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Abstract

We investigate structure functions in the 2-dimensional (asymptotically free) non-lin@aroGmodels using the non-
perturbative S-matrix bootstrap program. In particularexeet small (Bjorken) x behavior is exhibited; the structure is rather
universal and is probably the same in a wide class of (integrable) asymptotically free models. Structurally similar universal
formulae may also hold for the smallbehavior of QCD in 4-dimensions. Structure functions in the special case ofth#
model are accurately computed over the whotange forqu/M2 < 10°, and some moments arernpared with results from
renormalized perturbation theory. Some remarks concerning the structure functions in #ygtoximation are also made.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction

Structure functions describing scattering of electrons and neutrinos off nucleon targets are well measured and
give us insight into the structure of the nucleghs4]. At high —g? and intermediate Bjorken the parton model
and DGLAP equationfb,6] give a good description. At smallerthe DLGAP equations are considered to break
down and BFKL-typd7] equations take over, here the structure funcfion- x~(=4% with v(—¢?) > 0. Avalue
of v(0) > 0 would however (seem to) violate the Froissart bolRetently saturation models, such as the so-called
color glass mod€B,9] predict the true asymptotic behavior to Bg~ In? x, with p =1 or 2.

The QCD literature on smat physics is vast and rather involvEiD,11] One certain aspectikat a description
of the asymptotically smalk region requires some crucial non-perturbative input. The most systematic non-
perturbative methods for QCD, using the lattice regaktion, are able to give non-perturbative information on
the moments of the structure functions via the QIPE 13], however, they are not applicable to yield information
on the asymptotically small behavior.

In this Letter we study structure functions in asymptotically free integrable models in two dimensions. Despite
the fact that there are no transverse directions, the structure functions have a rather rich and non-trivial behavior
with many features reminiscent of the structure functions in QCD. Here we will concentrate on results obtained
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for O(n) sigma models. In particular we have derived #Ract small x behavior in these models. The result has
a rather universal model-indepemistructure, being independentmofand holding for a large class of operator
probes. One is tempted to speculate a similar qualitative structure to hold in QCD.

2. Sigma model 2-point functions

The Qn) o-model in 2d formally described by the Lagrangian

1 - a i Qa - a qa
L= ZgSazzla“S anse, ;S §4=1, (2.1)
is perturbatively asymptotically free far> 3. A special property is that these models have an infinite number of
local [14] and non-loca[15] classical conservation laws which survive quantization. At the quantum level they
imply absence of particle production. Assuming the spectrum to consist of one stable€@tor multiplet of
massM, the S-matrix has been proposed long ago by the ZamolodchjkéysForm factors of local operators
can be computed using general princidies]. The S-matrix bootstrap program for the construction of correlation
functions involves summing the contributions over all intermediate sfa&jsThe possible equivalence of this
construction to the continuum limit of the latticegularized theory has been investigated in Red]. In papers of

one of the present authors (J.B.) and M. Niedermi@@} 2-point functions of various operators were computed,
including those of the Gr) current]ﬁd and spin-field operator@“. We give their definitions here because they
will be needed later to state our result on the smdikehavior:

X d?2 )
OIT T3 ) 5 ()10) = =i (86Y — 57 8%°) ﬁe"q“‘”(ququ — ¢nu) li(—q% —ie), (2.2)
JT
valid up to contact terms and
b b 42 dzq i 2

(O[T @ (x) D" ()|0) = —i89° A2 / We—w-y%(—q —ie), (2.3)

where the normalization factot,, is chosen (for later convenience):
2

To complete the definitions we must supplement the operator normalizations. The currents have a normalization
fixed by requiring their spatial integrals to yield the correct charge€@f(4.11), and our field normalization is
fixed by requiring

(0| (0)|b, 0) =6 (2.5)
for one particle states with momentym = M sinhé, with state normalization
(a,0'|b,0) = 4w 50s(0' — 0). (2.6)

The studies of these 2-point functions (in the case3) [20] presently constitute the best evidence for the existence
of a non-perturbative construction of a model with asymptotic freedom.
3. Sigma model structurefunctions

Theo-model analogue of the central object in deep inelastic scattering is

. 1 .
wibiedel (p, q) = E/dzx e (a., p|[ I (). I ()] 1. p). (3.1)
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We define the usual DIS kinematic variables
2

pq q 2 2
= —, = — . W = . 32
v="s X=—o P+ (3.2)
In the relevant kinematic domaiff <0, W > M, i.e., 0< x < 1 we have
Weredel (p,qy=my _(a, plI5 ©@r)(r1 7 )b, )P (p +q — Py, (3.3)
r

where the sum is over the complete setgfarticle (“in” or “out”) states. Using Lorentz and(®@) invariance we
have

