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Abstract

We investigate structure functions in the 2-dimensional (asymptotically free) non-lingar O
o-models using the non-perturbative S-matrix bootstrap program. In particulaextw small
(Bjorken)x behavior is derivedStructure functions in the special case of the 3 model are accu-
rately computed over the wholerange for—qZ/M2 < 10°, and some moments are compared with
results from renormalized perturbation theory. Some results concerning the structure functions in the
1/n approximation are also presented.
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1. Introduction

In this paper we study structure functions in the asymptotically freég 8igma models
in two dimensions. Due to the integrability of the model one has powerful tools to study
various non-perturbative properties. In particular, one can derivexiée smalk behavior
(for all ¢2) and for the case of = 3 compute structure functions precisely up to very large
values ofg2. Despite the fact that there are no transverse directions, the structure functions
have a rather rich and non-trivial behavior. In a previous Iditéwe summarized our
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results and speculated on the possibility of discovering some similar structural features in
QCD.

The purpose of this paper is to supply the derivation of the results presenfgH in
This paper is organized as follows. In the next section we give some basic definitions
of the correlation functions of interest. In Sectidnve give the derivation of the (rather
universal) exact smal behavior. Sectiod deals with certain general aspects concerning
the relation of the highy2 behavior of moments of structure functions to the operator
product expansion (OPE). In Sectidwe consider the OPE for the cases of two spin
fields and two currents in the framework of perturbation theory. More detailed results on
the structure functions for the special case:et 3 are presented in Sectidh Finally,
in Section7 we consider computations in the leading order of thie &xpansion. Many
technicalities and some convemtis can be found in the appendices.

2. O(n) modd and structurefunctions

The Q(n) o-model in 2d (formally described by the Lagrang(@&inl)) is perturbatively
asymptotically free fon > 3. A special property is that these models have an infinite num-
ber of local[2] and non-loca[3] classical conservation laws which survive quantization.
At the quantum level they imply absence of particle production. Assuming the spectrum
to consist of one stable @)-vector multiplet of mas#/, the S-matrix has been proposed
long ago by Zamolodchikov and Zamolodchiki@]. Form factors of local operators can
be computed using general princip[&s6]. The S-matrix bootstrap program for the con-
struction of correlation functions involves summing the contributions over all intermediate
stateq7]. The possible equivalence of this constiaie to the continuum limit of the lattice
regularized theory has been investigated in [B3f.

2.1. Current and spin operators, 2-point functions

The normalization of the conserved/© current operatorlgb(x) (a,b=1,...,n)is
fixed, e.g., by the equal time commutation relation with the spin fldy):

[767(0.x%). @9(0. yh)] = irggs (x* — y1) @4 (0. 1), 2.1)
where the matriceg’? given in(A.2) yield the vector representation of the/Q Lie alge-

bra. Its matrix elements are

<0|J3b(o)|ala 917 e a ara 9") = _ielll)PrUfaall?_.ar (917 LR 9") (22)
Here the number of particles, has to be even and the form factgif{“ar depend on the
rapidity differences only, making Lorentz invariance and current conservation manifest.
The normalization of the-particle states, the corresponding completeness relations, and

1 €uy = —€vp, €01 = 1.
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other undefined kinematics encountered are givekppendix B We define
3 F O 00 fi O, 6r) = (895 — 5T 89¢) ), (2.3)
aj...ar
whereC") (1) is a symmetric function of the rapidity differences.
The normalization of the spin operat@f (x) is fixed by its 1-particle matrix element:
(0|97 (0)|b, 6) = 8. (2.4)

Its r-particle matrix elements-(odd) are defined by

(012 (0)|as, b1 ... ar, 0;) = Ay f;

ajy...ar

where the form factorg;, , depend on the rapidity differences only and the overall factor
A, is defined for later convenience. We choose

61, ....0,), (2.5)

The analog of2.3)for oddr is
ot OO O 0 =8CT ). (2.7)

ai...ar

We now make some further definitions:

