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Abstract

We investigate structure functions in the 2-dimensional (asymptotically free) non-linear(n)

σ -models using the non-perturbative S-matrix bootstrap program. In particular, theexact small
(Bjorken)x behavior is derived. Structure functions in the special case of then= 3 model are accu
rately computed over the wholex range for−q2/M2< 105, and some moments are compared w
results from renormalized perturbation theory. Some results concerning the structure function
1/n approximation are also presented.
 2005 Elsevier B.V. All rights reserved.

PACS:11.10.-z; 11.10.Kk; 11.15.Tk; 11.55.Ds

1. Introduction

In this paper we study structure functions in the asymptotically free O(n) sigma models
in two dimensions. Due to the integrability of the model one has powerful tools to s
various non-perturbative properties. In particular, one can derive theexact smallx behavior
(for all q2) and for the case ofn= 3 compute structure functions precisely up to very la
values ofq2. Despite the fact that there are no transverse directions, the structure fun
have a rather rich and non-trivial behavior. In a previous letter[1] we summarized ou
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results and speculated on the possibility of discovering some similar structural featu
QCD.

The purpose of this paper is to supply the derivation of the results presented[1].
This paper is organized as follows. In the next section we give some basic defin
of the correlation functions of interest. In Section3 we give the derivation of the (rathe
universal) exact smallx behavior. Section4 deals with certain general aspects concern
the relation of the highq2 behavior of moments of structure functions to the oper
product expansion (OPE). In Section5 we consider the OPE for the cases of two s
fields and two currents in the framework of perturbation theory. More detailed resu
the structure functions for the special case ofn = 3 are presented in Section6. Finally,
in Section7 we consider computations in the leading order of the 1/n expansion. Many
technicalities and some conventions can be found in the appendices.

2. O(n) model and structure functions

The O(n) σ -model in 2d (formally described by the Lagrangian(5.1)) is perturbatively
asymptotically free forn� 3. A special property is that these models have an infinite n
ber of local[2] and non-local[3] classical conservation laws which survive quantizat
At the quantum level they imply absence of particle production. Assuming the spe
to consist of one stable O(n)-vector multiplet of massM, the S-matrix has been propos
long ago by Zamolodchikov and Zamolodchikov[4]. Form factors of local operators ca
be computed using general principles[5,6]. The S-matrix bootstrap program for the co
struction of correlation functions involves summing the contributions over all interme
states[7]. The possible equivalence of this construction to the continuum limit of the lattice
regularized theory has been investigated in Ref.[8].

2.1. Current and spin operators, 2-point functions

The normalization of the conserved O(n) current operatorJ abµ (x) (a, b = 1, . . . , n) is
fixed, e.g., by the equal time commutation relation with the spin fieldΦc(y):

(2.1)
[
J ab0

(
0, x1),Φc(0, y1)] = itabcd δ

(
x1 − y1)Φd(0, y1),

where the matricestab given in(A.2) yield the vector representation of the O(n) Lie alge-
bra. Its matrix elements are1

(2.2)〈0|J abµ (0)|a1, θ1; . . . ;ar, θr〉 = −iεµνP νr f aba1...ar
(θ1, . . . , θr).

Here the number of particles,r, has to be even and the form factorsf aba1...ar
depend on the

rapidity differences only, making Lorentz invariance and current conservation man
The normalization of ther-particle states, the corresponding completeness relations
1 εµν = −ενµ, ε01 = 1.



:

ctor

pin
J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380 331

other undefined kinematics encountered are given inAppendix B. We define

(2.3)
∑
a1...ar

f cda1...ar
(θ1, . . . , θr)f

∗ef
a1...ar (θ1, . . . , θr)=

(
δceδdf − δcf δde)C(r)(u),

whereC(r)(u) is a symmetric function of the rapidity differences.
The normalization of the spin operatorΦa(x) is fixed by its 1-particle matrix element

(2.4)〈0|Φa(0)|b, θ〉 = δab.
Its r-particle matrix elements (r odd) are defined by

(2.5)〈0|Φa(0)|a1, θ1; . . . ;ar, θr〉 =Λnf aa1...ar
(θ1, . . . , θr ),

where the form factorsf aa1...ar
depend on the rapidity differences only and the overall fa

Λn is defined for later convenience. We choose

(2.6)Λ3 = 2√
π
, Λn = 1 (n > 3).

The analog of(2.3)for oddr is

(2.7)
∑
a1...ar

f aa1...ar
(θ1, . . . , θr)f

∗b
a1...ar

(θ1, . . . , θr)= δabC(r)(u).

We now make some further definitions:

(2.8)I (r)(z)= 1

(4π)r−1

∫
Du(r) C(r)(u)

z+ [M(r)(u)]2 ,

(2.9)A(r)(z)= −z2 ∂
∂z
I (r)(z)= 1

(4π)r−1

∫
Du(r)

(
z

z+ [M(r)(u)]2
)2

C(r)(u)

and fors = 0,1,

(2.10)Is(z)=
∞∑
k=0

I (2k+1+s)(z),

(2.11)As(z)=
∞∑
k=0

A(2k+1+s)(z)= −z2 ∂
∂z
Is(z).

The invariant functionsIs are related to the 2-point functions of the current and s
field operators by[9]

〈0|T ∗J cdµ (x)J efν (y)|0〉

(2.12)

= (
δceδdf − δcf δde)∫

d2p

(2π)2
e−ip(x−y)(pµpν − p2ηµν

)
(−i)I1

(−p2 − iε),
valid up to contact terms and ∫
(2.13)〈0|TΦa(x)Φb(y)|0〉 =Λ2
nδ
ab d2p

(2π)2
e−ip(x−y)(−i)I0

(−p2 − iε).
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In (2.12)T ∗ denotes the covariantizedT -product.
Forn= 3 we can defineJ aµ(x)= 1

2ε
abcJ bcµ (x) and instead of(2.2)we have

(2.14)〈0|J aµ(0)|a1, θ1; . . . ;ar, θr 〉 = −iεµαPαr f aa1...ar
(θ1, . . . , θr ).

In this case instead of(2.3)we can use(2.7)also forr even.

2.2. Structure functions, moments

The central object in DIS theory is

(2.15)Wab;cdefµν (p, q)= π
∑
r

〈a,p|J cdµ (0)|r〉〈r|J efν (0)|b,p〉δ(2)(p+ q − Pr),

whereq2< 0. We will use the parameterization

(2.16)q2 = −4κ2M2

and the Bjorken variable

(2.17)x = − q2

2(pq)
.

Using Lorentz and O(n) invariance we have

(2.18)Wab;cdefµν (p, q)=
(
ηµν − qµqν

q2

) 2∑
l=0

R
ab;cdef
l wl

(
q2, x

)
,

where the projectorsRl corresponding to the 3 invariantt-channel “isospins” are define
in Appendix A. Note that in 2 dimensions there is only one independent structure fun
for each isospin channel.

Similarly we define the structure functions corresponding to the spin operator thr

(2.19)Σab;cd(p, q)= −πq2
∑
r

〈a,p|Φc(0)|r〉〈r|Φd(0)|b,p〉δ(2)(p+ q − Pr),

and

(2.20)Σab;cd(p, q)=Λ2
n

2∑
l=0

P
ab;cd
l w̃l

(
q2, x

)
,

where thet-channel projectorsPl for the vector representation are given in(A.5)–(A.7).
Separating ther-particle contributions we have

(2.21)wl
(
q2, x

) =
∑
r odd

w
(r)
l

(
q2, x

)
and w̃l

(
q2, x

) =
∑
r even

w
(r)
l

(
q2, x

)
with

(2.22)w(r)
(
q2, x

) = −πq2
∞∫

dΛ
∫

Du(r)δ(2)(p+ q − P )J (r)(θ).

(4π)r

−∞
r l
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Herep = (M,0) and forr odd

(2.23)J
(r)
l (θ)=

1

πlr̂l

∑
abcdef
a1...ar

R
ab;cdef
l f cdaa1...ar

(iπ, θ1, . . . , θr)f
∗ef
ba1...ar

(iπ, θ1, . . . , θr),

while for r even

(2.24)J
(r)
l (θ)=

1

πl

∑
abcd
a1...ar

P
ab;cd
l f caa1...ar

(iπ, θ1, . . . , θr )f
∗d
ba1...ar

(iπ, θ1, . . . , θr ).

By doing theΛ-integration we can further simplify(2.22):

(2.25)w
(r)
l

(
q2, x

) = 2κ2

(4π)r−1

∫
Du(r)δ

[
µ2
r − 1− 4κ2

x
+ 4κ2

]
J
(r)
l (β̄1, . . . , β̄r ),

where

(2.26)β̄j = βj + b+ 2v(r)− ,

(2.27)b = ln

{
1

2
+ 1

2

√
1+ x

2

κ2
+ x

4κ2

}
− ln

{
1− x + x

4κ2

}
.

We define the structure function moments by

(2.28)Ml;N
(
q2) =

1∫
0

dx xN−1wl
(
q2, x

)
and M̃l;N

(
q2) =

1∫
0

dx xN−1w̃l
(
q2, x

)

and similarly for fixed particle number

(2.29)M
(r)
l;N

(
q2) =

1∫
0

dx xN−1w
(r)
l

(
q2, x

)
.

Obviously,

(2.30)Ml;N
(
q2) =

∑
r odd

M
(r)
l;N

(
q2) and M̃l;N

(
q2) =

∑
r even

M
(r)
l;N

(
q2).

Ther-particle moments can alsobe calculated directly from(2.25):

(2.31)M
(r)
l;N

(
q2) = 1

2(4π)r−1

∫
Du(r)

[
xN+1J

(r)
l (β̄1, . . . , β̄r )

]
x=x̄ ,

(2.32)x̄ = 4κ2

4κ2 +µ2
r − 1

.

Forn= 3 (2.15)can be written as

ab;cd ∑
c d (2)
 (2.33)Wµν (p,q)= π

r

〈a,p|Jµ(0)|r〉〈r|Jν (0)|b,p〉δ (p+ q −Pr )
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and(2.18)becomes

(2.34)Wab;cdµν (p, q)=
(
ηµν − qµqν

q2

) 2∑
l=0

P
ab;cd
l wl

(
q2, x

)
.

In this case(2.24)is valid for odd as well as evenr values (withπl = 2l + 1).
The 2-particle form factor can be written

(2.35)f cdab (θ1, θ2)= φ(θ1 − θ2)
(
δacδbd − δadδbc),

with

(2.36)φ(θ)= − tanh
θ

2
exp

{
−2

∞∫
0

dt

t

[
1− e− 2t

n−2

1+ et

]
sin2([iπ − θ ]t/2π)

sinht

}
.

The 1-particle contribution to the structure functions is then given by

(2.37)w
(1)
l

(
q2, x

) =mlδ(x − 1)
∣∣φ(iπ − α)∣∣2,

where

(2.38)sinh
α

2
= κ, and m0 = 1, m1 = −m2 = 1

2
.

3. 2d structure functions at small x

In this section we derive a general formula describing the asymptotic behavior
O(n) model structure functions at smallx values. The derivation is based on general pr
erties of the form factors and the scattering matrix elements and therefore the beha
find here is expected to hold in other 2d integrable models as well.

For smallx→ 0 the variableb in (2.27)behaves as

(3.1)b = x + O
(
x2),

and if we do theur−1-integration in(2.25)with the help of the delta function we get

(3.2)ur−1 = ln

(
4κ2

x

)
− 2v(r−1)

+ + O(x),

and further

(3.3)2v(r)− = xµ
2
r−1

4κ2 + O
(
x2), ∂µ2

r

∂ur−1
= 4κ2

x
+ O(1).

Now putting all the above together we have

w
(r)
l

(
q2, x

) ∼= x
∫

Du(r−1)J
(r)
l (−ε,−β − ε+ β̃r−1, . . . ,−β − ε+ β̃1),
(3.4)
2(4π)r−1
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where

(3.5)ε = −
(

1+ µ
2
r−1

4κ2

)
x + O

(
x2) and β = lnx + O(1),

andβ̃i are the variables forr − 1 particles.
Eqs.(2.23) and (2.24)are both of the form

(3.6)J
(r)
l (θ)=

∑
abAB
a1...ar

Cab;ABf Aaa1...ar
(iπ, θ1, . . . , θr )f

B
ba1...ar

(iπ, θ1, . . . , θr ),

where for the current case

(3.7)Cab;AB = 1

πlr̂l
R
ab;cdef
l with A∼ cd, B ∼ ef,

and for the spin case

(3.8)Cab;AB = 1

πl
P
ab;cd
l with A∼ c, B ∼ d.

With this notation we can writeJ (r)l in (3.4)as

J
(r)
l =

∑
abAB
a1...ar

Cab;ABf Aaar ...a1
(iπ + ε+ β,β, β̃r−1, . . . , β̃1)

(3.9)× f ∗B
bar ...a1

(iπ + ε+ β,β, β̃r−1, . . . , β̃1).