2

; qug bicd
Wﬁi’,cdef(p’ q) = (nuv - sz) Zwl(qz’ X)Rla ‘ ef’ (3.4)
=0

with projectorsR; corresponding to the 3 invariantchannel “isospins” given by

Rabicdes _ }8ab(8ce8df sl 5, (3.5)
n
. 1
Rib’Cdef _ §(8aC6be _ (SbC(Sae)(Sdf —(cod) —(e<v fl+(ced,e< f), (3.6)
‘ 1, 2 ~
R = —S{(6%8" 48 5°)6Y —(c > d) — (e & )+ (e > doe > )} 4+ =57 (56 —5T6).

3.7)
Note in 2 dimensions there is only one structure fiorc for each isospin channel, since there is only one
(conserved symmetric) tensor involving two momenta; one has, e.gpiferM?),

Mvg Mvg,\  M*(v?—g¢? )
(p”_ qz“)('v”_ qzv> T (@22 (v = 1r”). (3.8)

Although in QCD structure functions for operators not associated with physical sources have so far not been
studied, we also introduce, for reasons which will soon become apparent, the field structure functions through

r
2
= A2 in(q? ) P, (8.10)
1=0
with ¢-channel projector®, for the vector representation given by
. 1
Pgb,cd — —SGb(SCd, (311)
n
. 1
be’Cd — E(5ac5bd _ Sbc(sad)’ (3.12)
. 1 1
Pgb’Cd — E((Sac(gbd + (SbC(Sad) _ _8ab8cd_ (3.13)
n

The current operators connect only states with an even number of particles to the vacuum and the field operators
only states with and odd number:

wl(qz,x) = Z wl(r)(qz,x), lbl(qz,x) = Z wl(r)(qz,x). (3.14)

r odd r even
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The wonderful feature of integrable models is that one knows many explicit properties concerning the form
factors appearing in the expressions. These are encapsulated in the Smirnov[aXijoarsd using these one can
derive the previously announced exact asymptotic smb#havior of the structure functions:

1 2T,
wia* )~ g e ) (3.19)
1 2n'V;

el _ 2
xIn?x (n—Z)ZAO( a). (3.16)

where the functiong; are the “Adler functions” defined from the vacuum 2-point functi¢h®), (2.3) by

wy (qz, x) ~

3
As(z) = —zza—zls(z), s=0,1. (3.17)

The constants appearing {8.15) (3.16) are characteristic of the @) representations (vector and anti-
symmetric tensof") of the corresponding operators:

Vo=2(n—-1), Vi=Vo=n-2, (3.18)
To=4(n—2), Th=n-2, T;=4-n. (3.19)

The explicit proof of these relations will be presented in a forthcoming more detailed publi§2atiprin this

Letter we would like to concentrate on general features. Firstly we note that the structure of the asymptatic small
behavior is independent of éhoperator, independent af and independent of the channel. Further since the
results were obtained from rather general principles, we think that they are valid for a large class of integrable
asymptotically free models. Indeed we have checkedttteasame behavior holds in the leading orders of the 1
expansion in the Gross—Neveu mofi4].

In the derivation 0f(3.15), (3.16)it appears that the/In?x behavior is related to the high energy behavior
of the scattering amplitudes; this is similar to the association of the propo8ednnQCD with the asymptotic
behavior of total cross sections (related to the forward scattering amplitude through the optical theorem).

The question is what can one learn for QCD; is the smdlehavior there also given by a structural formula
factorizing a part characteristic to the target and a part described by the vacuum 2-point function? Unfortunately
so far we have not succeeded to derive such a general result. As a first guess we have looked at the ratio of the
structure functiorFs to the (electro-magnetic) Adler functiam in QCD, with HERA data at some of the lowest
values published so f§24], and the Adler function taken from R¢R3]. The result is presented kig. 1, there is
no sign that the ratio is becoming independentgf asx decreases. However, from such comparisons one should
be cautious to draw conclusions concerning tegnaptotic behavior, because at these values thfe situation is
qualitatively similar (only the slope is different) for the ratiag(¢?, x)/A1(—¢?) in the Q33) o-model, which
is also plotted in the same figure. In this model one would have to go to much smaller valuebhaf question
remains for QCD, at which value af (for a given—g? range) does the true asymptotic behavior set in?