C(r)(u)
) () — (r)
196 = oy [ Du (2.8)
d 1 z 2
My = 27 () — (r) (r)
A0 @ = =116 = s [ (Z—}-[M(’)(u)]z) COw  (29)
and fors =0, 1,
L@)=) 1%, (2.10)
k=0
As() =Y APHI(g) = 221, (2.11)
i—o 0z

The invariant functiond; are related to the 2-point functions of the current and spin
field operators by9]

O[5 (x) I ()10)

2
— (aceadf _ (SCf(Sde)/ (gnl;ze—ip(x—y)(p#pv _ pznuu)(_i)ll(_PZ _ iS),

(2.12)
valid up to contact terms and

Pp

(Zn)ze_i”("_y)(—i)lo(— p%—ie). (2.13)

(OIT @ (x)P"(y)|0) = A25° f
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In (2.12)T* denotes the covariantizgd-product.
Forn =3 we can deﬁnellj(x) = %e“”cjl‘j”(x) and instead of2.2) we have

(0174 O)az, 01; ...; ar, ;) = —i€ua PEfL o 0L, -...6,). (2.14)

In this case instead @2.3)we can us€2.7)also forr even.
2.2. Structure functions, moments
The central object in DIS theory is

wibdel (p, gy =7y (a. plIL @) (r1 I Q)b p)6P (p+g—P).  (2.15)
r

whereg? < 0. We will use the parameterization

G? = —&PM? (2.16)
and the Bjorken variable
2
q
xX=— ) 2.17
2(pq) @17)
Using Lorentz and Q:) invariance we have
2
Wiviedel (p,q) = (nuv - q;?) SRy (g2, x), (2.18)
=0

where the projector®,; corresponding to the 3 invarianichannel “isospins” are defined
in Appendix A Note that in 2 dimensions there is only one independent structure function
for each isospin channel.

Similarly we define the structure functions corresponding to the spin operator through

e (p gy =—mq?Y (@, pl@ ) r|@ b, p)6@(p+q— P).  (2.19)

r

and

l 0

where ther-channel projector®; for the vector representation are giver(f5)—(A.7).
Separating the-particle contributions we have

w; q x Z w(r) q x and ﬁ)[(qz,x) = Z (r)(q x) (2.21)
r odd r even
with
2 o0
w? (g% x) = (_4”4) / dA/Du<’>a<2>(p+q — P 0). (2.22)
T r

—00
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Herep = (M, 0) and forr odd

b;
100 = Z ROVl ped (i 61, ) fr i, 61,....6))

ahcdej
ay...ar

while for r even

’

1 o :
770) = = 3 P GO0 frd 616y,

abcd
ay...ar

By doing theA-integration we can further simplif§2.22)

(r)(q x

where

B =B, +b+ 207,

In 1+1 1+x2+x Ini1 +x
= -+ = —+—=1t— —x+—=7.
2 2 k2 dk? 42

We define the structure function moments by

1
M[;N(qz) =/dxxN_lw1(q2,x) and MI;N(L]Z):/dxxN_l
0

and similarly for fixed particle number

1
Ml(;rlb(qz):/dx N-1 (r)(q x).
0
Obviously,
Min(g®) =Y M7 (¢%) and Min(g®)= > M} (q
r odd r even

Ther-particle moments can aldm calculated directly frort2.25)

1 _ i}
r) (,2y _ ) [+N+1 ;)
Minla) = 2(4n)r_1/D” D B O]
_ 4yc?
X =
24 p2 -1

Forn = 3 (2.15)can be written as

Wib(p,q)=m Y (a. plISOQ)r)(r1 L ©O1b. p)sP(p+q — Pr)

(4 = l/Du<’)8|:M —~ —4—+4K2}Jl(”(,§1,...,;§,),

w; (qz, x)

333

, (2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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and(2.18)becomes

