − δayδbx

)
, a, b = 1,2,3,4.

We now define

(A.11)V k = 1

2
εklmτ lm and Ak = τ k4, k, l,m = 1,2,3.

Further

(A.12)Wk± = 1

2

(
V k ± Ak

)
.

These are the SU(2) × SU(2) generators since

(A.13)
[
Wk+,W l−

] = 0,
[
Wk±,W l±

] = −iεklmWm± .

We now define SU(2) × SU(2) particle states such that

(A.14)|++, θ〉 has eigenvalue
1

2
w.r.t. W 3+ and

1

2
w.r.t. W 3−,

(A.15)|+−, θ〉 has eigenvalue
1

2
w.r.t. W 3+ and − 1

2
w.r.t. W 3−,
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and so on. Here the phases are also important. We make the following choice

|++, θ〉 = 1√
2

{|1, θ〉 − i|2, θ〉},
|−−, θ〉 = 1√

2

{|1, θ〉 + i|2, θ〉},
|+−, θ〉 = 1√

2

{
i|3, θ〉 + |4, θ〉},

|−+, θ〉 = 1√
2

{
i|3, θ〉 − |4, θ〉}.

Now we calculate

(A.16)PCD = ωCδCD̄ (no sum), RAB = ωAδAB̄ (no sum),

where

(A.17)ω++ = ω−− = 1 and ω+− = ω−+ = −1

and B̄ is the charge conjugate of B .

A.3. Tensor product S-matrix

The S-matrix of the SU(2) chiral Gross–Neveu model is [1]

(A.18)S̃
γ δ
αβ (θ) = A(θ)

iπ − θ

{
iπδ

γ
β δ

δ
α − θδγα δ

δ
β

}
,

where α,β, γ, δ = +,−. Taking the tensor product of two such S-matrices we get

−S̃
γ1δ1
α1β1

(θ)S̃
γ2δ2
α2β2

(θ) = σ2(θ)δ
γ1
α1
δγ2
α2
δ
δ1
β1
δ
δ2
β2

+ σ3(θ)δ
γ1
β1
δ
γ2
β2
δδ1
α1
δδ2
α2

(A.19)+ σ1(θ)
(
δ
γ1
β1
δδ1
α1

− δγ1
α1
δ
δ1
β1

)(
δ
γ2
β2
δδ2
α2

− δγ2
α2
δ
δ2
β2

)
,

which is the same as (A.8) if we make the identification A = (α1, α2), etc.

Appendix B. Some form factors for the case n = 3

For n = 3 we can define J a
μ = 1

2ε
abcJ bc

μ and rewrite (2.13) as

(B.1)〈0|J a
μ(0)|b1, θ1; . . . ;br, θr〉in = −iεμαq

αf a
b1...br

(θ1, . . . , θr ).

Using this unified notation8 for the form factors of the O(3) field and the Noether current we can
introduce reduced form factors ga

b1...br
by

(B.2)f a
b1...br

(θ1, . . . , θr ) = Ψr(θ1, . . . , θr )g
a
b1...br

(θ1, . . . , θr ),

where

(B.3)Ψr(θ1, . . . , θr ) = 1

2
π( 3r

2 −1)
∏

1�i<j�r

ψ(θi − θj )

8 Note that no confusion can arise here since the O(n) spin field has non-vanishing form factors for odd number of
particles only whereas the current form factors are non-vanishing for an even number of particles only.
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with

(B.4)ψ(θ) = θ − iπ

θ(2πi − θ)
tanh2

(
θ

2

)
.

Similarly for the energy–momentum tensor we define

(B.5)fb1...br (θ1, . . . , θr ) = Ψr(θ1, . . . , θr )gb1...br (θ1, . . . , θr ).

The advantage of using these reduced form factors is that they, with only one exception, are
polynomial expressions in the particle rapidities [3].

The first reduced form factors for the O(3) field are ga
b1
(θ1) = δab1 and

ga
b1b2b3

(θ1, θ2, θ3)

(B.6)= δab3δb1b2(θ2 − θ1) + δab2δb1b3(θ1 − θ3 − 2πi) + δab1δb2b3(θ3 − θ2).

For the current we have

(B.7)ga
b1b2

(θ1, θ2) = εab1b2

and finally for the energy–momentum tensor9

(B.8)gb1b2(θ1, θ2) = δb1b2

θ1 − θ2 − iπ
.