The QCD structure functions in the range of smalbetween 10° and 102 are fitted quite well with a
“Lipatov form” A(—qz)x*“(*qz). As an exercise we have made least-square fitsugf(g2, x) (for O(3)) with
such a form and observed that in the regime®1€ x < 102 such fits withv(—¢?) = —0.192 —0.167, —0.151
for —¢2/M? = 1,10, 100, respectively, describe the data better than simplest fits of the darag2)/In’x
incorporating the known asymptotic smalbehavior.

3.1. 1/n expansion
The data obtained for B) used above and in subsequent sections require a considerable amount of computation.

For this reason we include here a short discussion of structure functions in leading order o tvepansion,
where many qualitative results are rather similamte- 3 but where relatively simple analytic formulae are
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Fig. 1. Fo(g2, x)/D(—¢?) for x =5 x 10~° (circles with error bars) and = 8 x 10~ (squares with error bars), for various values-@f (in
GeVZ). Symbols without error bars are valuesmo(qz, x)/Al(qu) in the Q3) o-model at the same values ofhere the abscissa denotes
values of—g2/M?).

available. The easiest case is the leading order of thesspicture functions in the isospin 1, 2 channels because
they are given by the imaginary part of the propagator of the “auxiliary field”:

—g°M?  sinhg N 1
(—q2+M2)2 92+71’2 2)

W (g2 x) = %9(W — 2M)4rn -

0
for W? = 4M?cosif 5 =12 (3.20)

Apart from suggesting that the limits— oo andx — 0 commute, this simple function already illustrates many
rather general features of the structure functions in this model. Firstly that the onset of the 4@ is not
uniform in —g2. In the Bj-limit —g2 — oo, x fixed we have

iy (¢2, x) ~ EM, 1=1,2 (3.21)
n xIn“(—q2/M?)

Secondly the limitc — 0 for fixedg? is approached extremely slowly, e.g., feg2/M? = 1, W, / (i0;) asympt= 0.93
for x = 10>, while for —g?/M? = 100 we have, e.gi; /() asympt= 0.49, 0.59 forx = 107>, 107, respectively.

We remark that the leading order (ii) isospin 0 (field) structure function involves another (box) diagram
which is also easily evaluated. One can show that the sniwdhavior is as predicted by the general forn{3l4.6)
The leading In diagram contributing to the current structure functions is just a 1-particle exchange and thus only
contributes a termx §(1 — x). We have computed the next-to-leading orders for/tael, 2 channels and again
confirm the predicted behavior.

3.2. Thecasen =3

So far we have concentrated on the smalegion; in the following we extend our description of the structure
functions to the whole range af We will do this for the case = 3 which is rather special for various reasons.
For our studies in the S-matrix bootstrap approach it is important that it is the model for whicipérgcle form
factors can most easily be obtained explicitly. Moreover, the spin and current 2-point functions exhibit in this case
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Fig. 2. Approximations tar(wg + wg) as functions of O< x < 1 for qu/MZ = 100. Curves correspond to sums up to and including
2,3,4,5, 6-particle intermediate states. The last 3 curves are indistinguishable on this scale.

very similar features and there are miraculous scaling relaf@®iswhich relate thent. There are well defined
recursive procedures for computing the form factors, dnly practical limitation being that they become very
involved. So far the record we have achieved is the 7-particle form factor of the spifi§ldlready its algebraic
expression in MAPLE involves many megabytes of storage. Fortunately for the structure functions we only require
sums over bilinear factors of the form factors which are computationally more manageable.

Just as for the 2-point functiofig0] we find that for a fixed-¢2 only states with a limited number of particles
contribute significantly. To appreciate this better we consider the sum of the field and current structure functions,
which is a rather peculiar thing to do in general, but which is in fact rather natural in the special-e&&igs. 2
and 3illustrate how the structure function(wg + o) is built up from states with increasing particle number for
the cases-¢?/M? = 107 and—g?/M? = 10%, respectively. We see that the higher states contribute very little and
that we obtain nearly exact values for tsieucture functions for all values ofg2/M? < 10° by including only
intermediate states witll 5 particles for the current and 6 particles for the spin field.

In Fig. 4 we plot xwo(¢?,x) as a function of logy(—¢?/M?), for a selection ofx-values? The function
increases as-¢? increases for all values afin this range.