2
bicd qud bied 2
Wird(p, q) = (nw — —Z;) > P (g2 x). (2.34)
=0

In this cas€?2.24)is valid for odd as well as evenvalues (withm; =21 + 1).
The 2-particle form factor can be written

£101,02) = ¢ (01 — 02) (88" — 5°05P), (2.35)
with
00 2t
0 di [1—e »27siré([ir —0]t/27)
P0) = —tanhE exp{—Z/ 7[ 1o ] Snfe . (2.36)
0
The 1-particle contribution to the structure functions is then given by
wiP (g% x) = ms(x — D] (in — )|, (2.37)
where
1
sinh% =, and mo=1 mi=-my=>. (2.38)

3. 2d structurefunctions at small x

In this section we derive a general formula describing the asymptotic behavior of the
O(n) model structure functions at smallvalues. The derivation is based on general prop-
erties of the form factors and the scattering matrix elements and therefore the behavior we
find here is expected to hold in other 2d integrable models as well.

For smallx — 0O the variable in (2.27)behaves as

b:x+0(x2), (3.1)
and if we do the:,_1-integration in(2.25)with the help of the delta function we get
42 _
Uy 1= |n<i) — 200D o), (3.2)
X
and further
2 2 2
) _ *Hra 2 Oy _ 4~
v = 22 + O(x?), 1 x +O(D). (3.3)

Now putting all the above together we have

X

wi” (g% x) = 2y 1

/Du(r_l)Jl(r)(—S, —B—¢e+ Br—lv e, —B—e+ Bl),
(3.4)
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where

2
Ky
= —<1+ 4K21>x +0(x?) and B=Inx+0(1), (3.5)

andg; are the variables for — 1 particles.
Eqgs.(2.23) and (2.24are both of the form

IO =Y crAB g G010 fE 616y, (3.6)

abAB
ay..ar

where for the current case
. 1 -cde .
CabiAB _ _AR;lbecdcf with A ~cd, B~ ef, (3.7)
T
and for the spin case

. 1 . .
cabiAB — Z pabicd yith A~ ¢, B~d. (3-8)
T

With this notation we can Writd,(’) in (3.4)as

0= 3" B A m e+ BB Bt PD)

abAB
ay...ar

X S a G +e+B,8,Br-1,.... B1). (3.9)

The crucial point now is that sinceis small andg is large we can here ugB.4) which
follows from general principles encoded imet Smirnov axioms. In leading order we get

. @2 e i
Jl(r) 2 232 Z Cab AB ai&’tBL}?/ far,l.‘.al(ﬁ"—l? . B)
(}’l o ) € ﬂ abAB

aj..ar

a, 1. al(ﬂr 1a~-'aﬂl)9 (310)
which can be further simplified with the help @.20), (A.22), (2.3)and(2.7)leading to

2
(r) ~ (4m) (r—1)
JIE——--=5GC , 3.11
where the constants; are equal to/; and7; for the spin and current cases, respectively,
given in(A.21) and(A.23), and further

1 8c*G C" D)
(f) ~ / (r—=1)
X)X Du S — 3.12
(4% ) xIn?x (4m) —3(n — 2)2 / (42 + p?_ )2 (5:12)
which can also be written as
1 2nG
w” (g%, x) = LAY (—g?), (3.13)

xIn2x (n —2)2
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where the Adler functiond ) were defined ir{2.9).
The final results for the complete structure functions are

1 27T,

. . 1 2V,

Note that the structure of the asymptotic smablehavior, factorizing a part characteristic
to the target and a part described by the vacuum 2-point function, is rather universal being
independent of the opator, independent of, and independent of the isospin channel.

This completes the derivation of the exact smallasymptotics first announced in
Ref. [1]. The question of possible lessons that can be learned for QCD was addressed
in the latter reference and will not be repeated here.