The crucial point now is that sinceε is small andβ is large we can here use(D.4) which
follows from general principles encoded in the Smirnov axioms. In leading order we ge

J
(r)
l

∼= (4π)2

(n− 2)2ε2β2

∑
abAB
a1...ar

Cab;ABtaar
AA′ t

bar
BB ′f A

′
ar−1...a1

(β̃r−1, . . . , β̃1)

(3.10)× f ∗B ′
ar−1...a1

(β̃r−1, . . . , β̃1),

which can be further simplified with the help of(A.20), (A.22), (2.3)and(2.7)leading to

(3.11)J
(r)
l

∼= (4π)2

(n− 2)2ε2β2GlC
(r−1)(u),

where the constantsGl are equal toVl andTl for the spin and current cases, respectiv
given in(A.21) and(A.23), and further

(3.12)w
(r)
l

(
q2, x

) ∼= 1

x ln2x

8κ4Gl

(4π)r−3(n− 2)2

∫
Du(r−1) C(r−1)(u)

(4κ2 +µ2
r−1)

2
,

which can also be written as( ) ( )

(3.13)w

(r)
l q2, x ∼= 1

x ln2x

2πGl
(n− 2)2

A(r−1) −q2 ,
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where the Adler functionsA(r) were defined in(2.9).
The final results for the complete structure functions are

(3.14)wl
(
q2, x

) ∼= 1

x ln2 x

2πTl
(n− 2)2

A1
(−q2),

(3.15)w̃l
(
q2, x

) ∼= 1

x ln2 x

2πVl
(n− 2)2

A0
(−q2).

Note that the structure of the asymptotic smallx behavior, factorizing a part characteris
to the target and a part described by the vacuum 2-point function, is rather universa
independent of the operator, independent ofn, and independent of the isospin channel.

This completes the derivation of the exact smallx asymptotics first announced
Ref. [1]. The question of possible lessons that can be learned for QCD was add
in the latter reference and will not be repeated here.

4. The operator product expansion

In the O(n) σ -models there does not seem to be a simple parton picture. This is
so for the casen = 3 where the model is equivalent to theCP1 model. For although thi
model is formulated in terms of a complex doublet of fields which are analogous to q
in that they are confined, it seems that they do not play a role more similar to pa
than the elementary bare spin fields in the original formulation.2 The question is related t
that of understanding what are (if any) the “ultra-particles” in the sense of Buchhol
Verch [10], or to the associated question as to whether theσ -models have an underlyin
conformal field theory.

Although an intuitive parton description with suggestive DGLAP equations

(4.1)q2 ∂

∂q2wl
(
q2, x

) =
1∫
x

dy

y
pl

(
x/y, q2)wl(q2, y

)
,

(wherepl(z, q2) would be the corresponding splitting functions) is still missing in thes
models, we still have the machinery of the operator product expansion (OPE) to g
information on the evolution of the moments(2.28)at large−q2.

The OPE in the sigma model is surprisingly involved and hence we have decid
present the material as follows. In the next subsection we first summarize the results; re
ers who would prefer to skip the derivations can then jump to Section6. The genera
structure of the product of two local operators (in this case the spins and currents)
scribed in the remaining part of this section. Our analysis extends that initiated, e
Refs.[3,11]. So far too little is rigorously known about the detailed structure of the O
from the general principles of the bootstrap approach to obtain the explicit results b

2 Perhaps the peculiar threshold behavior discussed in Section6 is explained by the fact that (as oppos

to QCD) with some probability the O(n) particle can consist of a single point-like parton that carries the same
quantum numbers.
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The extra required information is, however, supplied in the framework of renorma
perturbation theory which is presented in Section5. Some comparisons of the momen
with those from the bootstrap approach at high−q2 are presented in Section6.4.

4.1. Summary of results on the moments

For the current (N even) moments in the isospin 0 channel we have

(4.2)M0;N
(
q2) =W0;N

n− 2

2(n− 1)

{
1+ 1

n− 2
λ
(
q2) + O

(
λ2)}, N � 2,

whereλ(q2) is an effective running coupling function defined through

(4.3)
1

λ(q2)
+ 1

n− 2
lnλ

(
q2) = ln

√|q2|
ΛMS

,

and theW0;N are renormalization group invariant,non-perturbative constants, correspo
ing to the matrix elements of spinN operators. In theN = 2 case this is the energ
momentum tensor operatorTµν for which we know the constant explicitly

(4.4)〈a,p|Tµν(0)|b,p〉 =W0;2pµpνδab, W0;2 = 2.

In particular the “momentum sum rule” follows:

(4.5)M0;2(−∞)= n− 2

n− 1
.

Note that all the isospin 0 moments tend to constants as−q2 → ∞. As a consequenc
these current structure functions in the O(n) models obey Bjorken scaling. Computatio
in the n = 3 model (see Section6 and, in particular,Fig. 3), indicate that the resultin
limiting scaling functions are non-trivial. This is a special property of these models and
conjecture that this is due to the existence of an infinite set of local conserved qua
[2].

In the isospinl = 1 channel for odd momentsN � 3 we can only say that

(4.6)M1;N
(
q2) =W1;Nλ

(
q2) 1

n−2 + · · · , N � 3,

but in the special caseN = 1 we have

(4.7)M1;1
(
q2) = 1

2

{
1− 1

n− 2
λ
(
q2) + O

(
λ2)},

where the constant is known through the current normalization

(4.8)〈a,p|J cdµ (0)|b,p〉 = −4ipµP
ab;cd
1 .

From this follows the analogy to the Adler sum rule in QCD:
(4.9)M1;1(−∞)= 1

2
.
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For the spin field isospin 0 moments we have

(4.10)M̃0;N
(
q2) = W0;Nπ2nCn

(n− 2)2
λ
(
q2) n−3

n−2
{
1+ O(λ)

}
, n� 4,

(4.11)M̃0;N
(
q2) = W0;N

4

{
1+ λ(q2) + O

(
λ2)}, n= 3,

where the non-perturbative constantsW0;N are the same as for the current, and whereCn
is the non-perturbative constant appearing in the short distance expansion

(4.12)〈0|Φa(y)Φb(0)|0〉 ∼ Cnδab
(− lnM|y|) n−1

n−2 .

So far the value ofCn is not known for generaln; for the casen = 3 a (well tested)
conjecture based on scaling[9] gives

(4.13)C3 = 1

3π3 ,

and we know forn= ∞:

(4.14)C∞ = 1

2π
.

We see that only for the casen = 3 do the moments of the fieldl = 0 structure function
have the same leading asymptotic behavior as those of the current.

For the isospinl = 1 field (odd) moments we find to leading order PT

(4.15)M̃1;1
(
q2) = M̃0;2

(
q2),

(4.16)M̃1;N
(
q2) = W̃1;Nλ

(
q2) 2n−5

n−2
{
1+ O

(
λ

1
n−2

)}
, N � 3,

where there is in general no obvious relation between theW̃1;N and the constants occurrin
in (4.6), except forn= 3 where they are equal (W̃1;N =W1;N , n= 3).

For isospinl = 2 moments we obtain (for alln� 3):

(4.17)M̃2;N
(
q2) = W̃2;Nλ

(
q2)2{1+ O

(
λ

1
n−2

)}
.

Finally using the exact ratio of the mass to theΛ-parameter

(4.18)
M

ΛMS
= (8/e)1/(n−2)

�[1+ 1/(n− 2)] ,

obtained by Hasenfratz, Maggiore and Niedermayer[12], the perturbative results can b
plotted as functions of−q2/M2.

4.2. Dispersion relations

For the discussion of the OPE it is convenient to work in the Euclidean formalism
local operatorsA we have
(4.19)A
(
x0, x1) = ei(Hx

0−Px1)A(0,0)e−i(Hx0−Px1),
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whereH,P are the time and spatial translation operators. We can similarly define E
ean translation by

(4.20)AE(y1, y2)= eHy2−iPy1A(0,0)e−Hy2+iPy1,

which is formallyA(−iy2, y1). For Euclidean vectors (and similarly for tensors) we de

(4.21)V2 = −iV0.

The Euclidean time ordering is defined as

TE
(
AE(y1, y2)BE(z1, z2)

) =Θ(y2 − z2)AE(y1, y2)BE(z1, z2)

(4.22)+Θ(z2 − y2)BE(z1, z2)AE(y1, y2),

and the connected part of the product of two operators is

(4.23)(O1O2)c =O1O2 − 〈0|O1O2|0〉 −O1|0〉〈0|O2.

We now define Euclidean functions for the currents:

1

2

∫
dy1 dy2 ei(Q1y1+Q2y2)〈a,0|T ∗

E

(
J cdE
µ (y1, y2)J

ef
ν (0,0)

)
c
|b,0〉

(4.24)= (
QµQν −Q2δµν

) 2∑
l=0

R
ab;cdef
l τl

(
Q2,Q2

)
,

whereT ∗
E stands for covariantized Euclidean time ordering, i.e., some non-covariant

proportional to delta functions of the Euclidean time difference (and derivatives of the
function) are dropped.

Similarly for the spin field:

1

2

∫
dy1 dy2 ei(Q1y1+Q2y2)〈a,0|TE

(
ΦcE(y1, y2)Φ

d(0,0)
)
c
|b,0〉

(4.25)=Λ2
n

2∑
l=0

P
ab;cd
l τ̃l

(
Q2,Q2

)
.

Theτl andτ̃l , as functions ofQ2 at fixed realQ2 are real analytic

(4.26)τl
(
Q2,Q2

)∗ = τl
(
Q2,−Q∗

2

)
, τ̃l

(
Q2,Q2

)∗ = τ̃l
(
Q2,−Q∗

2

)
,

and obey the crossing properties

(4.27)τl
(
Q2,Q2

) = (−1)lτl
(
Q2,−Q2

)
, τ̃l

(
Q2,Q2

) = (−1)l τ̃l
(
Q2,−Q2

)
.

Further they have cuts along parts of the imaginary axis (with poles atQ2 = ±iQ2/2M),
and the discontinuities across the cuts are simply related to the structure functions:

(4.28)wl
(−Q2, x

) = Q
2

π
Im τl

(
Q2, ε− i Q

2

2Mx

)
,

( )

(4.29)w̃l

(−Q2, x
) = Q

2

π
Im τ̃l Q2, ε− i Q

2

2Mx
.
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Concerning the general singularity structure in the complexQ2 plane away from the
imaginary axis, little more is rigorously known except that the current functionτ1 has
poles on the realQ2 axis originating from the contribution from 1-particle intermedi
states. The contribution from 1-particle states is easily computed:

τ
1-part
l

(
Q2,Q2

) = − ml

2M coshk
φ(iπ − k)φ(iπ + k)

(4.30)×
{

1

M(coshk − 1)− iQ2
+ (−1)l

M(coshk − 1)+ iQ2

}
,

whereQ1 =M sinhk, φ(θ) is the form factor function(2.36)and the constantsml are
given in(2.38). Since for smallk

(4.31)φ(iπ + k)∼= −2

k
,

the 1-particle contribution, for fixedQ2 as function ofQ2, has poles atQ2 = ±√
Q2 with

residue− iM

Q2 δl1.
Assuming that no other singularities are generated by the higher intermediate st

away from the imaginaryQ2 axis, from the usual Cauchy integral we conclude that f
circular contour centered at the origin with radius

√
Q2<R <Q2/(2M)

(4.32)
1

2πi

∮
dζ τl(Q2, ζ )

ζN+1 = iNτl;N
(
Q2) − i 2M

Q2 δl1
1

(
√
Q2 )N+1

,

whereτl;N(Q2) are the coefficients of the Taylor expansion

(4.33)τl
(
Q2,Q2

) =
∞∑
N=0

τl;N
(
Q2)(iQ2)

N .

Now the structure function moments can be computed in the usual way by calculatin
the Cauchy integral along the deformed contour around the cuts. In this way we
expressions for the moments:

(4.34)Ml;N
(−Q2) =M

(
Q2

2M

)N+1{
τl;N

(
Q2) + 2M

Q2
δl1

1

(i
√
Q2 )N+1

}
.

The spin functioñτ has no 1-particle contribution, and so assuming no further singularitie
apart from the cuts we obtain for the moments

(4.35)M̃l;N
(−Q2) =M

(
Q2

2M

)N+1

τ̃l:N
(
Q2),

where

(4.36)τ̃l
(
Q2,Q2

) =
∞∑
N=0

τ̃l;N
(
Q2)(iQ2)

N .

Note in the equations above forl = 0,2 N is even, positive and forl = 1 N is odd.

It remains to extract information on the Taylor coefficientsτl;N, τ̃l;N from the operator
product expansions.
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4.3. Operator product expansion for the spin field

Starting with the spin field, the connected part of the time-ordered product can b
panded as:

TE
(
ΦcE(y1, y2)Φ

d(0,0)
)
c

(4.37)=
∑
l,ω

A(l)cdω γ (l)ω
(
y2) +

∞∑
J=1

∑
l,ω

γ (J,l)ω

(
y2){B(J,l)cdω yJ+ + B̄(J,l)cdω yJ−

}
,

wherey± = ∓y1 − iy2. Employing a basis of hermitian operators

(4.38)A(l)cdω

† =A(l)cdω , B(J,l)cdω

† = B(J,l)cdω

and using Poincaré symmetry, parity and CPT invariance we have

(4.39)B̄(J,l)cdω = VB(J,l)cdω V, A(l)cdω = VA(l)cdω V,

whereV is the parity operator and

(4.40)γ (l)ω
∗(
y2) = γ (l)ω

(
y2), γ (J,l)ω

∗(
y2) = γ (J,l)ω

(
y2).

Further we define the matrix elementsB(J,l)ω as inAppendix E

(4.41)〈a, θ |B(J,l)cdω |b, θ〉 =
(

−i M
2

eθ
)J
P
ab;cd
l B(J,l)ω

and we find

(4.42)B(J,l)ω

∗ = B(J,l)ω = (−1)J+lB(J,l)ω .