Note that for n = 3 the functions ψ0,ψ1 defined in (2.19) are given by

(B.9)ψ1(θ) = −π2

2
ψ(θ), ψ0(θ) = iπ2ψ(θ)

θ − iπ
.

Many further explicit examples can be found in Ref. [3].

Appendix C. Current 6-particle function

P
(c)
6 (θ1, θ2, θ3, θ4, θ5, θ6)

= 1

32

[{
3 cosh

1

2
(θ1 + θ2 + θ3 − θ4 − θ5 − θ6) + 3 cosh

1

2
(θ1 + θ2 + θ5 − θ3 − θ4 − θ6)

+ 3 cosh
1

2
(θ1 + θ3 + θ4 − θ2 − θ5 − θ6) + 4 cosh

1

2
(θ1 + θ3 + θ5 − θ2 − θ4 − θ6)

+ 2 cosh
1

2
(θ1 + 3θ3 − θ2 − θ4 − θ5 − θ6) + 2 cosh

1

2
(θ3 + 3θ1 − θ2 − θ4 − θ5 − θ6)

+ 2 cosh
1

2
(θ1 + 3θ5 − θ2 − θ3 − θ4 − θ6) + 2 cosh

1

2
(θ5 + 3θ1 − θ2 − θ3 − θ4 − θ6)

+ 2 cosh
1

2
(θ3 + 3θ5 − θ1 − θ2 − θ4 − θ6) + 2 cosh

1

2
(θ5 + 3θ3 − θ1 − θ2 − θ4 − θ6)

+ 2 cosh
1

2
(θ3 + 3θ4 − θ1 − θ2 − θ5 − θ6) + 2 cosh

1

2
(θ5 + 3θ6 − θ1 − θ2 − θ3 − θ4)

+ 2 cosh
1

2
(θ1 + 3θ2 − θ3 − θ4 − θ5 − θ6) + 2 cosh

1

2
(θ1 + θ2 + 3θ3 − θ4 − θ5 − 3θ6)

9 This is the only exceptional, non-polynomial reduced form factor.
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+ 2 cosh
1

2
(θ1 + θ2 + 3θ6 − θ4 − θ5 − 3θ3) + 4 cosh

1

2
(θ1 + 3θ2 + θ3 − θ4 − θ5 − 3θ6)

+ 2 cosh
1

2
(θ1 + 3θ2 + θ3 − θ5 − θ6 − 3θ4) + 4 cosh

1

2
(θ1 + 3θ2 + θ5 − θ3 − θ6 − 3θ4)

+ 2 cosh
1

2
(θ1 + 3θ2 + θ5 − θ3 − θ4 − 3θ6) + 4 cosh

1

2
(θ1 + θ3 + 3θ4 − θ2 − θ5 − 3θ6)

+ 2 cosh
1

2
(θ1 + θ3 + 3θ4 − 3θ2 − θ5 − θ6) + 2 cosh

1

2
(θ1 + θ5 + 3θ6 − 3θ2 − θ3 − θ4)

+ cosh
1

2
(3θ1 + 3θ2 − θ3 − θ4 − θ5 − 3θ6) + cosh

1

2
(3θ1 + 3θ2 − θ3 − θ5 − θ6 − 3θ4)

+ cosh
1

2
(3θ3 + 3θ4 − θ1 − θ2 − θ5 − 3θ6) + cosh

1

2
(3θ3 + 3θ4 − θ1 − θ5 − θ6 − 3θ2)

+ cosh
1

2
(3θ5 + 3θ6 − θ1 − θ2 − θ3 − 3θ4) + cosh

1

2
(3θ5 + 3θ6 − θ1 − θ3 − θ4 − 3θ2)

+ cosh
1

2
(θ1 + 3θ3 + 3θ4 − θ2 − 3θ5 − 3θ6)

+ cosh
1

2
(θ3 + 3θ1 + 3θ2 − θ4 − 3θ5 − 3θ6)

+ cosh
1

2
(θ5 + 3θ1 + 3θ2 − θ6 − 3θ3 − 3θ4)

}
+ {θ3 ↔ θ4} + {θ5 ↔ θ6}

(C.1)+ {θ3 ↔ θ4, θ5 ↔ θ6}
]

+ [θ1 ↔ θ2].