4. Theoperator product expansion

In the Qn) o-models there does not seem to be a simple parton picture. This is even
so for the case = 3 where the model is equivalent to ti#! model. For although this
model is formulated in terms of a complex doublet of fields which are analogous to quarks
in that they are confined, it seems that they do not play a role more similar to partons
than the elementary bare spin fields in the original formulati®he question is related to
that of understanding what are (if any) the “ultra-particles” in the sense of Buchholz and
Verch[10], or to the associated question as to whethewthmodels have an underlying
conformal field theory.

Although an intuitive parton description with suggestive DGLAP equations

1
qz%wz(qz,X) = / dy—ypz(x/y, a®)wi(q% ). (4.1)

X
(where p;(z, ¢°) would be the correspontj splitting functions) is still missing in these
models, we still have the machinery of the operator product expansion (OPE) to give us
information on the evolution of the momer{&28)at large—g2.

The OPE in the sigma model is surprisingly involved and hence we have decided to
present the material as follows. In the nexibsection we first summarize the results; read-
ers who would prefer to skip the derivations can then jump to Se@&icrhe general
structure of the product of two local operators (in this case the spins and currents) is de-
scribed in the remaining part of this section. Our analysis extends that initiated, e.g., in
Refs.[3,11]. So far too little is rigorously known about the detailed structure of the OPE
from the general principles of the bootstrap approach to obtain the explicit results below.

2 Perhaps the peculiar threshold behavior discussed in Segtiorexplained by the fact that (as opposed
to QCD) with some probability the @) particle can consist of a single point-like parton that carries the same
guantum numbers.
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The extra required information is, however, supplied in the framework of renormalized
perturbation theory which is presented in SectiorBome comparisons of the moments
with those from the bootstrap approach at higf? are presented in Sectidn4.

4.1. Summary of results on the moments

For the current§y/ even) moments in the isospin 0 channel we have

n—2
(n—1)

1
Mo:n(4%) = Won 5 {1+ n_zf\(qz)Jro(AZ)}, N>2, (4.2)

wherex(¢?) is an effective running coupling function defined through

1 1 2\ \/|C]2|
@ +- _ZInA(q )=In pu— (4.3)

and theWy. 5 are renormalization group invariamipn-perturbative constants, correspond-
ing to the matrix elements of spilV operators. In theV = 2 case this is the energy-
momentum tensor operatdy,, for which we know the constant explicitly

(@, pITuv b, p) = Wo.2pup8”,  Woz=2. (4.4)
In particular the “momentum sum rule” follows:
n—2
Mo.2(—00) = . (4.5)
n—1

Note that all the isospin 0 moments tend to constants@&— oc. As a consequence
these current structure functions in thén®models obey Bjorken scaling. Computations

in the n = 3 model (see SectioB and, in particularFig. 3), indicate that the resulting
limiting scaling functions are notrivial. This is a special property of these models and we
conjecture that this is due to the existence of an infinite set of local conserved quantities
[2].

In the isospin = 1 channel for odd momenifs > 3 we can only say that

Ml;N(qz)ZWl;N)L(qz)"iiz 4+, NZ=3 (4.6)
but in the special cas¥ = 1 we have
L], 1 2 2
Mia(4?) = 511 —=2(4?) +0(2) | (4.7)

where the constant is known through the current normalization

(a, plIc )b, p) = —4ip, P{" . (4.8)

From this follows the analogy to the Adler sum rule in QCD:

1
My;1(—00) =

5 (4.9)
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For the spin field isospin 0 moments we have

~ Wo.n72nCy, n=3
Mon(q?) = %A(qz) FE1rom). n>4 (4.10)
dion(?) = T {142 +002)). 0 =3 @)

where the non-perturbative constaiifg ; are the same as for the current, and wh&ye
is the non-perturbative constant appearing in the short distance expansion

n—1
n—2

(012 (y)P"(0)[0) ~ C,8* (—InM]y|) (4.12)

So far the value ofC, is not known for generak; for the casen = 3 a (well tested)
conjecture based on scalif@] gives