The “twist” of the operator is defined as

(4.43)t(J,l)ω = dim
(
B(J,l)cdω

) − J
and the minimal possible twist value is zero. The contribution of these operators dom
for large momenta and we have

(4.44)M̃l;N
(−Q2) ≈ 1

4Λ2
n

η̂(N,l)
(
Q2),

where

(4.45)η̂(J,l)
(
Q2) = (

Q2)J+1
(

d

dQ2

)J ∫
d2y eiQyη(J,l)

(
y2),

(J,l)
( 2) ∑

(J,l) (J,l)
( 2)
 (4.46)η y =

ω

Bω γω y .



tion

would
pearing

.

342 J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380

4.4. Operator product expansion for the current

Using hermicity, Poincaré, O(n), parity and CPT symmetries and current conserva
we can write

TE
(
J cdE
µ (y)J efν (0)

) =
∑
l=0,2
ω

R
ab;cdef
l H

(l)
µν;ω(y)A

(l)ab
ω

(4.47)

+
∑
J≡l
ω

R
ab;cdef
l

{
H
(J,l)
µν;ω(y)B

(J,l)ab
ω + H̄ (J,l)µν;ω(y)B̄

(J,l)ab
ω

} · · · ,

where the dots indicate that we have omitted total derivative operators since they
not contribute to the diagonal expectation values. Otherwise the set of operators ap
here is as in(4.37)and the coefficient functionsH(l)

µν;ω take the form

(4.48)H
(l)
++;ω(y)= −y−

y+
Y(Y + 1)V (l)ω

(
y2),

(4.49)H
(l)
+−;ω(y)=H(l)−+;ω(y)= (Y + 1)2V (l)ω

(
y2),

(4.50)H
(l)
−−;ω(y)= −y+

y−
Y(Y + 1)V (l)ω

(
y2),

whereV (l)ω (y2) (l = 0,2) are real functions unique up toconst
y2 , and

(4.51)Y = y2 d

dy2 .

Similarly,

(4.52)H
(J,l)
++;ω(y)=

cω

y+
δJ1 − y−yJ−1+ (Y + J )(Y + J + 1)V (J,l)ω

(
y2),

(4.53)H
(J,l)
+−;ω(y)=H(J,l)−+;ω(y)= yJ+(Y + 1)(Y + J + 1)V (J,l)ω

(
y2),

(4.54)H
(J,l)
−−;ω(y)= −y

J+1+
y−

Y(Y + 1)V (J,l)ω

(
y2),

whereV (J,l)ω (y2) (J ≡ l) are real functions unique up toconst
y2 δJ1 andcω are real constants

Finally

(4.55)H̄
(J,l)
µν;ω(y+, y−)=H(J,l)µ̄ν̄;ω(y−, y+),

whereµ̄= −µ for the light-cone indexµ= ±.
As a consequence of the asymptotic freedom of the O(n) model for smally2

(4.56)V (l)ω
(
y2) ∼ |y|t (l)ω −2,

(4.57)V (J,l)ω

(
y2) ∼ |y|t (J,l)ω −2,
wheret(l)ω , t
(J,l)
ω are the twist of the corresponding operators.
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4.4.1. Fourier transformation
Introducing

(4.58)X(l)ω (y)= y2V (l)ω
(
y2),

(4.59)X(J,l)ω (y)= y2yJ+V (J,l)ω

(
y2),

(4.60)X̄(J,l)ω (y)= y2yJ−V (J,l)ω

(
y2)

the current operator product in Fourier space can be written∫
d2y eiQy〈a,0|TE

(
J cdE
µ (y)J efν (0)

)|b,0〉

= −
∑
l=0,2
ω

R
ab;cdef
l Eµν(Q)X̃

(l)
ω (Q)A

(l)
ω

−
∑
J≡l
ω

R
ab;cdef
l

{
Eµν(Q)

[
X̃(J,l)ω (Q)+ ˜̄X(J,l)ω (Q)

]

(4.61)+ iπcωδJ1Kµν(Q)
}(−iM

2

)J
B(J,l)ω ,

where the reduced matrix elementsA(l)ω ,B
(J,l)
ω are real andEµν(Q) is the transversal tenso

(4.62)Eµν(Q)=QµQν −Q2δµν.

The complete expression(4.61), although conserved in coordinate space, is not transv
because of the anomalous terms proportional to the constantscω. These are multiplied b
the tensorKµν(Q) with components

(4.63)K++ = 1

Q−
, K−− = 1

Q+
, K+− =K−+ = 0.

It is not quite trivial to see, but easy to check that

(4.64)Kµν(Q)= −Eµν(Q) 4iQ2

Q2
1Q

2
+ µ+ ν

Q1
−µν iQ2

Q2
1

(µ, ν = ±).

ThusKµν is transversal up to the last two terms, but these correspond to contact
in coordinate space. Dropping these “seagulls”,the coefficient of the transversal part
Fourier space becomes

τl(Q)= −1

2

∑
ω

X̃(l)ω (Q)A
(l)
ω

− 1 ∑(−iM)J
B(J,l)ω

{
X̃(J,l)ω (Q)+ ˜̄X(J,l)ω (Q)− 4iπcωδJ1

iQ2
2

}
.

(4.65)

2
J≡l
ω

2 Q1Q
2
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This can alternatively be written as

τl(Q)= −1

2

∑
ω

X̃(l)ω (Q)A
(l)
ω

− 1

2

∑
J≡l
ω

{[
(2MQ−)J + (2MQ+)J

]( d

dQ2

)J
W̃ (J,l)ω

(
Q2)B(J,l)ω

}

(4.66)+Mπ iQ2

Q2(Q2 −Q2
2)
δl1

∑
ω

cωB
(1,1)
ω ,

where

(4.67)W(J,l)ω

(
y2) = y2V (J,l)ω

(
y2).

Note that the anomalous contribution to(4.66)is regular on the imaginaryQ2 axis hence
does not contribute to the structure functions. Let us also define

(4.68)ξ(J,l)
(
y2) =

∑
ω

W(J,l)ω

(
y2)B(J,l)ω .

If we now compute

(4.69)ξ̂ (J,l)
(
Q2) =

∑
ω

(
Q2)J+1

(
d

dQ2

)J
W̃ (J,l)ω

(
Q2)B(J,l)ω

we see (using asymptotic freedom) that the coefficient functions behave as(Q2)−t
(J,l)
ω , up

to logarithmic corrections. We will keep the contributions of the leading (twist 0) oper
only. Note that forJ = l = 1 the only twist 0 operator isB(1,1)ab1 = J ab+ with

(4.70)B
(1,1)
1 = 4.

From(4.66)we obtain for the Taylor coefficients

(4.71)τl;N
(
Q2) = τ̂l;N

(
Q2) − 4πMc1

Q2

δl1

(i
√
Q2 )N+1

,

where (up to higher twist contributions)3

(4.72)τ̂l;N
(
Q2) ∼= −1

2

(2M)N

(Q2)N+1 ξ̂
(N,l)

(
Q2).

Inserting this in(4.34)we obtain:

Ml;N
(−Q2) =M

(
Q2

2M

)N+1

(4.73)×
{
τ̂l;N

(
Q2) + 2M

Q2 δl1
1

(i
√
Q2 )N+1

(1− 2πc1)

}
.

3 Note for largeQ2 the anomalous term dominates overτ̂l;N .



d so

re
e need
rk of

elds
J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380 345

Later we will see thatc1 = 1/2π . Thus these two subtle effects cancel each other, an
the final formula coincides with the naive one:

(4.74)Ml;N
(−Q2) ∼= −1

4
ξ̂ (N,l)

(
Q2).

Up to now we have related the moments to the Taylor coefficients which we see a
determined by the structure of the OPE. But to get quantitative results at this stage w
more dynamical input. This can be supplied by analyzing the OPE in the framewo
renormalized PT, which is the topic of the next section.

5. Perturbation theory and operator product expansion

We consider the O(n) sigma model Lagrangian4

(5.1)LE = 1

2g2
0

n∑
a=1

∂µS
a∂µS

a, S2 = 1,

and work inD = 2− ε dimensions using dimensional regularization. Renormalized fi
SaR and couplingg are given by

Sa = Z1/2SaR, Z = 1− γ0g
2

ε
+ · · · ,

(5.2)g2
0 = µεg2Z1, Z1 = 1− 2β0g

2

ε
+ · · · .

We denote the usual renormalization group (RG) derivative by

(5.3)D = µ d

dµ
= µ ∂

∂µ
+ β(g) ∂

∂g
,

where the dimensional regularization beta function is

(5.4)β(g)= −ε
2
g+ β̄(g), β̄(g)= −β0g

3 − β1g
5 − · · ·

and

(5.5)β0 = n− 2

4π
, β1 = n− 2

8π2
.

The RGΛ-parameter in theMS scheme satisfiesDΛMS = 0 and is written

(5.6)ΛMS = µef (g),

where

(5.7)f (g)= − 1

2β0g2
− β1

2β2
0

ln
(
2β0g

2) + γ
2

+ O
(
g2)

4 In practical computations in infinite volumeone usually adds a coupling to an external field−(h0/g
2
0)(S

n−

1) to serve as an intermediate IR-regulator. For IR-finite quantities the renormalized external fieldhR =
h0

√
Z/Z1 is set to zero at the end of the computation.
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with γ = ln 4π + �′(1) (note β1

2β2
0

= 1
n−2).

The spin fieldΦa differs from the renormalized O(n) field SaR only by a finite renor-
malization:

(5.8)ΦaE =ΩnSaR
and solving the RG equations for the vacuum two-point function the standard way w

(5.9)Ω2
ne−p(g) =

(
2π

n− 2

) n−1
n−2

nCn,

where the constantCn is that appearing in Eq.(4.12)andp(g) is the solution of

(5.10)p′(g)= γ (g)
β̄(g)

,

whereγ (g) is the anomalous dimension of the spin field:

(5.11)γ (g)=D lnZ = γ0g
2 + · · · , γ0 = n− 1

2π
.

The integration constant in(5.10)is fixed by requiring

(5.12)e−p(g) = (
g2) γ02β0

{
1+ O

(
g2)}.

5.1. Zero twist operators

We now introduce a basis for zero twist operators composed of an even number
fields. For isospinl = 0 we write

(5.13)K(n1,m1)...(nk,mk) = 1

g2k
0

(
∂
n1+ Sa1 · ∂m1+ Sa1

) · · · (∂nk+ Sak · ∂mk+ Sak
)
,

where we introduced the notation

(5.14)∂± = 1

2
(i∂2 ∓ ∂1)= 1

2
(∂0 ∓ ∂1).

It is very important to notice that a complete basis can be chosen such that

(5.15)ni,mi � 1, i = 1, . . . , k,

which can be achieved by using the identity

(5.16)Sa∂m+Sa = −1

2

m−1∑
i=1

(
m

i

)
∂m−i+ Sa · ∂i+Sa.

The spin of the above operators is
∑k
i=1(ni + mi) = J , whereas the mass dimension

J − kε, i.e., the operators are of zero twist only in exactly two dimensions. Forl = 1,2 we
can define the operators
(5.17)Kab(n0,m0)(n1,m1)...(nk,mk) = 1

g2
0

∂
n0+ Sa · ∂m0+ SbK(n1,m1)...(nk,mk)



-

hese
ion we

xpan-
J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380 347

with spin
∑k
i=0(ni +mi)= J , and dimensionJ − (k+ 1)ε. For l = 1 we have to antisym

metrize thea, b indices, whereas forl = 2 we take the symmetric, traceless part. Now

(5.18)0 � n0 �m0, ni,mi � 1, i = 1, . . . , k,

and correspondingly there are three types of operators:

type I: l = 0 and l = 1,2, n0> 0,

type II: l = 1,2, n0 = 0, m0 � 1,

type III: l = 2, n0 =m0 = 0.

It is now straightforward to calculate the potentially divergent matrix elements of t
operators. At one-loop order, after wave function, charge and mass renormalizat
find:

l = 0: all matrix elements finite;
l = 1: type I:

(
1− g2

2πε

)
× lowest order,

type II: only type I operator matrix elements;
l = 2: type I:

(
1− g2

2πε

)
× lowest order,

type II:
(

1− g2

πε

)
× lowest order+ type I,

type III:
(

1− g2

πε

)
× lowest order+ type I, II.

5.1.1. Operator product expansion at tree level
The leading terms of the OPE in perturbation theory are simply given by Taylor e

sion:

TE

(
1

g2
0

Sa(y)Sb(0)

)
c

(5.19)= 1

g2
0

(
SaSb

)
c
+ 1

g2
0

∞∑
J=1

1

J !
[(
∂J+Sa · Sb)yJ+ + (

∂J−Sa · Sb)yJ−]
,

up to higher twist operators. The operators appearing in the sum overJ can be written as a
sum over operators of definite isospin:

(5.20)
1

g2
0

∂J+Sa · Sb =
2∑
l=0

O(J,l)ab(0) ,

(J,l)ab 1 ab;cd
 (5.21)O(0) =
g2

0

Pl ∂J+Sc · Sd .
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Important operators with isospin 2 are

(5.22)τab(0) =
1

2g2
0

(
SaSb − 1

n
δab

)
.

For isospin 1 we have the currents

(5.23)J abµ(0) =
1

g2
0

(
Sa∂µS

b − Sb∂µSa
)
,

and for isospin 0 we have the energy-momentum tensor

(5.24)Tµν(0) = 1

g2
0

(
∂µS

a∂νS
a − 1

D
δµν∂σ S

a∂σ S
a

)
.

In terms of these, the leading operators of the OPE can be written as

(5.25)O(J,2)ab(0) = ∂J+τab(0) + type I operators,

(5.26)O(J,1)ab(0) = −1

2
∂J−1+ J ab+(0) + type I operators,

(5.27)O(2,0)ab(0) = −δ
ab

n
T++(0).