Appendix D. XY model and chiral Gross–Neveu model form factors

The bootstrap solution of the XY model [19] is based on the extremal sine-Gordon S-matrix,
which is given by

(D.1)S−−−−(θ) = S++++(θ) =A(θ),

(D.2)S+−+−(θ) = S−+−+(θ) = κθ

iπ − θ
A(θ),

(D.3)S+−−+(θ) = S−++−(θ) = iπ

iπ − θ
A(θ),

where A(θ) is given in (A.3) and κ = 1 for the XY model S-matrix. The choice κ = −1 gives
the SU(2) symmetric chiral Gross–Neveu S-matrix (A.18). We will keep the notation S

γ δ
αβ (θ) for

the XY model S-matrix and will denote the chiral Gross–Neveu S-matrix by S̃
γ δ
αβ (θ).

For the XY model the crossing relation is

(D.4)S
γ δ
αβ (iπ − θ) = cβμcδνS

γμ
αν (θ),

where the charge conjugation matrix cαβ has non-vanishing components

(D.5)c+− = c−+ = 1,

whereas for the chiral Gross–Neveu case crossing is given by

(D.6)S̃
γ δ
αβ (iπ − θ) = c̃βμc̃δν S̃

γμ
αν (θ),
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with

(D.7)c̃+− = −c̃−+ = i.

As discussed in Appendix A, the O(4) S-matrix is (minus) the tensor product of two chiral Gross–
Neveu S-matrices:

(D.8)SCD
AB (θ) = −S̃

γ1δ1
α1β1

(θ)S̃
γ2δ2
α2β2

(θ),

where A = (α1, α2), etc. The crossing relation is

(D.9)SCD
AB (iπ − θ) = C̄BMC̄DNSCM

AN (θ),

with

(D.10)C̄AB = c̃α1β1 c̃α2β2 .

D.1. SU−1(2) symmetry

As is well known, the sine-Gordon model has quantum group symmetry SUq(2), which be-
comes SU−1(2) in the extremal case. In this case the algebra of generators τ±, j is identical to
the ordinary SU(2) algebra:

(D.11)[τ+, τ−] = 2j, [j, τ±] = ±τ±,

it is only the co-product � that is different from the classical case:

(D.12)�(j) = j ⊗ 1 + 1 ⊗ j, �(τ±) = τ± ⊗ (−1)2j + 1 ⊗ τ±.

This means that if we build tensor product representations from the basic doublet representation,
the representation matrices are given by

(D.13)�2(τ±) = −τ± ⊗ 1 + 1 ⊗ τ±,

(D.14)�3(τ±) = τ± ⊗ 1 ⊗ 1 − 1 ⊗ τ± ⊗ 1 + 1 ⊗ 1 ⊗ τ±,

etc. These are representation matrices of the classical SU(2) algebra and they are simply related
to the usual ones. For the two-particle case the relation is

|++〉cl = |++〉,
|+−〉cl = |+−〉,
|−+〉cl = −|−+〉,

(D.15)|−−〉cl = −|−−〉,
where the |αβ〉cl states transform according to the usual two-particle representation. Similarly
for higher states we have

(D.16)|αr . . . α2α1〉cl =
r∏

l=1

(αl)
l+1|αr . . . α2α1〉.

We denote the SU(2) generators acting in the Hilbert space by Ĵ , T̂±. We will be looking for
local fields φ±(z) transforming as elements of an SU(2) doublet:

2
[
Ĵ , φ±(z)

] = ±φ±(z),
[
T̂+, φ+(z)

] = [
T̂−, φ−(z)

] = 0,
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(D.17)
[
T̂+, φ−(z)

] = φ+(z),
[
T̂−, φ+(z)

] = φ−(z).

Note that (φ+)† �= cφ− for any constant c (the above equations cannot have such solutions) i.e.
the doublet fields must be genuinely complex.

SU(2) symmetry restricts the form factors of doublet operators. For the 1-particle form factors
we have

(D.18)Fp;a(θ) = 〈0|φp(0)|a, θ〉 = iG(θ)c̃pa.

For the 3-particle ones

(D.19)Fp;abc(θ1, θ2, θ3) = 〈0|φp(0)|a, θ1;b, θ2; c, θ3〉
we introduce the notation

F−;++−(θ1, θ2, θ3) = F1(θ1, θ2, θ3),

F−;+−+(θ1, θ2, θ3) = F2(θ1, θ2, θ3),

(D.20)F−;−++(θ1, θ2, θ3) = F3(θ1, θ2, θ3).