1
C3=—=, 4.13
=33 (4.13)
and we know fom = oo:
1
Coo=—. (4.14)
21

We see that only for the cage= 3 do the moments of the field= 0 structure function
have the same leading asymptotic behavior as those of the current.
For the isospiri = 1 field (odd) moments we find to leading order PT

M1.1(q%) = Mo.2(¢?), (4.15)
Wiy (g?) = Wana(g?) "2 {1+0(072)}, N >3, (4.16)
where there is in general no obvious relation tgetweerﬁth@ and the constants occurring
in (4.6), except fom = 3 where they are equal(i. y = W1y, n = 3).
For isospin = 2 moments we obtain (for all > 3):
Mo,y (q2) = Wa.n (22 {1+ O(r72)). (4.17)
Finally using the exact ratio of the mass to theparameter
M (8/e)Y/ =2
Ays TIL+L/@n-27

obtained by Hasenfratz, Maggiore and Niedermdg&t, the perturbative results can be
plotted as functions of-g2/M?2.

(4.18)

4.2. Dispersion relations

For the discussion of the OPE it is convenient to work in the Euclidean formalism. For
local operatorsA we have

A(x0, x1) = @H=PxD 40, 0)g - Px) (4.19)
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whereH, P are the time and spatial translation operators. We can similarly define Euclid-
ean translation by

AB(y1, y2) = 27131 40, 0)g~ ozt Py, (4.20)
which is formally A(—iy, y1). For Euclidean vectors (and similarly for tensors) we define

Vo= —iVo. (4.21)

The Euclidean time ordering is defined as
Te(A5(y1, v2)BE (21, 22)) = O (y2 — 22) AR (1, y2) BE (21, 22)
+ O(z2 — y2)BE(z1, 22) AF (31, y2), (4.22)

and the connected part of the product of two operators is

(0102) = 010, — (0]|0102|0) — 01]0)(0|O>. (4.23)

We now define Euclidean functions for the currents:

1 )
5 f dy1 dy2 € C01H022) (4, 0| (J5/%(y1, y2) J¢ (0, 0)) |, O)

2
= (Qu0v — 0%,) Y R 1(Q2 Qo). (4.24)

=0

whereT¢ stands for covariantized Euclidean time ordering, i.e., some non-covariant terms
proportional to delta functions of the Euclidean time difference (and derivatives of the delta
function) are dropped.

Similarly for the spin field:

1 oo .
= f Ay dy Q0170232 (4 0T (@ (11, 12890, 0)) |b. 0)

= A2) " P (0% Q). (4.25)

Ther andi;, as functions o> at fixed realQ? are real analytic
u(0% 02)" = (0% -03).  ©(0% 02)" =%(0% —0%). (4.26)
and obey the crossing properties
7(0% Q2) = (-1'u(0% -Q2),  #(0% 02) = (—1'#H(0% —0Q2). (4.27)

Further they have cuts along parts of the imaginary axis (with pol€sat +i 02/2M),
and the discontinuities across the cuts are simply related to the structure functions:

2 2
wz(—QZ,x)=Q;Imn<Q2,s—i2ix>, (4.28)

2 2
iy (— Q% x) = %Imfz(QZ,s—izix). (4.29)
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Concerning the general singularity structure in the comgexplane away from the
imaginary axis, little more is rigorously known except that the current functiohas
poles on the reaD, axis originating from the contribution from 1-particle intermediate
states. The contribution from lanicle states is easily computed:

7 P(Q?, 0,) = 2MC W<¢(m K¢ (i + k)

1 (_1)1
X{M(cosrk—l)—iQ2+M(coshk—1)+iQ2}’ (4.30)

where Q1 = M sinhk, ¢(0) is the form factor functior(2.36) and the constanta; are
given in(2.38) Since for smalk

qb(in—}—k)%—%, (4.31)
the 1-particle contribution, for fixed? as function ofQ», has poles aD» = :t\/@ with
residue—’Qﬂzﬁll.
Assuming that no other singuities are generated by the higher intermediate states
away from the imaginary), axis, from the usual Cauchy integral we conclude that for a
circular contour centered at the origin with rad'uzf@ <R < 0%/(2M)