5.1.2. Renormalization of the zero twist operators
We will now denote byB(J,l)abα(0) the zero twist operators introduced in the precedin

section. Hereα is a multi-index: it includes the operator type I, II, III and possible furt
indices. InD space–time dimensions the mass dimension ofB(J,l)ab

α(0) is J − εd(J,l)α . The
corresponding renormalized (finite) operators of mass dimensionJ are:

(5.28)B(J,l)abα =
∑
β

Z
(J,l)
αβ µ

εd
(J,l)
β B(J,l)ab

β(0) ,

where the operator renormalization constant matrix is

(5.29)Z
(J,l)
αβ = δαβ − g

2

ε
w
(J,l)
αβ + · · · .

We now distinguish the types of operators by writing their multi-indices

B(J,l)cd
a(0) : for type I,

B(J,l)cd
A(0) : for type II (l = 1,2),

(5.30)B(J,2)cdA(0) : for type III.

In this notation the one-loop results of the previous subsection are

(5.31)w
(J,l)
ab = l(l − 3)

4π
δab, w

(J,l)
aA =w(J,l)aA = 0,
(5.32)w
(J,l)
AB = 1− l

π
δAB, w

(J,l)
AB = 0,
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(5.33)w
(J,2)
AB = − 1

π
δAB.

Using the inverse matrixW :

(5.34)
∑
β

Z
(J,l)
αβ W

(J,l)
βγ = δαγ , W

(J,l)
αβ = δαβ + g

2

ε
w
(J,l)
αβ + · · · ,

we define the anomalous dimension matrix

(5.35)ν(J,l)ρσ =
∑
ω

Z(J,l)ρω

(
DW(J,l)ωσ − εd(J,l)ω W(J,l)ωσ

)
,

which is finite and is given by

(5.36)ν(J,l)ρσ = g2w(J,l)ρσ

(
d(J,l)σ − d(J,l)ρ − 1

) + O
(
g4)

to leading order.
We would like to go to a basis where the leading anomalous dimension matrix

agonal. This basis is easily found due to the triangular structure of the leading anom
dimension matrix. The renormalized operators in this new basis are denotedB(J,l)cdω , where
ω= a,A andB(J,l)cda are (as before) the renormalized type I operators andB(J,l)cdA are op-
erators of type II and (forl = 2) of type III mixed with lower type operators. In this bas
we have

(5.37)ν
(J,l)
ab = l(3− l)

4π
δabg

2 + O
(
g4),

(5.38)ν
(J,l)
AB = l − 1

π
δABg

2 + O
(
g4) (l = 1,2),

(5.39)ν
(J,l)
aA = ν(J,l)Aa = O

(
g4) (l = 1,2).

We also note that the canonically dimensionlessl = 2 operatorτab(0) is multiplicatively
renormalized:

(5.40)τab(0) = Yµ−ετ ab,

since there is no other operator with the same quantum numbers to mix with. Here

(5.41)Y = 1− g2

πε
+ · · ·

leading to

(5.42)D lnY = g
2

π
+ O

(
g4).

It is clear that for thel = 0 operators we can chose the diagonal basis so that

(5.43)O(J,0)cd(0) = B(J,0)cd1(0)

and forl = 1,2 theA= 1 operators so that
(5.44)B(J,2)cd1(0) = ∂J+τ cd(0) = µ−εYB(J,2)cd1 , whereB(J,2)cd1 = ∂J+τ cd,
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(5.45)B(J,1)cd1(0) = ∂J−1+ J cd+(0) = µ−εB(J,1)cd1 , whereB(J,1)cd1 = ∂J−1+ J cd+ .
We then have

(5.46)O(J,2)cd(0) = B(J,2)cd1(0) +
∑
a

λ(J,2)a B(J,2)cda(0) ,

(5.47)O(J,1)cd
(0) = −1

2
B(J,1)cd1(0) +

∑
a

λ(J,1)a B(J,1)cd
a(0) .

Finally, for (J,0)= (2,0) there is just one operator and we have

(5.48)B(2,0)cd1(0) = −δ
cd

n
T++(0) = µ−εB(2,0)cd1 , whereB(2,0)cd1 = −δ

cd

n
T++,

and therefore, the 1-particle matrix element is known exactly:

(5.49)B
(2,0)
1 = 2.

5.1.3. The operator product expansion in perturbation theory
In bare perturbation theory we have

TE
1

g2
0

(
Sa(y)Sb(0)

)
c

(5.50)=
∑
l,ω

A(l)abω(0) k
(l)
ω(0)

(
y2) +

∞∑
J=1

∑
l,ω

k
(J,l)
ω(0)

(
y2){B(J,l)abω(0) y

J+ + B̄(J,l)abω(0) y
J−
}
,

which, after renormalization, becomes

TE
(
SaR(y)S

b
R(0)

)
c

(5.51)=
∑
l,ω

A(l)abω k(l)ω
(
y2) +

∞∑
J=1

∑
l,ω

k(J,l)ω

(
y2){B(J,l)abω yJ+ + B̄(J,l)abω yJ−

}
,

where

(5.52)k(J,l)ω

(
y2) = µε g

2Z1

Z

∑
ρ

k
(J,l)
ρ(0)

(
y2)µ−εd(J,l)ρ W(J,l)ρω ,

which satisfies the renormalization group equation (RGE)

(5.53)
(
D + γ (g))k(J,l)σ =

∑
ω

k(J,l)ω ν(J,l)ωσ .

Finally, the original coefficient functionsγ (J,l)ω of (4.37)are related to the renormalize
coefficientsk(J,l)ω by

(5.54)γ (J,l)ω =Ω2
nk
(J,l)
ω ,

and so(4.46)can now be written as∑

(5.55)η(J,l)

(
y2) =Ω2

n

ω

k(J,l)ω

(
y2)B(J,l)ω .



J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380 351

The perturbative expansion of the renormalized coefficient functions is

(5.56)k(J,l)ω

(
µ|y|, g) = g2K(J,l)ω + g4q̃(J,l)ω

(
µ|y|) + O

(
g6).

We already computed the leading (tree-level) terms:

(5.57)K(J,0)ω = 1

J !δω1,

(5.58)K
(J,1)
A = − 1

2J !δA1, K(J,1)a = 1

J !λ
(J,1)
a ,

(5.59)K
(J,2)
A = 1

J !δA1, K(J,2)a = 1

J !λ
(J,2)
a .

A building block used in the solution of the RGE is the matrixÛ (J,l)ωσ (g), which is a
solution of the matrix differential equation

(5.60)β̄(g)
∂

∂g
Û (J,l)ωσ (g)= −

∑
ρ

ν(J,l)ωρ (g)Û
(J,l)
ρσ (g).

If we have such a solution and its matrix inverseU satisfying

(5.61)
∑
ρ

U(J,l)ωρ (g)Û (J,l)ρσ (g)= δωσ ,

we can build the RG-invariant coefficient

(5.62)G(J,l)ω = ep(ḡ)
∑
ρ

k(J,l)ρ (1, ḡ)Û (J,l)ρω (ḡ)

and the RG-invariant numbers

(5.63)V (J,l)ω =
∑
ρ

U(J,l)ωρ (g)B(J,l)ρ .

In (5.62)the running couplinḡg is defined as the solution of

(5.64)f (ḡ)= f (g)+ ln
(
µ|y|),

which, for small|y|, has the asymptotic expansion

(5.65)2β0ḡ
2 = λ̃+ cλ̃2 + O

(
λ̃3), c= 1

2

(
�′(1)− lnπ

)
,

where the effective coupling̃λ is defined by

(5.66)
1

λ̃
+ 1

n− 2
ln λ̃= ln

2e�
′(1)

ΛMS|y| .

Putting the building blocks together we have

(J,l)
( 2) (

2π
) n−1
n−2 ∑

(J,l) (J,l)
 (5.67)η y =
n− 2

nCn
ω

Gω Vω .
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Note that if with someŶ

(5.68)B(J,l)cd1(0) = µ−εŶB(J,l)cd1 ,

which is the case forl = 1,2 and also for(J, l)= (2,0), then

(5.69)ν
(J,l)
1ω =D ln Ŷ δ1ω.

5.1.4. Solution of the matrix problem
In this subsection we will omit the upper index(J,l) and use matrix notation. We wa

to solve

(5.70)β̄(g)
∂

∂g
Û(g)= −ν(g)Û(g),

which is(5.60)in this notation. We know that in our basis

(5.71)ν(g)= 2β0∆g
2 + O

(
g4),

where∆ is a diagonal matrix with diagonal elements:

l = 0: ∆a = 0,

l = 1: ∆A = 0, ∆a = 1

n− 2
,

(5.72)l = 2: ∆A = 2

n− 2
, ∆a = 1

n− 2
.

Using the expansion

(5.73)
ν(g)

β̄(g)
= −2∆

g
− 2

∞∑
p=1

g2p−1A(p),

we can take the Ansatz

(5.74)Û(g)= [
1+R(g)]g2∆

with

(5.75)R(g)=
∞∑
s=1

g2sR(s),

and put it into(5.70). We get

(5.76)sR(s) + [
R(s),∆

] =A(s)+
s−1∑
p=1

A(s−p)R(p), s = 1,2, . . . ,

which has a unique recursive solution unless∆ω −∆σ = s occurs for someω,σ ands.
In our case this is possible only fors = 1 and only ifn = 3. Forn = 3 we thus take the
modified Ansatz
(5.77)Û(g)= [
1+R(g)+ lng2R̃(g)

]
g2∆
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with

(5.78)R(g)=
∞∑
s=1

g2sR(s), R̃(g)=
∞∑
s=1

g2s R̃(s).

In this case we start with

l = 1: R̃
(1)
aA =A(1)aA, R̃

(1)
ab = 0, R̃

(1)
Aa = 0, R̃

(1)
AB = 0,

(5.79)R
(1)
aA = 0, R

(1)
ab =A(1)ab , R

(1)
Aa = 1

2
A
(1)
Aa, R

(1)
AB =A(1)AB,

and

l = 2: R̃
(1)
Aa =A(1)Aa, R̃

(1)
AB = 0, R̃

(1)
ab = 0, R̃

(1)
aA = 0,

(5.80)R
(1)
Aa = 0, R

(1)
AB = A(1)AB, R

(1)
ab =A(1)ab , R

(1)
aA = 1

2
A
(1)
aA,

and after that there is a unique, recursive solution of the system

(5.81)sR̃(s) + [
R̃(s),∆

] =
s−1∑
p=1

A(s−p)R̃(p),

(5.82)sR(s) + [
R(s),∆

] =A(s)− R̃(s) +
s−1∑
p=1

A(s−p)R(p)

for s = 2,3, . . . .
Note that from the recursion relations it follows that

(5.83)R̃(s)ωa = 0 for l = 1,

(5.84)R̃
(s)
ωA = 0 for l = 2.

We also note that becauseν1ω is proportional toδ1ω

(5.85)R̃
(s)
1ω = 0 and R

(s)
1ω ∼ δ1ω

and therefore

(5.86)Û1ω = 1

w
δ1ω, U1ω =wδ1ω,

wherew is the solution of

(5.87)β̄(g)w′(g)= y(g)w(g),
wherey(g) = D ln Ŷ (g), the coefficient occurring in Eq.(5.69). This has the following
important consequences:

(5.88)V1 = 0 for l = 2, and forl = 1, J > 1,
(5.89)V1 = B1 for l = 1, J = 1, and forl = 0, J = 2.



354 J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380

5.1.5. Leading terms in coordinate space
Using the results of the preceding subsections we can calculate the leading terms in the

short distance expansion of the functions(4.46). We find

(5.90)η(J,0) = 1

J !f
(J )
0 λ̃− 1

n−2
{
1+ O(λ̃)

}
,

(5.91)η(1,1) = f (1)1 λ̃− 1
n−2

{
1+ O(λ̃)

}
,

where

(5.92)f
(J )
0 = 2πnCn

n− 2
V
(J,0)
1 ,

(5.93)f
(1)
1 = −πnCn

n− 2
B
(1,1)
1 .

For the casel = 1, J > 1 we have to distinguish between the casesn > 3 andn= 3. In
the former case

(5.94)η(J,1) = const+ 1

J !f
(J )
1 λ̃

n−3
n−2

{
1+ O

(
λ

1
n−2

)}
,

where

(5.95)f
(J )
1 = 4π2nCn

(n− 2)2
∑
A

L(J )A V
(J,1)
A ,

(5.96)L(J )A = −1

2
R
(1)(J,1)
1A +

∑
a

λ(J,1)a R
(1)(J,1)
aA + J !q̃(J,1)A .

In then= 3 case we have

(5.97)η(J,1) = const+ 1

J !f
(J )
1 ln λ̃

{
1+ O(λ̃)

}
,

where

(5.98)f
(J )
1 = 4

π

∑
A

L̂(J )A V
(J,1)
A , L̂(J )A =

∑
a

λ(J,1)a R̃
(1)(J,1)
aA .

Finally, for l = 2 we find

(5.99)η(J,2) = const+ 1

J !f
(J )
2 λ̃

{
1+ O

(
λ̃

1
n−2

)}
,

where

(5.100)f
(J )
2 =

(
2π

n− 2

) 2n−3
n−2

nCn
∑
a

K(J )a V (J,2)a ,

(5.101)K(J )a =R(1)(J,2)1a +
∑
b

λ
(J,2)
b R

(1)(J,2)
ba + J !q̃(J,2)a .