3.3. Threshold behavior

Note that inFig. 3we have cut off the plot at = 0.95. This is because near= 1 the function develops a
big bump with a peak- 70 which, if included in the same plot, would obscure the features we wanted to show
there. The behavior of the-model structure functions near= 1 is indeed rather involved. For a fixeey? the
contribution to the structure function from theparticle statev” vanishes for greater than some threshold value

x(=q%) =[1- (PP - 1)M?/q?] " (3:22)

1 see also the OPE i@ection 4.2
2 For this model we prefer to show this rathban the typical HERA plot where one adddogyg(x) to separate the-values, because the
latter would obscure the ¢2 variation which is rather small compared to the variatior-d6g; g(x).
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Fig. 3. Approximations ta (wg + wg) functions of O< x < 0.95 for qu/MZ =10% Curves correspond to sums up to and including 2, 3, 4,
5, 6-particle states.
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Fig. 4.xwq(g?, x) for various values of = 10%/5,

The big bump inx(wo + o) referred to above is at this value ef;2/M? = 10* practically entirely due to the
2-particle contribution. For this contribution:

wi? ~ Ei(¢%)\/x2(=q?) —x.  x = x2. —¢*fixed (3.23)
w® ~ F(x)/In?(—¢?/M?), —¢%— oo, x fixed (3.24)

where E;, F; are some (known) functions. The bump arises becayss quite singular near threshold; ~
[(1—x)IN%1 — x)]"L. The analytic behavior as — x» sets in only extremely close to threshold, e.g., for
—q%/M? = 10* the position of the peak of the bump is at= 0.99954 whereas the function vanishes at
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x2 =0.99970. At—g?/M? = 10" the 3-particle contribution also has a bump but it is less pronounced (peak value

~ 2.5 atx ~0.9953). We conjecture that the threshold behawcméﬁf in the O(3) model is(x, — x)*~3/2,
One can also study the threshold behavior in the> oo limit. Here we find that in the leading order
W ~ +/x2(—q?) —x for I = 1,2 butwg ~ 1/v/x2(—¢?) — x. We caution, however, that the limits— oo and
x — threshold may not commute.
The characteristic enhanced near-threshold features in this model probably have no counterpart in QCD. For
QCD the behavior of the structure functions in the- 1 region is surely also complted. But there the effects
might be quite suppressed for large;? since, if we model the behavior in this region by the contribution of
resonances, their electromagnetic form factors are thought to fall very quickly (as powets) similarly to that
of the proton.

4, Partons, OPE and moments
4.1. Parton model

In the Qn) o-models there does not seem to be a simple parton picture. This is even so for the=c8se
where the model is equivalent to tli#! model. For although this model is formulated in terms of a complex
doublet of fields which are analogous to quarks in that they are confined, it seems that they do not play a réle more
similar to partons than the elementary bare spin fields in the original formufsfibe.question is related to that of
understanding what are (if any) the “ultra-particles” in the sense of Buchholz and [2&}lor to the associated
guestion as to whether themodels have an underlying conformal field theory.

Although an intuitive parton description with suggestive DGLAP equations

1
2 0 2 dy X o 2
q le(q ,x)=x/7p1 ;,C] wz(q ,y), (4.2)

(wherep;(z, g% would be the corresponaj splitting functions) is still missing in these models, we still have the
machinery of the operator product expansion (OPE) which we apply in the following.

4.2. Moments

A class of interesting quantities are the moments of the structure functions:

1
MZ;N(qZ):fdxxN_lwl(qz,x)z Z Ml(;rizl(qz), (4.2)
0 r=odd
1
Mz;zv(qz):fd”N = > M(a?), (4.3)
5 r=even

3 Perhaps the peculiar threshold behavior discuss&gation 3.3s explained by the fact that (as opposed to QCD) with some probability
the Q(n) particle can consist of a single point-like par that carries the same quantum numbers.
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whereMl(A’K, (¢%) denote the contributions fromparticle states

1

M3 (a%) = f dex 1wy (g%, x). (4.4)
0

As in QCD the moments satisfy renormalization graquations from which one can determine their leading
behavior as-¢2 — co. These are derived by considering the OPE for the current—current and field—field products
and explicitly treating the terms involving the operators of highest (zero) fwiste general analysis is rather
involved because the classification of lowest twist ofmsaturns out to be more owplicated than in QCD because
the elementary field is dimensionles®ur analysis extends that initiated, e.qg., in REES,27] Here we just quote
some results and defer the derivations to R&f].