Note that all other components either vanish by charge conservation or are related to these ones
by charge conjugation:

(D.21)Fp̄;āb̄c̄(θ1, θ2, θ3) = −Fp;abc(θ1, θ2, θ3).

The restriction coming from SU(2) symmetry is

(D.22)F1 − F2 + F3 = 0.

We also introduce the form factors corresponding to the manifestly SU(2) invariant basis
(D.16):

(D.23)F̃p;abc(θ1, θ2, θ3) = 〈0|φp(0)|a, θ1;b, θ2; c, θ3〉cl.

For these form factors we have

(D.24)F̃1 = F1, F̃2 = −F2, F̃3 = F3,

(D.25)F̃p̄;āb̄c̄(θ1, θ2, θ3) = F̃p;abc(θ1, θ2, θ3)

and

(D.26)F̃1 + F̃2 + F̃3 = 0.

We note that the basic spin fields [19] of the XY model,

(D.27)S±(z) = S1(z) ± S2(z)

obviously satisfy (S+)† = S− and hence cannot be elements of a doublet.
In the following we will consider the form factors of not only the doublet operators but also

more general, charge −1, spin s fields. We will use the notation (D.20) also for these more
general form factors. Of course, (D.22) only holds for the SU(2) doublet case.
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D.2. 3-particle form factor equations for general spin

We recall the bootstrap equations satisfied by the form factors of a charge −1, spin s oper-
ator (which may or may not be the lower component of an SU(2) doublet). The homogeneous
equations are:

(D.28)Fi1i2i3(θ1 + λ, θ2 + λ, θ3 + λ) = esλFi1i2i3(θ1, θ2, θ3),

(D.29)Fi1i2i3(θ1, θ2, θ3) = Suv
i2i3

(θ2 − θ3)Fi1vu(θ1, θ3, θ2),

(D.30)Fi1i2i3(θ1 + 2πi, θ2, θ3) = ηi1Fi2i3i1(θ2, θ3, θ1).

This is supplemented by the residue equation

(D.31)Fi1i2i3(α,β, θ3) ≈ 4i

α − β − iπ

{
ci1i2Fi3(θ3) − ηi1ci1kS

kl
i2i3

(β − θ3)Fl(θ3)
}
.

Here and in the cyclic equation (D.30) ηi1 is a phase factor that expresses the relative non-
locality between the field, whose form factors we are constructing and the basic spin fields S±
that create the asymptotic particles using the LSZ asymptotic formula. Consistency between the
cyclic equation (D.30) and the shift equation (D.28) requires that

(D.32)η+ = η = e2πis, η− = e−2πis

and this is sufficient to determine the one-point function

(D.33)Fj (θ) = gδ+
j esθ

up to the normalization constant g.
If we write the shift and cyclic equations in terms of the independent components F1, F2, F3

we get

(D.34)Fk(θ1 + λ, θ2 + λ, θ3 + λ) = esλFk(θ1, θ2, θ3), k = 1,2,3,

and

(D.35)Fk(θ1 + 2πi, θ2, θ3) = ηFk+1(θ2, θ3, θ1), k = 1,2.

The k = 3 equation F3(θ1 + 2πi, θ2, θ3) = η−1F1(θ2, θ3, θ1) is already a consequence of the
above two.

We have seen that SU(2) symmetry requires

(D.36)ζ = F1 − F2 + F3 = 0.

For later purposes we introduce

(D.37)F± = F1 ± F2,

in terms of which (D.36) can also be written as F3 = −F−. From (D.35) it follows that

(D.38)ζ(θ1 + 2πi, θ2, θ3) = −ηζ(θ2, θ3, θ1) +
(
η + 1

η

)
F1(θ2, θ3, θ1)

thus an SU(2) doublet field must have η = ±i i.e. spin s = ±1/4 (mod 1). We will consider
two such doublet solutions φ

(ω)
p (z) with s = ω/4, η = ωi (ω = ±). It is natural to write the

form factors in this case using the manifestly symmetric basis vectors (D.16). We choose the
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normalization (g(±) = 2) such that the 1-particle form factors are given by

(D.39)F̃
(ω)
p;a (θ) = 〈0|φ(ω)

p (0)|a, θ〉 = 2ic̃paeωθ/4.