1 [den(Q%¢) o 2M 1
% W—l T[;N(Q ) —lgallm, (432)
whererl.N(QZ) are the coefficients of the Taylor expansion
u(0% 02) = Z u.n(0%) 02" (4.33)

Now the structure functlon moments can benguted in the usual way by calculating
the Cauchy integral along the deformed contour around the cuts. In this way we obtain
expressions for the moments:

Q2 N+1 2M 1
s @) =M (3g) {0 GG | e

The spin functiort has no 1-particle contribution, and assuming no further singularities
apart from the cuts we obtain for the moments

y 02\ N+

My n(-0%) = M(W) 7.5 (0?). (4.35)
where

(0% Q2) = Zw %) 02N (4.36)

Note in the equatlons above foe= 0,2 N is even, positive and far=1 N is odd.
It remains to extract information on the Taylor coefficients;, 7).y from the operator
product expansions.
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4.3. Operator product expansion for the spin field

Starting with the spin field, the connected part of the time-ordered product can be ex-
panded as:

Te(@F(y1. y209(0,0)),

_ ZA(l)cd (l) + Z Z ]/(J l) B(J l)cd J + B(J l)cdyJ} (437)
J=1 l,w

whereyy = Fy1 — iy2. Employing a basis of hermitian operators

Ag)c~dT — ADed B((Uj,l)cd'r — BUJed (4.38)
and using Poincaré symmetry,rigg and CPT invariance we have

B Ded = ypibedy - gDed —y gDedy (4.39)
whereV is the parity operator and

WA =r00D. 0D =09, (4.40)

Further we define the matrix elemet§”" as inAppendix E

(@, 0|BYD b, 0) (—z—ee) pebied pUb (4.41)
and we find
BYD" = D = (—1)’ ' BYD. (4.42)

The “twist” of the operator is defined as

(9D — dim(BY-Ded) — g (4.43)

and the minimal possible twist value is zero. The contribution of these operators dominate
for large momenta and we have

1

Mion (= Q%) ~ 51" (07), (4.44)
where
J
ﬁ“”)(QZ) (@' (352) [ Ere@n 000, (4.45)

(Jl) ZB(JI) (7. ( ) (4.46)
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4.4. Operator product expansion for the current

Using hermicity, Poincaré, @), parity and CPT symmetries and current conservation
we can write

Te(JSB )1 @) = Y RPPITHD. () ADa

J7ATHO)
102

+ Z Rab cdef H(J D) (y)B(j Dab + H(J ) (y)B(J l)ab} -

Hviw

(4.47)

where the dots indicate that we have omitted total derivative operators since they would
not contribute to the diagonal expectation values. Otherwise the set of operators appearing
here is as ir{4.37)and the coefficient functionHlilJ:w take the form

HY ()= —y;y<y + V(). (4.48)
HY )= Hi’i L0 =@+ D2V (3?), (4.49)
HY. ()= —y—_yo) + VL (), (4.50)

whereV” (y2) (I = 0, 2) are real functions unique up €§¥t, and

Y= yZ%. (4.51)
Similarly,

YD ()= —+511 — vy Y+ DO+ T+ VIO (), (4.52)

HD ) =HYD )=yl Y+ D@+ 7+ DV (), (4.53)

HID (=2 fﬂy(y + V() (4.54)

wherev,$/:) (y2) (J =1) are real functions unique up ﬁg@a,l andc,, are real constants.
Finally

5 (7,1 Tl

H;U;$(y+, y-)= Héwga))(yﬂ y+), (4.55)

whereir = —pu for the light-cone indey = +.
As a consequence of the asymptotic freedom of tive) @odel for smally?