For the currentj/ even) moments in the isospin 0 channel we have

2 1
Mon(a?) = Wo 50— {1+ —5ka?) + O(f\z)}, Nz2, (4.5)

wherek(qz) is an effective running coupling function defined through

1 1 o V4P
YR + n_zlnk(q )=1n e (4.6)

and theWy. y are renormalization group invariant, non-pertunzatonstants, corresponding to the matrix elements
of spin N operators. In thevV = 2 case this is the energy—momentum tensor opefatofor which we know the
constant explicitly

1
(@, 01T (0)b, 0) = 3 Wo, M6, Woa =2, 4.7

where the index- means {0 — 1)/2”. In particular the “momentum sum rule” follows:

Mo,a(—o0) = "2, (4.8)
n—1
Note that all the isospin 0 moments tend to constants @ — oco. As a consequence these current structure
functions in the @») models obey Bjorken scaling, akih. 4indicates that the resulting limiting scaling functions
are non-trivial. This is a special property of these models and we conjecture that this is due to the existence of an
infinite set of local conserved quantitigst].
In the isospin = 1 channel for odd momentg > 3 we can only say that

Ml;N(qz) = Wl;N)\(qz)l/(n—Z) +---, NZ=3, 4.9
but in the special cas¥ = 1 we have
1 1
Mi1(q%) = 5{1 - mA(qz) + O(AZ)}, (4.10)

where the constant is known through the current normalization

(a,017¢(0)|b, 6) = —2i M PP (4.11)

4 “Twist” in this model is the naive dimension minus the “spir2 umber of uncontracted Lorentz indices).
5 Cf. in QCD the quark field carries dimensiofi23
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From this follows the analogy to the Adler sum rule in QCD:

1
M3;1(—00) = 2 (4.12)
For the spin field isospin 0 moments we have

Won72nCh 4 [ 2\ (n—=3)/(n—2)
Mo, v (‘1 ) 1w
o {1+(47) +0(3)}. n=3
where the non-perturbative constafits. y are the same as for the current, and whéyes the non-perturbative
constant appearing in the short distance expansion

(4.13)

(01@° (y)@"(0)[0) ~ €, (—In M y]) "~/ "2 (4.14)
which is only known for the cases= 3 andn = oo (Co, = 1/(27)). We see that only for the cage= 3 do the
moments of the field = 0 structure function have the same leading asymptotic behavior as those of the current.

For the isospiri = 1 field (odd) moments we find to leading orders PT

- Mo.2(q?), N =1
Min(g®) =1 . (@) (4.15)
W1;N)»(2”_5)/("_2) 4+, N>=3,
where there is in general no obvious relation betweenvi’hgl and the constants occurring (4.9), except for
n =3 where they are equali(i. y = Wy, n=3).

In Figs. 5 and @ve plot the separateparticle contributions\/lgg andML’i, respectively (for = 3). They are
typically bell-shaped (except fer= 1) and perhaps obey scaling relations similar to those of the spectral functions
examined in Ref[20]. The figures show how they build up the sum of momeMits, + Mo., and M1.1 + M1.1.
Using the exact ratio of the mass to theparameter

M (8/e)02
Ags TI1+1/(n-2)7

(4.16)

05—

log_10(-q"2/M2)

Fig. 5. ContributionsMg; forn=3fromr=1,..., 6-particle states. The upper full line is their sum. The dashed line is the perturbative
expansion ofVy.o + 11710;2 =1+ A up to and including terms of ordeu(qz).
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Fig. 6. As forFig. 5but for the moment =1, N = 1; here the PT result is% 0(\2).

obtained by Hasenfratz, Maggiore and Niedermg@&], we also exhibit the perturbative results up to and
including terms of ordek(¢?). The agreement of the summed terms and PT is impressivegf®fM?2 ~ 10°. For
values of—g?/M? >~ 1P contributions from states witk: 7 particles must be taken into account. Note we have
also included the contribution of the one particle statehie sums; these tend to imgve the agreement at lower

values of—g? and fall asymptotically aMl(;l,\), ~mr? )[4 (—g2/MP) with mo =1, m1 = 1/2, mo = —1/2.
4.3. Conclusions

Many qualitative field-theoretic features first observeahon-perturbative studies of integrable models in 2d,
have in the past found their counterparts in realistic models in 4 dimensions. Although fascinating in their own
right, we hope that the investigations of structure functions of 2d) @-models presented in this Letter will
play a similar réle. Similar methods are applicable to many other physical situations, e.g., generalized structure
functions, exclusive electro-production processes and rapidity gaps.
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