Using the coordinate space results above and the asymptotic formulae ofAppendix G,

we are now in a position to derive the results on leading large momentum behavior of the
spin structure function moments given in Section4.1.
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5.2. OPE for the currents

It is straightforward to calculate the leading operator product coefficients in perturb
theory:

(5.102)W
(J,0)
ω(0)

(
y2) = − 2

J !
1

(n− 1)g2
0

δω1 + O(1), J � 2,

(5.103)W
(J,1)
ω(0)

(
y2) = 1

2J !
1

(n− 2)g2
0

δωk + O(1), J � 3,

(5.104)YW(1,1)1(0)

(
y2) = − 1

8π

(
1− g2

0

2π

)
+ O

(
g4

0

)
,

where the operator associated with(5.103)is

(5.105)B(J,1)abk(0) = 1

g2
0

(
∂J−1+ Sa · ∂+Sb − ∂J−1+ Sb · ∂+Sa

)
.

Eqs.(5.102) and (5.103)can be obtained by tree-level perturbation theory, while the re
necessary to write down the one-loop formula(5.104)can be found in[11]. Also the results
of [3,11] show that the coefficient in(4.71)is given by

(5.106)c1 = 1

2π
.

Using renormalization group improved perturbation theory we can write

(5.107)ξ(J,l)
(
y2) =

∑
ω

Γ (J,l)ω

(
y2)V (J,l)ω ,

where, as in(5.63),

(5.108)V (J,l)ω =
∑
ρ

U(J,l)ωρ (g)B(J,l)ρ

are renormalization group invariant constants and

(5.109)Γ (J,l)ω

(
y2) =

∑
ρ

W(J,l)ρ

(
y2)Û (J,l)ρω (ḡ)

are renormalization group invariant coefficient functions. Putting everything togeth
arrive at the results already given in Section4.1.

6. Structure functions for n = 3

In this section we consider the casen= 3, where it is possible to compute the struct
functions accurately in the whole range ofx for a givenq2. The casen= 3 is rather specia
for various reasons, e.g., the spin and current 2-point functions exhibit in this cas
similar properties and there are miraculous scaling relations[9] which relate them.5 In the
5 See also the OPE in Section4.
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S-matrix bootstrap approach its distinguishing feature is that it is the model for whic
r-particle form factors can most easily be obtained explicitly. They take the simple fo

(6.1)f ab1...br
(θ1, . . . , θr)= Ψr(θ1, . . . , θr )gab1...br

(θ1, . . . , θr),

where

(6.2)Ψr(θ1, . . . , θr)= 1

2
π3r/2−1

∏
1�i<j�r

ψ(θi − θj ),

(6.3)ψ(θ)= θ − πi
θ(2πi − θ) tanh2

θ

2
,

and the reduced form factorsgab1...br
are polynomials in the rapidities. There are well de

fined recursive procedures for computing theform factors, the only practical limitatio
being that they become very involved. So far the record we have achieved is the 7-p
form factor of the spin field[13]; already its algebraic expression in MAPLE involv
many megabytes of storage. Fortunately, for the structure functions we only require
over bilinear factors of the form factors which are computationally more manageab
correspondence to(6.1)we define reduced form factor squaresj (r)l through

(6.4)J
(r)
l (β̄1, . . . , β̄r )=

∣∣Ψr+1(iπ, β̄1, . . . , β̄r )
∣∣2j (r)l (β̄1, . . . , β̄r )

(6.5)= 1

4
π3r+1

[
r∏
i=1

A(β̄i)

][ ∏
1�j<k�r

B(ujk)

]
j
(r)
l (β̄1, . . . , β̄r ),

where we have introduced two new functions

(6.6)A(θ)≡ψ(iπ − θ)2 = θ2

(θ2 + π2)2

1

tanh4 θ2
,

(6.7)B(θ)≡ ∣∣ψ(θ)∣∣2 = θ2 + π2

θ2(θ2 + 4π2)
tanh4

θ

2
.

The reduced form factor squares forr = 2,3,4 are given inAppendix H. For r > 4 the
expressions are too lengthy to exhibit in print; the results forr = 5,6 can be obtained in
the form of files from the authors.

For r = 1 we then have (noting that sinh1
2b= κ for x = 1),

(6.8)w
(1)
l = mlπ

4

4
A(b)δ(1− x),

where the factorsml are given in(2.38).

6.1. Caser = 2

For the caser = 2 the delta-function constraint in the integral representation is sim
solved and we obtain the analytic expression
(6.9)w
(2)
l

(
q2, x

) = θ(ω− 2)
π6κ2

8ω
√
ω2 − 4

A(Λ+ φ/2)A(Λ− φ/2)B(φ)Cl (Λ,φ),
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where the kinematic variablesω,Λ,φ are given by

(6.10)2 cosh
φ

2
= ω,

(6.11)ω = W
M
, W2 = (p+ q)2,

(6.12)coshΛ= M
2 + pq
MW

,

and

(6.13)Cl (Λ,φ)= j (2)l (Λ+ φ/2,Λ− φ/2).

Using the expression forj (2)l in (H.2)–(H.4)we have

(6.14)C0 = 8π2 + 4Λ2 + 3φ2,

(6.15)C1 = −2π2 + 2Λ2 + 1

2
φ2,

(6.16)C2 = 2π2 − 2Λ2 + 3

2
φ2.

Despite its relative simplicity, this case exhibits many features in common with highr.
The structure function approaches its asymptotic values very slowly, e.g., forq2 fixed

(6.17)ω
(2)
l

(
q2, x

) ∼ el 2π2(
1+ 1

4κ2

)2

1

x ln2( 4κ2

x

) for x→ 0,

with e0 = 1, e1 = e2 = 1/4 (consistent with the smallx behavior derived in Section3),
while for −q2 → ∞, x fixed we have

(6.18)ω
(2)
l ∼ el π6xA(− ln(1− x))

8(1− x)(ln(−q2/M2))2
.

6.2. Results for the entirex range

Just as for the 2-point functions[9] we find that for a fixed−q2 only states with a limited
number of particles contribute significantly. To appreciate this better we consider th
of the field and current structure functions, which is a rather peculiar thing to do in ge
but which is in fact rather natural in the special casen= 3. Figs. 1 and 2illustrate how the
structure functionx(w0 + w̃0) is built up from states with increasing particle number
the cases−q2/M2 = 102 and−q2/M2 = 104, respectively. We see that the higher sta
contribute very little and that we obtain nearly exact values for the structure functio

all values of−q2/M2 < 105 by including only intermediate states with� 5 particles for
the current and� 6 particles for the spin field.
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Fig. 1. Approximations tox(w0 + w̃0) as functions of 0< x < 1 for −q2/M2 = 100. Curves correspond to sum
up to and including 2,3,4,5,6-particle intermediate states. The last 3 curves are indistinguishable on this

Fig. 2. Approximations tox(w0 + w̃0) as functions of 0< x � 0.95 for −q2/M2 = 104. Curves correspond t
sums up to and including 2,3,4,5,6-particle states.

In Fig. 3 we plot xw0(q
2, x) as a function of log10(−q2/M2), for a selection ofx-

values.6 The function increases as−q2 increases for all values ofx in this range and
seems consistent with Bjorken scaling as mentioned in Section4.

6 For this model we prefer to show this rather than the typical HERA plot where one adds− log10(x) to
separate thex-values, because the latter would obscure the−q2 variation which is rather small compared to the
variation of− log10(x).
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Fig. 3.xw0(q
2, x) for various values ofx = 10−i/5.

6.3. Threshold behavior

Note that inFig. 2 we have cut off the plot atx = 0.95. This is because nearx = 1
the function develops a big bump with a peak∼ 70 which, if included in the same plo
would obscure the features we wanted to show there. The behavior of theσ -model structure
functions nearx = 1 is indeed rather involved. For a fixed−q2 the contribution to the
structure function from ther-particle statew(r) vanishes forx greater than some thresho
value

(6.19)xr
(−q2) = [

1− (
r2 − 1

)
M2/q2]−1

.

The big bump inx(w0+ w̃0) referred to above is at this value of−q2/M2 = 104 practically
entirely due to the 2-particle contribution. For this contribution:

(6.20)w
(2)
l ∼El

(
q2)√x2

(−q2
) − x, x→ x2, −q2 fixed,

(6.21)w
(2)
l ∼ Fl(x)

ln2(−q2/M2)
, −q2 → ∞, x fixed,

whereEl,Fl are some (known) functions. The bump arises becauseFl is quite singular
near threshold,Fl ∼ [(1− x) ln2(1− x)]−1. The analytic behavior asx→ x2 sets in only
extremely close to threshold, e.g., for−q2/M2 = 104 the position of the peak of the bum
is atx = 0.99954 whereas the function vanishes atx2 = 0.99970. At−q2/M2 = 104 the
3-particle contribution also has a bump but it is less pronounced (peak value∼ 2.5 at

(r)

x ∼ 0.9953). We conjecture that the threshold behavior ofw0 in the O(3) model is(xr −
x)(r

2−3)/2.



only

ment

dence
n over
es the

f the
o-
360 J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380

6.4. Moments

For r = 1 the moments(2.29)are simply given by

(6.22)M
(1)
l;N

(
q2) = mlπ

4

4
A(2 asinhκ).

The moments withN > 1 are quite simple to evaluate numerically, but forN = 1 some
care must be taken to obtain accurate results.

The problem arises already forr = 2 where we have integration just overu1. Theψ-
factor together with thex2 factor in the integrand is

(6.23)F
(2)
ψ =A(β̄1)A(β̄2)B(u1)x̄

2.

Now for u1 very largeβ̄2 ∼ (−q2 + M2)e−u1 is exponentially small and so alsōx ∼
−q2e−u1. Noting (i) for u1 largeβ̄1 ∼ u1 and (ii)A(θ)∼ 16/(π4θ2) for θ → 0 we have
for largeu1

(6.24)F
(2)
ψ ∼

( −4q2

π2(−q2 +M2)

)2

AB(u1),

where

(6.25)AB(u)=A(u)B(u)= 1

(u2 + π2)(u2 + 4π2)
.

The integral over largeu1 gives a sizeable contribution because the integrand decays
asu−2

1 . The integral is thus broken up into two parts where for the largeu1 region the sub-
stitution(6.24)is made and there computation of exponential functions of large argu
are not necessary.

For the case of higherr the procedure is similar. Here the integrations overu1, . . . , ur−2
can be done safely by introducing for them (large) cutoffs (and monitoring the depen
on them), since the integrands are exponentially suppressed. But for the integratio
largeur−1 the integrand is not exponentially suppressed and in this region one replac
correspondingψ-factor by

(6.26)F
(r)
ψ ∼

( −4q2

π2[−q2 +M(r−1)(u)2]
)2 r−1∏

j=1

AB(ujr )
∏

1�k<l�r−1

B(ukl).

In Figs. 4 and 5we plot the separater-particle contributionsM(r)
0;2 andM(r)

1;1 respectively;
some corresponding numbers are given inTables 1–3 in Appendix I. They are typically
bell-shaped (except forr = 1) and perhaps obey scaling relations similar to those o
spectral functions examined in Ref.[9]. The figures show how they build up the sum of m
mentsM0;2 + M̃0;2 andM1;1 + M̃1;1. Using the exact ratio of the mass to theΛ-parameter
Eq.(4.18), we also exhibit the perturbative results up to and including terms of orderλ(q2).

The agreement of the summed terms and PT is impressive for−q2/M2 ∼ 105. For values
of −q2/M2 >∼ 106 contributions from states with� 7 particles must be taken into ac-
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Fig. 4. ContributionsM(r)0;2 for n = 3 from (r = 1, . . . ,6)-particle states. The upper full line is their sum. T

dashed line is the perturbative expansion ofM0;2 + M̃0;2 = 1+ λ up to and including terms of orderλ(q2).

Fig. 5. As forFig. 4but for the momentl = 1,N = 1; here the PT result is 1+ O(λ2).

count. Note we have also included the contribution of the one particle states in the
2
these tend to improve the agreement at lower values of−q and fall asymptotically as

M
(1)
l;N ∼mlπ4/[4 ln2(−q2/M2)].
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7. Sigma model structure functions in the 1/n approximation

7.1. The spin field structure functions

In the framework of the 1/n approximation the spin amplitude(2.19)has an expansio
of the form

(7.1)Σab;cd(p, q)=
∞∑
r=1

1

nr

[
S

[r]
1 δ

acδbd + S[r]
2 δ

adδbc + S[r]
3 δ

abδcd
]
,

and so for the various isospin channels

(7.2)w̃l
(
q2, x

) =
∞∑
r=1

1

nr
w̃

[r]
l

(
q2, x

)
,

with

(7.3)w̃
[r]
0 = S[r]

1 + S[r]
2 + S[r+1]

3 ,

(7.4)w̃
[r]
1 = S[r]

1 − S[r]
2 ,

(7.5)w̃
[r]
2 = S[r]

1 + S[r]
2 .

The Feynman rules for the 1/n expansion of theσ -model has been described in ma
places (see, e.g., Ref.[14] and references therein) and will not be repeated here. We
mention that the diagrams involve the barepropagator of the fundamental spin field, a
the bare propagatorB−1 of an auxiliary isospin scalar composite field, which we calλ,
which is the inverse of the scalar 1-loop integral given inAppendix J.