Written in terms of the form factors of these operators, the three-particle equations (D.28)–
(D.31) become the form factor equations (8.6)–(8.9), discussed in the main text.

D.3. Reduced form factors

To simplify the solution of the 3-particle form factor equations we introduce a set of “reduced”
form factors fm (m = 1,2,3) by writing [19]

(D.40)Fm(θ1, θ2, θ3) = −2π2NY(θ1, θ2, θ3)e
s(θ1+θ2+θ3)fm(θ1, θ2, θ3),

where the prefactor Y is

(D.41)Y(θ1, θ2, θ3) =
∏
i<j

y(θi − θj )

with

(D.42)y(θ) = sinh

(
θ

2

)
eE(θ),

where

(D.43)E(θ) =
∞∫

0

dω

ω

[coshω(π + iθ) − 1]
sinhπω

1

(1 + eπω)
.

Finally the normalization constant is

(D.44)N = i

π11/2
e−E(0)e−iπs .

Note that the function E(θ) is related to ψ1(θ) (defined in (3.17)) for the case n = 4 by

(D.45)ψ1(θ)|n=4 = 2i sinh( θ2 )

iπ − θ
e2E(θ),

and for large θ it behaves as

(D.46)4E(θ) = −θ + ln(2θ) + 2E(0) + iπ
(
1 − θ−1) + O

(
θ−2).

For later use we introduce the function

(D.47)Φ(θ) = �

(
1

2
+ θ

2πi

)
�

(
− θ

2πi

)
.

With the help of this function we can write the S-matrix element A(θ) as

(D.48)A(θ) = Φ(θ)

Φ(−θ)
.

For completeness, we give here the form factor equations, rewritten in terms of the reduced
form factors fm:

(D.49)fm(θ1 + λ, θ2 + λ, θ3 + λ) = e−2sλfm(θ1, θ2, θ3),
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f3(α, θ, θ
′) = f3(α, θ

′, θ),
f−(α, θ, θ ′) = f−(α, θ ′, θ),

(D.50)f+(α, θ, θ ′) = iπ + θ − θ ′

iπ − θ + θ ′ f+(α, θ ′, θ), f± = f1 ± f2,

(D.51)fm(θ1 + 2πi, θ2, θ3) = fm+1(θ2, θ3, θ1) (m = 1,2),

f1(α,β, θ) ≈ −2igηπ2e−2sβ

α − β − iπ

{ −iπ

iπ − β + θ
Φ(β − θ)

}
,

f2(α,β, θ) ≈ −2igπ2e−2sβ

α − β − iπ

{
Φ(θ − β) − η(β − θ)

iπ − β + θ
Φ(β − θ)

}
,

(D.52)f3(α,β, θ) ≈ −2igπ2e−2sβ

α − β − iπ

{
Φ(θ − β) − 1

η
Φ(β − θ)

}
.

Later we will explicitly solve the form factor equations for the reduced form factors and
calculate their large rapidity limit. But even before having the complete solution, a lot of infor-
mation about their large rapidity behavior can already be obtained by expanding the equations
themselves. We take the ansatz

(D.53)fm(�,α,β) ≈ e− 1
2�ekα

(� − α)p

{
Um(α − β) + Wm(α − β)

� − α
+ · · ·

}
(m = 1,2,3)

for large �, where k = 1
2 − 2s. We get restrictions on the leading power p and the expansion co-

efficients Um, Wm by substituting this ansatz into the reduced form factor equations. In particular,
from the residue equations, using the asymptotic expansion of Φ , we get for large �

(D.54)fm(α,β,�) ≈ −ic

α − β − iπ
ekβe− 1

2 �

⎧⎪⎪⎨
⎪⎪⎩

η

(�−β)3/2 − 3iπη

4�5/2 + · · ·
1+iη
π

1
(�−β)1/2 + 3η−i

4
1

�3/2 + · · ·
1
π
(1 − i

η
) 1
(�−β)1/2 + 1

4 (
1
η

− i) 1
�3/2 + · · ·

where

(D.55)c = 4π4
√

2πe− iπ
4 g.