0]
V(l)( 2) ~ |yl 2, (4.56)
o)
V(J 1)( ) ly[fo " =2, (4.57)
Wheretcf)’), tCE)J ‘D are the twist of the corresponding operators.
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4.4.1. Fourier transformation
Introducing

Xc(zf)(y): 2v(l)( 2) (4.58)
XD =y v (). (4.59)
XJP () = y2ylviD(y?) (4.60)

the current operator product in Fourier space can be written
f d?y €2 (a, 0| Te(J5E(v) ¢ (0)) 15, 0)

== > R"EL(OXD (@AY
1=0,2
=Y R B[RS0 + XD (0)]
J=I

. J
. —iM
—i—lechJlKﬂv(Q)}(T) BYD, (4.61)
where the reduced matrix elememg), Bé)“) arereal andt,,, (Q) is the transversal tensor

Euw(Q)= 0,0y — 0%, (4.62)

The complete expressi@i.61) although conserved in coordinate space, is not transversal
because of the anomalous termsgortional to the constants,. These are multiplied by
the tensoiX ., (Q) with components

1 1
K++:Z, K77:Q—+, K+7:K7+:O. (463)

It is not quite trivial to see, but easy to check that
4i Q> +v 102

L (4.64)
010 01 03

Thus K, is transversal up to the last two terms, but these correspond to contact terms
in coordinate space. Dropping these “seagulib® coefficient of the transversal part in
Fourier space becomes

K (Q) = —Eun(Q)

1 ~
u(Q) = —E;X&”(Q)Ag)

1(—iM\’ . - i02
. | gD . -
-5 ( > ) B, {Xw (Q)+ X" (Q) —4dincyd1 > 2}.
J=l QlQ

g (4.65)
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This can alternatively be written as

7(Q) = —%foéf)(Q)AE?

1 d\’ -
32 {[(ZMQ Y 4 MO ](d—QZ) W(E)J,l)(QZ)B(E)J,I)}

2}

iQ2 A
M e gy 2 e
where
WD (y2) = y2V0 (y2). (4.67)

Note that the anomalous contribution(#66)is regular on the imaginar@, axis hence
does not contribute to the structure functions. Let us also define

gV 1) Z W(J 1) (J D (4.68)
If we now compute

J
gw)(Qz) — Z(QZ)”l(d_gz) W;J,l)(QZ)Bgsl) (4.69)

we see (using asymptotic freedom) that the coefficient functions behe(@zastgl"l), u
to logarithmic corrections. We will keep the contributions of the leading (twist 0) operators

only. Note that for/ = = 1 the only twist 0 operator iBil’l)“b = ijb with

B =4, (4.70)
From(4.66)we obtain for the Taylor coefficients
daMc 1)
2y _» 2y 1 11
78 (Q%) = T8 (QF) 07 (BN (4.71)
where (up to higher twist contributior?s)
. _ 1 emV .
T];N(QZ) = —éwg(N’l)(QZ). (4.72)
Inserting this in(4.34)we obtain:
2\ N+1
o =m( L
Min(—0Q%) = M(ZM)
2M 1
A 2 = - _
X { 18 (0%) + 0 511@@)NH(1 2ncl)}. (4.73)

3 Note for large@? the anomalous term dominates ovely .
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Later we will see thaty = 1/2x. Thus these two subtle effects cancel each other, and so
the final formula coincides with the naive one:

1.
My n(—0%) = —Zg(N’”(QZ). (4.74)
Up to now we have related the moments te ffaylor coefficients which we see are
determined by the structure of the OPE. But to get quantitative results at this stage we need
more dynamical input. This can be supplied by analyzing the OPE in the framework of

renormalized PT, which is the topic of the next section.