In leading order 1/n the only contribution to the scalar structure function is the
diagram involvingλ exchange in the “s-channel”; one thus gets an amplitude proportio
to the imaginary part ofB−1:

(7.6)S
[1]
2 = S[1]

3 = 0,

(7.7)S
[1]
1 = 4πθ(ω− 2)

−q2M2

(−q2 +M2)2

shφ

φ2 + π2 ,

whereφ is as in(6.10). Note we already anticipatedS[1]
3 = 0 by starting the sum overr at

1 in (7.2).
In the limit of smallx we have

(7.8)S
[1]
1 ∼ 2π

(1−M2/q2)2

1

x ln2x
, x→ 0, −q2 fixed,

consistent with the general result(3.15)for l = 1,2, the scalar Adler function in the leadin
order 1/n being justA0(z)= (1+M2/z)−2. Note the limit is approached extremely slow
E.g., denoting the asymptotic function on the rhs of(7.8)by Sasymptone hasS[1]

1 /Sasympt=
0.245,0.441,0.638,0.907 forx = 10−5,10−10,10−20,10−100, respectively.

One also observes the limit
(7.9)S
[1]
1 ∼ 2π(1− x)

x

1

ln2(−q2/M2)
, −q2 → ∞, x fixed,
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and the threshold behavior:

(7.10)S
[1]
1 ∼ 4(−q2/M2)3/2

π(1− q2/M2)2x2

√
x2 − x, x→ x2, −q2 fixed.

We caution that the limitsn→ ∞ andx→ x2 may not commute.
The moments(2.28)have an 1/n expansion of the form

(7.11)M̃l;N
(
q2) =

∞∑
r=1

1

nr
M̃

[r]
l;N

(
q2).

One then shows (e.g., numerically) that for−q2 → ∞
(7.12)M̃

[1]
l;1

(
q2) ∼ 2π

ln(−q2/M2)
, l = 1,2,

(7.13)M̃
[1]
l;N

(
q2) ∼ 2π

N(N − 1) ln2(−q2/M2)
for N > 1, l = 1,2,

consistent with the results(4.15)and(4.16). The 1/ ln(−q2) behavior for theN = 1 mo-
ment comes from the singular behavior atx = 0.

So far we have only obtained the leading order for the isospinl = 1,2 channels. This is
because Eq.(7.3)shows that to obtain the leading order 1/n approximation forl = 0, one
has to take into account also the amplitudeS[2]

3 . To this amplitude the only contributio
comes from a diagram with twoλ-exchanges in the “t-channel”

(7.14)S
[2]
3 = −4q2

2π(−q2 +M2)2
Im

∫
d2k

(2π)2
d
(
k + qE)

d
(
k −pE)

B(k)−2,

whered(k) is the Euclidean bare spin propagator

(7.15)d(k)= (
k2 +M2)−1

,

andqE = (iq0, q1) and similarlypE with pE2 = −p2 = −M2. Using the spectral repre
sentation ofB(k)−1 and the cutting rules7 (seeAppendix J) we get

(7.16)S
[2]
3 = −q2

M2(−q2 +M2)2

θ(ω− 2)

ω
√
ω2 − 4

1

2π

[
B(k+)−2 +B(k−)−2],

where

(7.17)k2± = RM
2

y

[
1− y

R
±

√
(1− y)(1+ 2x2y2/R)

1− y + 2y/R

]
,

(7.18)y = x

x2(−q2)
, R = −q2

2M2x2(−q2)
.

Again the smallx limit

(7.19)S
[2]
3 ∼ 2π

(1−M2/q2)2

1

x ln2x
, x→ 0, −q2 fixed,
7 One can initially introduce a UV cutoff in the spectral integral and remove it after invoking the cutting rules.
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is as expected. For the largeq2 and threshold behaviors we have

(7.20)S
[2]
3 ∼ 2π

x(1− x)
1

ln2(−q2/M2)
, −q2 → ∞, x fixed,

(7.21)S
[2]
3 ∼ 8π(−q2/M2)1/2x2

(1− q2/M2)2

sinh2ϕ

ϕ2

1√
x2 − x , x→ x2, −q2 fixed,

where

(7.22)ϕ = 2 asinh

(√
R − 1

2

)
.

For the leading isospin 0 moments we then have

(7.23)M̃
[1]
0;N

(
q2) = 2πxN−1

2

R2(1−M2/q2)2

1∫
0

dz
zN

S(z, q2)

[
sinh2 θ+
θ2+

+ sinh2 θ−
θ2−

]
,

where

(7.24)k2± = 4M2 sinh2 θ±
2
,

(7.25)S
(
z, q2) = √

(1− z)(1− z+ 2z/R).

Numerically one extracts the behavior

(7.26)M̃
[1]
0;N

(
q2) ∼ 2π

ln(−q2/M2)
for N � 2,

in perfect agreement with(4.10). The dominant asymptotic piece comes from the “k+”
contribution in(7.23), and the dominant largeq2 behavior originates from the singulari
near threshold.

7.2. The current structure functions

We now turn to the current structure functions for which the non-trivial parts are
complicated to compute in the 1/n approximation than those for the spins. We have

(7.27)wab;cdef (p, q)=
∞∑
r=0

1

nr

[−Y ab;cdefW [r]
1 − Y ba;cdefW [r]

2 +Xab;cdefW [r]
3

]
,

and so for the various invariant isospin channels

(7.28)wl
(
q2, x

) =
∞∑
r=0

1

nr
w

[r]
l

(
q2, x

)
,

with

(7.29)w
[r] = 2W [r] + 2W [r] +W [r+1]

,
0 1 2 3

(7.30)w
[r]
1 =W [r]

1 −W [r]
2 ,
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(7.31)w
[r]
2 = −W [r]

1 −W [r]
2 .

At leading order one has the simple diagram with the 1-particle pole in thes-channel;
this contributes to the structure functions only terms∝ δ(1− x).

We denote the amputated two-current two-spin correlation function byT
ab;cdef
µν with

coefficients in the 1/n expansionT [r]
s;µν whose imaginary parts are proportional to theW [r]

s .

There are 3 types of diagrams contributing toT [1]
1;µν which involve oneλ propagator. One i

the box diagram, another involves a vertex correction, and the last involves a spin s
ergy diagram. They can be conveniently combined together8 to yield (in Euclidean space

(7.32)

T
[1]
1;µν

(
pE, qE) = 8

∫
d2k

(2π)2
Dµ

(
pE, qE, k

)
Dν

(
pE, qE, k

)
d
(
k + qE)

B
(
pE − k)−1

,

with

(7.33)Dµ(p,q, k)= (k + q/2)µd(k)+ (p+ q/2)µd(p+ q).
So contracting overµ,ν

(7.34)
∑
µ

T
[1]
1;µµ(p,q)= F(p)+ 8

∫
d2k

(2π)2
D(p,q, k)d(k + q)B(p− k)−1,

D(p,q, k)= (p+ q/2)2d(p+ q)2 + 1

2

[
d(p+ q)+ d(k)],

(7.35)

+ [−(p− k)2 +p2 + pq −M2]d(p+ q)d(k)− 1

4

[
q2 + 4M2]d(k)2,

whereF is a function ofp2 alone. Since we are only interested in the structure func
only one term appearing in the cutting rule is relevant. Still in Euclidean space, and
ting pole terms∝ δ(1− x), the relevant term is

(7.36)
∑
µ

T
[1]
1;µµ

(
pE, qE) ∼ −16πM4

Λ∫
0

dκ
sinh2κ

κ2 + π2B
(
pE + qE;M,m)

(I+ + I−),

whereΛ is some ultraviolet cutoff and

(7.37)m= 2M coshκ/2,

(7.38)I± = 2D
(
pE, qE, k±

(
pE, qE))

,

k2±(p, q)= −qp− [M2(p2 + qp)+m2(q2 + qp)]
(q + p)2

(7.39)∓ iεqp

(q + p)2
√[
(p+ q)2 + (m+M)2][(p+ q)2 + (m−M)2].
8 One can conveniently use lattice UV regularization at intermediate stages.
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So going over to Minkowski space

(7.40)

W
[1]
1 = 4M4θ(W − 3M)

κ0∫
0

dκ
(C+ +C−)sinh2κ

(κ2 + π2)
√

[W2 − (m+M)2][W2 − (m−M)2]

with κ0 defined through

(7.41)cosh
κ0

2
= W −M

2M

and

C± = −4M2 + 4pq + q2

2(W2 −M2)2
− 1

W2 −M2

[
1+ 2

(−pq +m2 − 2M2)d(K±)
]

(7.42)+ d(K±)− 1

2

(−q2 + 4M2)d(K±)2,

K2± = qp− [M2(M2 + qp)+m2(q2 + qp)]
W2

(7.43)∓
√
(pq)2 −M2q2

W2

√[
W2 − (m+M)2][W2 − (m−M)2].

Numerically for smallx we find consistency9 with the general result(3.14):

(7.44)w
[1]
l ∼ 2π

x ln2 x
a1

(−q2), l = 1,2,

with

(7.45)a1
(−q2) = 1

2π

[
3− θ

sinhθ
(2+ coshθ)

]
,

(7.46)−q2 = 4M2 sinh2 θ

2
,

sincea1(z) is the leading order 1/n contribution to the Adler functionA1(z). In leading
order 1/n the current vacuum 2-point function amplitudeI1 = i1 with10

(7.47)i1(z)= 1

πz
− (z+ 4M2)

z
B(r), r2 = z.

We have not yet computed the 1/n contribution to the isospin 0 structure functionw0.
This also involves computingT [2]

3µν which is more complicated because it requires the e
uation of 2-loop graphs involving alsoλ propagators.

9 We did not yet confirm this analytically.
10 For z= −q2 we have

−z2 ∂ i (z)= 1 + z2 ∂
[
θ coshθ/2

]
= a (z).
∂z
1

π 2M4 sinhθ ∂θ 8π sinh3 θ/2
1
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8. Summary and conclusions

In this paper we calculated the DIS structure functions (and their moments) in the f
of the 2-dimensional O(n) non-linear sigma models using standard field theory techni
available in any asymptotically free field theory model. In the special case of the(3)
model we compared the results to the non-perturbative (bootstrap) determination of th
same structure functions.

The very good agreement between the results (in the intermediate energy range
both the perturbative field theory results and the non-perturbative bootstrap resu
expected to be valid) strongly indicates—once again—that standard field theory a
bootstrap define the same model. On the other hand this agreement provides some
indirect proof for all the assumptions that are used in the derivations in both method

The study of the structure functions has lead us to two interesting findings. Firs
found that the isospin 0 structure functions exhibit exact Bjorken scaling: for−q2 → ∞
the structure functions go to some non-triviallyx-dependent limits. Second, the exact sm
x asymptotics of the structure functions are shown to be different from the soft-Pom
like fractional power behavior: the asymptotics of (x times) the structure function is loga
rithmic.

In the first case we have obtained concrete results in the O(3) model only but we think
that our findings are more generally valid: it is probable that exact Bjorken scaling i
to the presence of the (infinitely many) higher spin conserved charges character
integrable models. Also in the second case we believe that the smallx asymptotics we
found here is valid in a more general setting. Whether something similar applies to
remains to be seen.
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Appendix A. O(n) notations and identities

The O(n) generatorsQab act in the defining (vector) representation as

(A.1)
[
Qab,V c

] = itabcd V d,
where the generator matrix is

(A.2)tabcd = δacδbd − δadδbc.
This corresponds to the usual relation

(A.3)
[
Qa,V b

] = iεabcV c
in then= 3 case withQa = 1
2ε
abcQbc .
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The generator matrix in the 2-index tensor representation is

(A.4)tabcd;uv = tabcu δdv + δcutabdv ,
and similarly for higher representations.

Projector matrices in the 2-index tensor representation are

(A.5)P
ab;a′b′
0 = 1

n
δabδa

′b′ ,

(A.6)P
ab;a′b′
1 = 1

2

(
δaa

′
δbb

′ − δab′δba′)
,

(A.7)P
ab;a′b′
2 = 1

2

(
δaa

′
δbb

′ + δab′δba′) − 1

n
δabδa

′b′ .

They satisfy

(A.8)P
ab;a′b′
k P

a′b′;a′′b′′
l = δklP ab;a′′b′′

l ,

(A.9)
∑
l

P
ab;a′b′
l = δaa′

δbb
′
,

and

(A.10)P
ab;ab
k = πl

with

(A.11)π0 = 1, π1 = n(n− 1)

2
, π2 = (n− 1)(n+ 2)

2
.

In then= 3 caseπl = 2l + 1.
6-index invariant tensors, antisymmetric in the last two index pairs are

(A.12)Xab;cdef = δab(δceδdf − δcf δde),
(A.13)Y ab;cdef = δacδbeδdf − δadδbeδcf − δacδbf δde + δadδbf δce,

(andY ba;cdef ). The irreducible combinations are

(A.14)R
ab;cdef
0 = 1

n
Xab;cdef ,

(A.15)R
ab;cdef
1 = 1

2

(
Y ab;cdef − Y ba;cdef ),

(A.16)R
ab;cdef
2 = 2

n
Xab;cdef − 1

2

(
Y ab;cdef + Y ba;cdef ),

which satisfy

(A.17)R
ab;cdef
k R

a′b′;cdef
l = δkl r̂lP ab;a′b′

l

with
(A.18)r̂0 = 2(n− 1), r̂1 = r̂2 = 4(n− 2).
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Note that in then = 3 case the antisymmetric tensor representation coincides wit
vector representation and indeed in this case

(A.19)
1

4
εcxyεduvR

ab;xyuv
l = Pab;cdl .

Finally, we note the following identities. The generators of the vector represen
satisfy

(A.20)taxcu t
bx
du =

2∑
l=0

VlP
ab;cd
l

with

(A.21)V0 = 2(n− 1), V1 = V2 = n− 2,

and similarly for the antisymmetric tensor representation

(A.22)taxcd;uvt
bx
ef ;uv − taxcd;uvtbxef ;vu =

2∑
l=0

TlR
ab;cdef
l ,

where

(A.23)T0 = 4(n− 2), T1 = n− 2, T2 = 4− n.