From here we see that for most spin values for which η �= i (− 1
4 � s < 1

4 ), the leading power is
p = 1/2 but for s = 1

4 we have η = i and the leading power is p = 3/2. It is easy to solve the
form factor equations in this expanded form. For the case η = −i (s = − 1

4 ) we get

(D.56)Um(ξ) =
(1

1
0

)
U(ξ), W3(ξ) = −W−(ξ),

where

U(ξ) = −2c

π

e− 1
2 ξ

(πi − ξ)
,

W+(ξ) = c e− 1
2 ξ

(ξ − 2πi),

π (πi − ξ)
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(D.57)W−(ξ) = −2c

π
e− 1

2 ξ

{
g0 + 1

4

[
Ψ

(
1

2
+ ξ

2πi

)
+ Ψ

(
1

2
− ξ

2πi

)]}
,

whereas for the case η = i (s = 1
4 ) we get

(D.58)Um(ξ) =
(−1/2

1/2
1

)
U(ξ), W3(ξ) = −W−(ξ)

and

U(ξ) = ic

2 cosh ξ
2

,

W−(ξ) = 3ic

8

(ξ − 2πi)

cosh ξ
2

,

(D.59)W+(ξ) = 3ic

16

(ξ + πi)

cosh ξ
2

.

As discussed in Section 4, there is a logarithmic piece in the subleading term of the O(4)
form factors. As we will see later, such terms are also present in the asymptotic expansion of the
spin ±1/4 form factors. Anticipating this fact we extend (D.53) by a logarithmic piece of the
form

(D.60)
e− 1

2�ekα

(� − α)p̃
ln(� − α)

{
Ũm(α − β) + W̃m(α − β)

� − α
+ · · ·

}
.

The functions Ũm and W̃m satisfy very similar equations to the ones discussed above for Um

and Wm. The main difference is that the residue equations are free of logs. We find that non-
vanishing solutions are only possible for p̃ = 1/2 or p̃ = 3/2. Finally requiring regularity (also
at infinity) eliminates all but one possibility: p̃ = 3/2 for s = −1/4 with solution

(D.61)Ũ
(−)
− (ξ) = �0e− 1

2 ξ ,

with arbitrary constant �0. This means that the full asymptotic expansion (the sum of (D.53) and
(D.60)) is correctly given by (D.53) alone, with solution (D.56)–(D.59), provided only that we
allow the “constant” g0 depend (linearly) on ln�. The actual value of g0 can be calculated from
the large � expansion of the exact solution. We now turn to this calculation.

D.4. Contour integral solution

H. Babujian et al. [20] found the solution of the reduced form factor equations in terms of a
contour integral:

(D.62)fm(θ1, θ2, θ3) = − 1

2π2

∫
C

du e−2sutm(θ1, θ2, θ3;u)
3∏

j=1

Φ(θj − u),

where

t1(θ1, θ2, θ3;u) = θ1 − u θ2 − u iπ
,

iπ − θ1 + u iπ − θ2 + u iπ − θ3 + u
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t2(θ1, θ2, θ3;u) = θ1 − u

iπ − θ1 + u

iπ

iπ − θ2 + u
,

(D.63)t3(θ1, θ2, θ3;u) = iπ

iπ − θ1 + u

and the contour C (for real rapidities θi ) comes from −∞ along a line parallel to the real axis and
going somewhat below the singular points θi − iπ , then turns back and goes around the points θi
before it goes to +∞ again parallel to the real line. Precisely this integral along such a contour
is the special function known as Meijer’s G-function [21]:

(D.64)fm(θ1, θ2, θ3) = G33
33

(
e−4πis

∣∣∣∣a
(m)
1 a

(m)
2 a

(m)
3

b
(m)
1 b

(m)
2 b

(m)
3

)
.

The parameters depend on the rapidities:

a
(1)
1 = − iθ1

2π
, a

(1)
2 = − iθ2

2π
, a

(1)
3 = 1 − iθ3

2π
,

b
(1)
1 = −1

2
− iθ1

2π
, b

(1)
2 = −1

2
− iθ2

2π
, b

(1)
3 = −1

2
− iθ3

2π
,

a
(2)
1 = − iθ1

2π
, a

(2)
2 = 1 − iθ2

2π
, a

(2)
3 = 1 − iθ3

2π
,

b
(2)
1 = −1

2
− iθ1

2π
, b

(2)
2 = −1

2
− iθ2

2π
, b

(2)
3 = 1

2
− iθ3

2π
,

a
(3)
1 = 1 − iθ1

2π
, a

(3)
2 = 1 − iθ2

2π
, a

(3)
3 = 1 − iθ3

2π
,

(D.65)b
(3)
1 = −1

2
− iθ1

2π
, b

(3)
2 = 1

2
− iθ2

2π
, b

(3)
3 = 1

2
− iθ3

2π
.