Appendix B. Particle states, rapidity integrals

The r-particle “in” states are characterized by the O(n) labelsa1, . . . , ar and the de-
creasing set of rapiditiesθ1, . . . , θr and their normalization is

in〈a′
1, θ

′
1; . . . ;a′

r, θ
′
r |a1, θ1; · · · ;ar, θr〉in

(B.1)= (4π)rδa1a
′
1 · · · δara′

r δ(θ ′
1 − θ1) · · ·δ(θ ′

r − θr ),
corresponding to the completeness relation in ther-particle sector

Π(r) = 1

(4π)r
∑
a1...ar

∞∫
−∞

dθ1

θ1∫
−∞

dθ2 · · ·

(B.2)×
θr−1∫

−∞
dθr |a1, θ1; . . . ;ar, θr〉inin〈a1, θ1; . . . ;ar, θr |.

As usual, we introduce the set of positive rapidity differences

(B.3)u1 = θ1 − θ2, u2 = θ2 − θ3, . . . , ur−1 = θr−1 − θr
and ther-particle invariant massM(r)(u) with the definition

r∑

(B.4)M(r)(u)e±Λ =M

i=1

e±θi = Er ± Pr = P 0
r ± P 1

r ,
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whereM is the mass of the O(n) particles.
Ther-particle rapidity integral can now be written

(B.5)

∞∫
−∞

dθ1

θ1∫
−∞

dθ2 · · ·
θr−1∫

−∞
dθr =

∞∫
−∞

dΛ
∫

Du(r),

where

(B.6)Du(r) =
∞∫

0

du1

∞∫
0

du2 · · ·
∞∫

0

dur−1.

The inverse transformation is

(B.7)θi = βi +Λ− v(r)+ + v(r)− ,

where

(B.8)βj = ujr, j = 1, . . . , r − 1,

(B.9)ujk = uj + uj+1 + · · · + uk−1, 1� j < k � r,
(B.10)βr = 0,

and

(B.11)v
(r)
± = 1

2
ln

[
1+

r−1∑
i=1

e±βi
]
.

We note that

(B.12)v
(r)
+ + v(r)− = lnµr,

whereµr =M(r)(u)/M is the dimensionless invariant mass.

Appendix C. S-matrix asymptotics

The Zamolodchikov O(n) S-matrix is[4]

(C.1)Sab;cd(θ)= σ1(θ)δ
abδcd + σ2(θ)δ

acδbd + σ3(θ)δ
adδbc,

where

(C.2)σ1(θ)= −2πiθ

iπ − θ
s2(θ)

(n− 2)θ − 2πi
,

(C.3)σ2(θ)= (n− 2)θ
s2(θ)

(n− 2)θ − 2πi
,

(C.4)σ3(θ)= −2πi
s2(θ)

(n− 2)θ − 2πi
,
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and the “isospin 2” phase shift is given by

(C.5)s2(θ)= −exp

{
2i

∞∫
0

dω

ω
sin(θω)K̃n(ω)

}

with

(C.6)K̃n(ω)= e−πω + e−2π ω
n−2

1+ e−πω .

Specially forn= 3

(C.7)s2(θ)= θ − iπ
θ + iπ .

Using the asymptotic formula

(C.8)

∞∫
0

dω

ω
sin(θω)k(ω)∼= π

2
k(0)+ k

′(0)
θ

+ O

(
1

θ2

)
,

we get the largeθ asymptotics of the S-matrix, which can be written as

(C.9)Sab;cd(θ)∼= δacδbd + 2πi

(n− 2)θ
tacbd + O

(
1

θ2

)
.

Appendix D. Residue asymptotics

For any(r + 2)-particle form factor in the O(n)model Smirnov’s residue axiom[6] can
be written as

FAaba1...ar
(β + iπ + ε,β, θ1, . . . , θr)

∼= 2i

ε

{
δabFAa1...ar

(θ1, . . . , θr)

(D.1)− Sba1...ar ;b1...br a(θ1, . . . , θr |β)FAb1...br
(θ1, . . . , θr)

}
,

where

Sba1...ar ;b1...bra(θ1, . . . , θr |β)
= Sba1;c1b1(β − θ1)Sc1a2;c2b2(β − θ2) · · ·

(D.2)× Scr−2ar−1;cr−1br−1(β − θr−1)Scr−1ar ;abr (β − θr ).
If β is large we can use(C.9) to get

FAaba1...ar
(β + iπ + ε,β, θ1, . . . , θr)∼= − 4π

r∑
tabaibiF

A
a1...bi ...ar

(θ1, . . . , θr ).
(D.3)

(n− 2)εβ
i=1
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So far the operator indexA did not play any role. For the case of tensor operators, w
A is an O(n) (multi) index, the form factors are invariant tensors and(D.3)can equivalently
be written

(D.4)FAaba1...ar
(β + iπ + ε,β, θ1, . . . , θr)∼= 4π

(n− 2)εβ
tabABFBa1...ar

(θ1, . . . , θr ),

wheretabAB is the O(n) generator in the appropriate representation.

Appendix E. Operator basis

In the operator product expansions we use a basis spanned byA(l)abω , B(J,l)abω and
B̄(J,l)abω , where these basis elements are hermitian local operators at(0,0) and l = 0,1
or 2 tensor operators (in the index pairab) under O(n). Under the action of the parit
operatorV they transform as

(E.1)VA(l)abω V =A(l)abω , VB(J,l)abω V = B̄(J,l)abω .

Their Lorentz spin can be read off the relations

(E.2)
[
M,A(l)abω

] = 0,

(E.3)
[
M,B(J,l)abω

] = iJB(J,l)abω ,

(E.4)
[
M, B̄(J,l)abω

] = −iJ B̄(J,l)abω ,

whereJ is a positive integer andM is the Lorentz boost operator. Finally, under the act
of the (anti-linear) CPT operatorΘ,

(E.5)ΘA(l)abω Θ = (−1)lA(l)abω ,

(E.6)ΘB(J,l)abω Θ = (−1)lB(J,l)abω ,

(E.7)ΘB̄(J,l)abω Θ = (−1)lB̄(J,l)abω .

The one-particle matrix elements of the above operators are parametrized as

(E.8)〈a, θ |A(l)cdω |b, θ〉 = Pab;cdl A(l)ω ,

(E.9)〈a, θ |B(J,l)cdω |b, θ〉 =
(

− iM
2

eθ
)J
P
ab;cd
l B(J,l)ω ,

(E.10)〈a, θ |B̄(J,l)cdω |b, θ〉 =
(

− iM
2

e−θ
)J
P
ab;cd
l B(J,l)ω .
Note that we have considered operators with non-vanishing one-particle matrix elements
only.
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Appendix F. Notations and conventions

We will use the notation

(F.1)W2 = −iW0

for any vector (and higher tensor) index. The light-cone components are

(F.2)W± = 1

2
(W0 ∓W1)= 1

2
(iW2 ∓W1)

and similarly

(F.3)∂± = 1

2
(∂0 ∓ ∂1)= 1

2
(i∂2 ∓ ∂1).

We treat the two-dimensional Euclidean coordinates exceptionally since here we us

(F.4)y± = ∓y1 − iy2,

which gives

(F.5)y+y− = −y2,

as opposed to the Euclidean square of vectors in(F.2), which is given by

(F.6)
(
W2)

E =W2
1 +W2

2 = −4W+W−.

Two-dimensional Fourier transformation is indicated by tilde:

(F.7)f̃ (Q)=
∫

d2y eiQyf (y).

For functions depending ony2 only we also define

(F.8)f̂ (Q)= (
Q2)J+1

(
d

dQ2

)J ∫
d2y eipyf

(
y2).

Appendix G. Asymptotic expansions

Assume thatS(y) has an asymptotic expansion

(G.1)S(y)= f0λ̃
σ−1 + O

(
λ̃σ

)
in terms of the effective coupling̃λ defined in(5.66). ThenŜ(Q) can be asymptoticall
expanded as

(G.2)Ŝ(Q)= (2π)(−1)J J !(1− σ)f0λ
σ + O

(
λσ+1)

in terms of the effective couplingλ defined by

1 1 |Q|

(G.3)

λ
+
n− 2

lnλ= ln
ΛMS

.
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In the special case

(G.4)S(y)= f0
1

λ̃
+ O(1),

we have

(G.5)Ŝ(Q)= (2π)(−1)J J !f0

(
1+ 1

n− 2
λ

)
+ O

(
λ2),

i.e., in this case we also know the coefficient of the sub-leading term. Finally, if

(G.6)S(y)= f0 ln λ̃+ O(λ̃)

then

(G.7)Ŝ(Q)= −(2π)(−1)J J !f0λ+ O
(
λ2).

An alternative way of presenting the above results is as follows. If the derivative o
functionW(y2) has the asymptotic expansion

(G.8)y2 d

dy2W
(
y2) = αλ̃σ + O

(
λ̃σ+1)

then in Fourier space we have

(G.9)Ŵ
(
Q2) = −4πα(−1)J J !λσ + O

(
λσ+1).

In the special caseσ = 0 if

(G.10)y2 d

dy2W
(
y2) = α + βλ̃+ O

(
λ̃2)

then

(G.11)Ŵ
(
Q2) = −4π(−1)J J !{α + βλ+ O

(
λ2)}.

Appendix H. Reduced spin and current form factor squares

The space of homogeneous symmetric polynomials inr variablesθi , i = 1, . . . , r, is
spanned by products ofσ (r)k , 1� k � r,

(H.1)σ
(r)
k =

∑
1�i1<···<ik�r

θi1 · · ·θik .

For the reduced spin and current structure functions we have forr = 2:

(H.2)j
(2)
0 = 4

(
σ 2

1 − 3σ2
) + 8π2,

(H.3)j
(2)
1 = σ 2

1 − 2σ2 − 2π2,
(H.4)j
(2)
2 = σ 2

1 − 6σ2 + 2π2.
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For r = 3:

j
(3)
0 = 4

(−6σ 3
1σ3 + 2σ 2

1σ
2
2 + 19σ1σ2σ3 − 6σ 3

2 − 9σ 2
3

)
+ 4π2(4σ 4

1 − 21σ 2
1σ2 − 19σ1σ3 + 34σ 2

2

)
(H.5)+ 8π4(9σ 2

1 − 22σ2
) + 64π6,

j
(3)
1 = −2σ 3

1σ3 + σ 2
1σ

2
2 + 2σ1σ2σ3 − 2σ 3

2 + 9σ 2
3

(H.6)− 2π2(σ 4
1 − 3σ 2

1σ2 + 10σ1σ3 − 4σ 2
2

) − 2π4(3σ 2
1 − σ2

) − 8π6,

j
(3)
2 = 6σ 3

1σ3 − σ 2
1σ

2
2 − 38σ1σ2σ3 + 6σ 3

2 + 99σ 2
3

(H.7)− 2π2(σ 4
1 − 9σ 2

1σ2 + 8σ1σ3 + 16σ 2
2

) − 2π4(3σ 2
1 − 17σ2

) − 8π6.

For r = 4:

j
(4)
0 = 16σ 2

1σ
2
2σ

2
3 − 48σ 3

2σ
2
3 − 48σ 3

1σ
3
3 + 152σ1σ2σ

3
3 − 72σ 4

3

− (
48σ 2

1σ
3
2 − 144σ 4

2 − 152σ 3
1σ2σ3 + 476σ1σ

2
2σ3 − 56σ 2

1σ
2
3 − 52σ2σ

2
3

)
σ4

− (
72σ 4

1 − 52σ 2
1σ2 − 352σ 2

2 − 128σ1σ3
)
σ 2

4 − 640σ 3
4

+ 4π2[8σ 2
1σ

4
2 − 24σ 5

2 − 42σ 3
1σ

2
2σ3 + 131σ1σ

3
2σ3 + 68σ 4

1σ
2
3

− 249σ 2
1σ2σ

2
3 + 73σ 2

2σ
2
3 + 55σ1σ

3
3

− (
38σ 4

1σ2 − 279σ 2
1σ

2
2 + 528σ 3

2 + 175σ 3
1σ3 − 669σ1σ2σ3 + 133σ 2

3

)
σ4

− (
157σ 2

1 + 32σ2
)
σ 2

4

]
+ 4π4[36σ 4

1σ
2
2 − 184σ 2

1σ
3
2 + 260σ 4

2 − 88σ 5
1σ3 + 447σ 3

1σ2σ3

+ 253σ 2
1σ

2
3 − 696σ1σ

2
2σ3 − 248σ2σ

2
3

+ (
185σ 4

1 − 1156σ 2
1σ2 + 2120σ 2

2 − 740σ1σ3
)
σ4 + 96σ 2

4

]
+ 4π6[32σ 6

1 − 232σ 4
1σ2 + 780σ 2

1σ
2
2 − 992σ 3

2 − 532σ 3
1σ3 + 1269σ1σ2σ3

+ 295σ 2
3 + (

1211σ 2
1 − 3220σ2

)
σ4

]
+ 16π8[60σ 4

1 − 278σ 2
1σ2 + 405σ 2

2 − 212σ1σ3 + 434σ4
]