Finally we note that Meijer’s G-function G33
33 can be expressed in terms of Gamma functions and

hypergeometric functions as follows [21]:

G33
33

(
z

∣∣∣∣a1 a2 a3
b1 b2 b3

)

(D.66)
= zb1Ω(1 − a1 + b1,1 − a2 + b1,1 − a3 + b1;b2 − b1, b3 − b1;−z) + 2 perms,

where

(D.67)
Ω(u1, u2, u3;v1, v2; z) = �(u1)�(u2)�(u3)�(v1)�(v2)3F2(u1, u2, u3;1 − v1,1 − v2; z).

This can be used to express the three-particle form factors as follows.

f1(θ1, θ2, θ3)

= e2πise−2sθ1Ω

(
1

2
,

1

2
− iθ12

2π
,−1

2
− iθ13

2π
; iθ12

2π
,
iθ13

2π
;−e−4πis

)

+ e2πise−2sθ2Ω

(
1

2
+ iθ12

2π
,

1

2
,−1

2
− iθ23

2π
;− iθ12

2π
,
iθ23

2π
;−e−4πis

)

(D.68)+ e2πise−2sθ3Ω

(
1

2
+ iθ13

2π
,

1

2
+ iθ23

2π
,−1

2
;− iθ13

2π
,− iθ23

2π
;−e−4πis

)
,
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f2(θ1, θ2, θ3)

= e2πise−2sθ1Ω

(
1

2
,−1

2
− iθ12

2π
,−1

2
− iθ13

2π
; iθ12

2π
,1 + iθ13

2π
;−e−4πis

)

+ e2πise−2sθ2Ω

(
1

2
+ iθ12

2π
,−1

2
,−1

2
− iθ23

2π
;− iθ12

2π
,1 + iθ23

2π
;−e−4πis

)

(D.69)

+ e−2πise−2sθ3Ω

(
3

2
+ iθ13

2π
,

1

2
+ iθ23

2π
,

1

2
;−1 − iθ13

2π
,−1 − iθ23

2π
;−e−4πis

)
,

f3(θ1, θ2, θ3)

= e2πise−2sθ1Ω

(
−1

2
,−1

2
− iθ12

2π
,−1

2
− iθ13

2π
;1 + iθ12

2π
,1 + iθ13

2π
;−e−4πis

)

+ e−2πise−2sθ2Ω

(
1

2
+ iθ12

2π
,

1

2
,

1

2
− iθ23

2π
;−1 − iθ12

2π
,
iθ23

2π
;−e−4πis

)

(D.70)+ e−2πise−2sθ3Ω

(
1

2
+ iθ13

2π
,

1

2
+ iθ23

2π
,

1

2
;−1 − iθ13

2π
,− iθ23

2π
;−e−4πis

)
.

We are interested in the asymptotics of these form factors in the limit θ1 → +∞. The exponential
part of the form factor asymptotics, which comes entirely from the Gamma functions, is

(D.71)e−(1+2s)θ1

for the first of the three terms for all fm and is

(D.72)e− 1
2 θ1

for the second and third terms. Thus the exponential part of the asymptotics is given by (D.72),
which comes from the second and third terms in almost all cases, except for s = −1/4, in which
case also the first terms contribute.

To calculate the leading asymptotics of our form factors we will need the asymptotic behavior
of the generalized hypergeometric functions 3F2 in the case of some of its parameters large. We
will use a simple integral representation [22] of this function to establish the asymptotic formulae
we need in this calculation.

3F2(a1, a2, a3;b1, b2; z)

(D.73)= �(b2)

�(a3)�(b2 − a3)

1∫
0

dt ta3−1(1 − t)b2−a3−1
2F1(a1, a2;b1; tz),

which is valid for Re(b2) > Re(a3) > 0 in the range |z| < 1, but can be extended to the limit
|z| → 1. The Gauss hypergeometric function 2F1 can in turn be expressed as the integral

(D.74)2F1(a, b; c; z) = �(c)

�(b)�(c − b)

1∫
0

dt tb−1(1 − t)c−b−1(1 − tz)−a,

valid for Re(c) > Re(b) > 0.
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Using both integral representations above simultaneously we can show that for large (real) λ

3F2(a1, α2 + iλ,α3 + iλ;β1 + iλ,β2 + iλ;1)

(D.75)≈ �(β1 + β2 − α2 − α3 − a1)

�(β1 + β2 − α2 − α3)
|λ|a1 e

iπa1
2 sgnλ,

valid for Re(β2) > Re(α3) > 0 and Re(β1) > Re(α2) > 0. We are sure however that this estimate
holds in a larger range of parameters. In particular to get the contribution of the first terms for f1,
f2 we need an estimate of the lhs of (D.75) for a1 = 1/2, α2 = 1

2ρ + iθ2
2π ,α3 = − 1

2 + iθ3
2π ,β1 =

1 + iθ2
2π ,β2 = 1

2 (1 + ρ) + iθ3
2π for the two cases ρ = ±1. We have numerically checked that the

estimate (D.75) is indeed valid for these cases in the range |θ23| < 4π . It is plausible that it can
also be proved for arbitrary values of �θ23 for some range of �θ23 by assuming analyticity of the
formula in this variable. Applying then (D.75) to the first terms of (D.68)–(D.70) (for s = −1/4)
we find

(D.76)f (I)
m (θ1, θ2, θ3) ≈ ic

2
e− 1

2 θ1
e

1
2 (θ2+θ3)

θ
3/2
12

(−1
1
2

)
.

Thus the first terms only contribute to W− for s = −1/4. Their contribution is:

(D.77)
[
W

(−)
− (ξ)

](I ) = −ice− 1
2 ξ .

For the second and third terms (of f1 and f2) we have to consider, for large positive λ = θ12
2π ,

the following product:

�(a1)�(a2)�(−a1 − a2)�(α3 + iλ)�

(
1

2
− α3 − iλ

)

(D.78)× 3F2

(
a1, a2, α3 + iλ;1 + a1 + a2,

1

2
+ α3 + iλ;1

)
.

Its asymptotic form can be established using the integral representation (D.73) together with the
formula [23]

2F1(a1, a2;1 + a1 + a2; t)
≈ �(1 + a1 + a2)

�(a1)�(a2)

{
1

a1a2
+ (1 − t)

[
ln(1 − t) − Ψ (1) − Ψ (2)

(D.79)+ Ψ (1 + a1) + Ψ (1 + a2)
]}

,

valid in the vicinity of t = 1. With the help of this formula we can calculate the large λ expansion
of (D.78):

(D.80)
2π2i√

λ
e

iπ
4

e−πλeiπα3

sinπ(a1 + a2)

{
1

a1a2
− i

2λ

[
X − lnλ − iπ

2
+ Ψ

(
3

2

)]}
+ · · · ,

where

(D.81)X = Ψ (1 + a1) + Ψ (1 + a2) − Ψ (1) − Ψ (2) +
1
4 − α3

a1a2
.
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Using (D.80) in (D.68) and (D.69) we find the following results. For s = 1/4 the e− 1
2 θ12

θ
1/2
12

terms

cancel and only the e− 1
2 θ12

θ
3/2
12

terms remain. In this case these contribute to the leading terms Um

and we find

(D.82)U(+)(ξ) = ic

2 cosh ξ
2

,

the same result as we found in the previous subsection. For s = −1/4 (D.80) gives contributions
both to the leading Um and the subleading Wm terms. We find

(D.83)U(−)(ξ) = 2c

π

e− 1
2 ξ

ξ − iπ
,

(D.84)W
(−)
+ (ξ) = − c

π
e− 1

2 ξ
ξ − 2πi

ξ − iπ

and [
W

(−)
− (ξ)

](II )+(III )

= −2c

π
e− 1

2 ξ

[
1

4
Ψ

(
1

2
+ iξ

2π

)
+ 1

4
Ψ

(
1

2
− iξ

2π

)

(D.85)+ 1

2
Ψ

(
3

2

)
+ 1

2
Ψ

(
1

2

)
− Ψ (1) − 1

2
ln

�

2π
− iπ

2

]
.

Again, the above results are in agreement with the ones obtained in the previous subsection
solving the asymptotic form factor equations. Finally we get

(D.86)g0 = Ψ

(
1

2

)
− Ψ (1) + 1 − 1

2
ln

�

2π
= 1 − 1

2
ln

8�

π
.
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