(H.8)+ 128π10[17σ 2
1 − 37σ2

] + 1280π12,

j
(4)
1 = σ 2

1σ
2
2σ

2
3 − 2σ 3

2σ
2
3 − 2σ 3

1σ
3
3 + 2σ1σ2σ

3
3 + 9σ 4

3

+ (−2σ 2
1σ

3
2 + 4σ 4

2 + 2σ 3
1σ2σ3 + 2σ1σ

2
2σ3 + 18σ 2

1σ
2
3 − 62σ2σ

2
3

)
σ4

+ (
9σ 4

1 − 62σ 2
1σ2 + 80σ 2

2

)
σ 2

4 + 128σ 3
4

− 2π2[σ 2
1σ

4
2 − 2σ 5

2 − 3σ 3
1σ

2
2σ3 + 3σ1σ

3
2σ3

− 4σ 4
1σ

2
3 + 33σ 2

1σ2σ
2
3 − 39σ 2

2σ
2
3 + 7σ1σ

3
3

+ (
10σ 4

1σ2 − 45σ 2
1σ

2
2 + 78σ 3

2 − 15σ 3
1σ3 − 36σ1σ2σ3 − 118σ 2

3

)
σ4

+ (−14σ 2 + 264σ
)
σ 2]
1 2 4

+ 2π4[−3σ 4
1σ

2
2 + 12σ 2

1σ
3
2 − 16σ 4

2 + σ 5
1σ3 + σ 3

1σ2σ3 + 58σ 2
1σ

2
3
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+ 9σ1σ
2
2σ3 − 174σ2σ

2
3

+ (
15σ 4

1 − 202σ 2
1σ2 + 456σ 2

2 − 256σ1σ3
)
σ4 + 1184σ 2

4

]
− 2π6[4σ 6

1 − 24σ 4
1σ2 + 57σ 2

1σ
2
2 − 26σ 3

2 + 37σ 3
1σ3

− 198σ1σ2σ3 + 26σ 2
3 + (−272σ 2

1 + 1100σ2
)
σ4

]
+ 8π8[−3σ 4

1 − 2σ 2
1σ2 + 13σ 2

2 + 3σ1σ3 + 126σ4
]

(H.9)− 256π10σ2 + 128π12,

j
(4)
2 = σ 2

1σ
2
2σ

2
3 − 6σ 3

2σ
2
3 − 6σ 3

1σ
3
3 + 38σ1σ2σ

3
3 − 99σ 4

3

+ (−6σ 2
1σ

3
2 + 36σ 4

2 + 38σ 3
1σ2σ3 − 242σ1σ

2
2σ3 + 2σ 2

1σ
2
3 + 670σ2σ

2
3

)
σ4

+ (−99σ 4
1 + 670σ 2

1σ2 − 656σ 2
2 − 1600σ1σ3

)
σ 2

4 + 3584σ 3
4

− 2π2[−σ 2
1σ

4
2 + 6σ 5

2 + 9σ 3
1σ

2
2σ3 − 55σ1σ

3
2σ3 − 16σ 4

1σ
2
3

+ 99σ 2
1σ2σ

2
3 + 103σ 2

2σ
2
3 − 257σ1σ

3
3

+ (−8σ 4
1σ2 + 21σ 2

1σ
2
2 + 78σ 3

2 + 125σ 3
1σ3 − 762σ1σ2σ3 + 1664σ 2

3

)
σ4

+ (
248σ 2

1 − 824σ2
)
σ 2

4

]
+ 2π4[3σ 4

1σ
2
2 − 32σ 2

1σ
3
2 + 64σ 4

2 − 17σ 5
1σ3 + 165σ 3

1σ2σ3

− 280σ 2
1σ

2
3 − 303σ1σ

2
2σ3 + 632σ2σ

2
3

+ (
55σ 4

1 − 284σ 2
1σ2 + 160σ 2

2 + 632σ1σ3
)
σ4 − 960σ 2

4

]
− 2π6[−4σ 6

1 + 56σ 4
1σ2 − 201σ 2

1σ
2
2 + 238σ 3

2 − 37σ 3
1σ3

− 36σ1σ2σ3 + 472σ 2
3 + (−82σ 2

1 + 260σ2
)
σ4

]
+ 8π8[3σ 4

1 − 46σ 2
1σ2 + 93σ 2

2 + 35σ1σ3 + 58σ4
]

(H.10)+ 64π10[σ 2
1 − 8σ2

] + 128π12.

Appendix I. Structure function moments

Table 1
Values of momentM(r)0;2
log10(−q2/M2) M

(1)
0;2 M

(2)
0;2 M

(3)
0;2 M

(4)
0;2 M

(5)
0;2 M

(6)
0;2

1 1.1434 0.3675 0.01199 0.0001163 7.7E-7 5.13E-9
2 0.5766 0.5516 0.1065 0.006140 0.00015 2.31E-6
3 0.3531 0.5360 0.2384 0.04244 0.0036 0.000177
4 0.2305 0.4591 0.3200 0.1076 0.020 0.002358
5 0.1592 0.3762 0.3456 0.1716 0.053 0.01093
6 0.1154 0.3051 0.3370 0.2168 0.092 0.02811
7 0.08700 0.2484 0.3121 0.2410 0.129 0.05156
8 0.06777 0.2041 0.2818 0.2490 0.158 0.07691
9 0.05419 0.1696 0.2513 0.2457 0.177 0.1006
10 0.04427 0.1425 0.2229 0.2363 0.188 0.1196
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Table 2
Values of momentM(r)1;1
log10(−q2/M2) M

(1)
1;1 M

(2)
1;1 M

(3)
1;1 M

(4)
1;1 M

(5)
1;1 M

(6)
1;1

1 0.5717 0.3822 0.02045 0.000075 −1.7E-6 −5.0E-8
2 0.2883 0.5439 0.1055 0.00273 −5.6E-5 −3.3E-6
3 0.1766 0.5565 0.2107 0.02029 −8.4E-5 −8.3E-5
4 0.1153 0.5127 0.2879 0.05878 0.00286 −0.00050
5 0.0796 0.4545 0.3301 0.1072 0.0139 −0.00069
6 0.0577 0.3986 0.3451 0.1526 0.0342 0.00162
7 0.04350 0.3501 0.3427 0.1885 0.0601 0.00848
8 0.03389 0.3096 0.3307 0.2133 0.0873 0.02014
9 0.02710 0.2760 0.3141 0.2282 0.1123 0.03531

10 0.02214 0.2481 0.2959 0.2354 0.1333 0.05215

Table 3
Values of sums of momentsM(r)0;2 andM(r)1;1, in the even and odd channels

log10(−q2/M2)
∑3
k=1M

(2k−1)
0;2

∑3
k=1M

(2k)
0;2

∑3
k=1M

(2k−1)
1;1

∑3
k=1M

(2k)
1;1

1 1.155 0.3676 0.5921 0.3823
2 0.683 0.5577 0.3937 0.5466
3 0.595 0.5786 0.3872 0.5767
4 0.571 0.5690 0.4061 0.5710
5 0.558 0.5587 0.4236 0.5610
6 0.544 0.5500 0.4370 0.5528
7 0.528 0.5410 0.4463 0.5471
8 0.508 0.5300 0.4519 0.5430
9 0.482 0.5161 0.4535 0.5395

10 0.455 0.4984 0.4513 0.5357

Appendix J. One-loop 2d integrals

We start with the 1-loop Euclidean integral with 2 internal scalar propagators
massesm1,m2:

(J.1)B(k;m1,m2)=
∞∫

−∞

d2q

(2π)2
1

[(q + k)2 +m2
1][q2 +m2

2]
.

The integral can be done analytically to obtain

(J.2)B(k;m1,m2)= 1

2π
√
(k2 +m2−)(k2 +m2+)

ln

{√
k2 +m2+ +

√
k2 +m2−√

k2 +m2+ −
√
k2 +m2−

}
,

where
(J.3)m± =m1 ±m2.
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For the equal mass casem1 =m2 =M we have

B(k)≡ B(k;M,M)= 1

2π
√
k2(k2 + 4M2)

ln

√
k2 + 4M2 + √

k2
√
k2 + 4M2 − √

k2

(J.4)= b(θ)= θ

4πM2 sinhθ
for k2 = 4M2 sinh2 θ

2
.

NoteB(k) is analytic ink2 with a cut from−∞ to −4M2. AlsoB(k) 
= 0 for all k2 and

(J.5)B(k)∼ lnk2

2πk2 for k2 → ∞,

(J.6)B(0)= 1

4πM2
.

It can be represented by the dispersion relation

B(k)= 1

2πi

−4M2∫
−∞

dz
B(z+ iε)−B(z− iε)

z− k2

(J.7)= 1

2π

∞∫
0

dκ
1

k2 + 4M2 cosh2 κ2
,

where we have substitutedz = −4M2 cosh2 κ2 and notedz ± iε corresponds to settin
θ = iπ ± κ with κ > 0:

(J.8)
1

2πi

[
b(iπ + κ)− b(iπ − κ)] = −1

4πM2 sinhκ
.

The inverse ofB satisfies a once subtracted dispersion relation

(J.9)B(k)−1 = B(0)−1 + k2

2πi

−4M2∫
−∞

dz
B(z+ iε)−1 −B(z− iε)−1

z(z− k2)
.

Noting

(J.10)
1

2πi

[
1

b(iπ + κ) − 1

b(iπ − κ)
]

= 4πM2 sinhκ

κ2 + π2 ,

we have

(J.11)B(k)−1 = 4πM2

[
1+ 2k2

∞∫
dκ

sinh2κ/2
]
.

0
(κ2 + π2)(k2 + 4M2 cosh2κ/2)
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J.1. General 1-loop integrals (“cutting rule”)

We consider an arbitrary 1-loop integral(
∑n
i=1 ki = 0):

(J.12)I (k)=
∫

d2q

(2π)2

n∏
i=1

[
(q + li)2 +m2

i

]−1
,

where

(J.13)li =
i∑
j=1

kj (ln = 0).

The result is simply

(J.14)I (k)=
∑
i<j

1

2

(
I+
ij + I−

ij

)
B(lij ;mi,mj ),

where

(J.15)I±
ij =

n∏
r=1,r 
=i,j

[
(q + lr )2 +m2

r

]−1
∣∣∣∣
q=q±

ij

,

and the momentaq±
ij are given by11

(J.16)2q±
ij = −(li + lj )−

m2
i −m2

j

l2ij

lij ∓ i

l2ij

√
s4ij + 4m2

j l
2
ij εlij ,

(J.17)lij = li − lj ,
(J.18)s2ij = l2ij +m2

i −m2
j .

References

[1] J. Balog, P. Weisz, Phys. Lett. B 594 (2004) 141.
[2] A.M. Polyakov, Phys. Lett. B 72 (1977) 224.
[3] M. Lüscher, Nucl. Phys. B 135 (1978) 1.
[4] A.B. Zamolodchikov, Al.B. Zamolodchikov, Ann. Phys. 120 (1979) 253;

A.B. Zamolodchikov, Al.B. Zamolodchikov, Nucl. Phys. B 133 (1978) 525.
[5] M. Karowski, P. Weisz, Nucl. Phys. B 139 (1978) 455.
[6] F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, World Scientifi

Singapore, 1992.
[7] M. Karowski, in: W. Rühl (Ed.), Field TheoreticalMethods in Particle Physics, Plenum, New York, 19

p. 307.
[8] J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E. Seiler, P. Weisz, Phys. Rev. D 60 (19

094508.
[9] J. Balog, M. Niedermaier, Phys. Rev. Lett. 78 (1997) 4151;

J. Balog, M. Niedermaier, Nucl. Phys. B 500 (1997) 421.
11 Note that(q±
ij

+ li )2 = −m2
i

andq±
ij

= q∓
ji

.



19
380 J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329–380

[10] D. Buchholz, R. Verch, Rev. Math. Phys. 7 (1995) 1195;
D. Buchholz, R. Verch, Rev. Math. Phys. 10 (1998) 775;
D. Buchholz, Nucl. Phys. B 469 (1996) 333;
Also: D. Buchholz, Talk at 12th International Congress of Math Phys (ICMP97), Brisbane, Australia, 13–
July 1997, hep-th/9710094.

[11] S. Caracciolo, A. Montanari, A. Pelissetto, JHEP 0009 (2000) 045;
A. Montanari, Ph.D. Thesis, hep-lat/0104005.

[12] P. Hasenfratz, M. Maggiore, F. Niedermayer, Phys. Lett. B 245 (1990) 522;
P. Hasenfratz, F. Niedermayer, Phys. Lett. B 245 (1990) 529.
[13] J. Balog, P. Weisz, Nucl. Phys. B 668 (2003) 506.
[14] M. Moshe, J. Zinn-Justin, Phys. Rep. 385 (2003) 69.


	Structure functions of the 2d O(n) non-linear  sigma models
	Introduction
	O(n) model and structure functions
	Current and spin operators, 2-point functions
	Structure functions, moments

	2d structure functions at small x
	The operator product expansion
	Summary of results on the moments
	Dispersion relations
	Operator product expansion for the spin field
	Operator product expansion for the current
	Fourier transformation


	Perturbation theory and operator product expansion
	Zero twist operators
	Operator product expansion at tree level
	Renormalization of the zero twist operators
	The operator product expansion in perturbation theory
	Solution of the matrix problem
	Leading terms in coordinate space

	OPE for the currents

	Structure functions for n=3
	Case r=2
	Results for the entire x range
	Threshold behavior
	Moments

	Sigma model structure functions in the 1/n approximation
	The spin field structure functions
	The current structure functions

	Summary and conclusions
	Acknowledgements
	O(n) notations and identities
	Particle states, rapidity integrals
	S-matrix asymptotics
	Residue asymptotics
	Operator basis
	Notations and conventions
	Asymptotic expansions
	Reduced spin and current form factor squares
	Structure function moments
	One-loop 2d integrals
	General 1-loop integrals (``cutting rule'')

	References