5. Perturbation theory and operator product expansion

We consider the @) sigma model Lagrangi4n
— Za 599, 8%, §2=1, (5.1)
go a=1
and work inD = 2 — € dimensions using dimensional regularization. Renormalized fields
Sk and coupling are given by

s1=zY258 7= 1——”°€g n

2
2’32“” Fon (5.2)

We denote the usual renormalization group (RG) derivative by

88 =ng’21,  Zi=1-

D=u— d

= u— ﬁ(g) (5.3)
"
where the dimen5|onal regular|zat|0n beta function is
B(g) = ——g +B(g),  B(g)=—Pog®—p1g°— - (5.4)
and
n—2 n—2
= =— . 5.5
fo=—4—  P=73 (5.5)
The RGA-parameter in th&1S scheme satisfieB Ayg = 0 and is written
= uel®, (5.6)
where
B 4 2
=— In(2 +=+0 5.7
f@ 20 252 (2B0g?) 5> +0(s9) (5.7)

4 In practical computations in infinite volunmme usually adds a coupling to an external ﬂel@zo/gg)(S” -
1) to serve as an intermediate IR-regulator. For IR-finite quantities the renormalized externatgietd
hov/Z/Z1 is set to zero at the end of the computation.
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with y = Indx + (1) (note% =-19.
0
The spin fielde“ differs from the renormalized @) field S% only by a finite renor-
malization:

o€ = 0,54 (5.8)
and solving the RG equations for the vacuum two-point function the standard way we find
n—1
_ 2w\ 2
93e rg) = (n — 2) ncn’ (59)
where the constar@, is that appearing in Eq4.12)and p(g) is the solution of
’ v(8)
P ==— (5.10)
B(g)
wherey (g) is the anomalous dimension of the spin field:
n—1
Y@ =DINZ=wg’+---, = et (5.11)

The integration constant ib.10)is fixed by requiring
Y0
e P — (gZ) %0 {14 o(gz)}_ (5.12)
5.1. Zero twist operators

We now introduce a basis for zero twist operators composed of an even number of spin
fields. For isospirt = 0 we write

1
K (n1.ma).(nemi) ?(3115641 ) 33_'15a1) e (3ik §% . gk S“k), (5.13)
0
where we introduced the notation
1. 1
0t = E(l dF o) = 5(30 F o). (5.14)

Itis very important to notice that a complete basis can be chosen such that
ni,mi =21, i=1,...k, (5.15)

which can be achieved by using the identity
1m71 m ' '
S“af5“=—§;<i>a$ ise.9ise. (5.16)

The spin of the above operatorsZsf:l(ni + m;) = J, whereas the mass dimension is
J — ke, i.e., the operators are of zero twist only in exactly two dimensions. £ak, 2 we
can define the operators

Kab(no,mo)(nl,ml)...(nk,mk) — g_J'ZBiOSa . aﬁOSbK(l’ll»I’Hﬂn.(nk,mk) (517)
0
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with spin Zf.‘zo(ni +m;) = J, and dimensioty — (k + 1)e. For/ = 1 we have to antisym-
metrize thez, b indices, whereas fdr= 2 we take the symmetric, traceless part. Now

0< ng < mo, ni,mi =1, i=1,...,k, (5.18)

and correspondingly there are three types of operators:

type I: [=0 and [=1,2, ng>0,
typell: [1=1,2, np=0, mo=>1,
typelll: =2, no=mp=0.

It is now straightforward to calculate the potentially divergent matrix elements of these
operators. At one-loop order, after wave function, charge and mass renormalization we
find:

[ =0: all matrix elements finite
2

=1 typel (1 — g_) x lowest order
2me

type ll: only type | operator matrix elements
2
=2 typel (1 — g_) x lowest order
21e
2

type Il: (1 — g_) x lowest order- type |,

e
g2
type 111 (1— —) x lowest order type |, II.

AS

5.1.1. Operator product expansion at tree level
The leading terms of the OPE in perturbation theory are simply given by Taylor expan-
sion:

1
TE(—ZS“(y>S”<0>)
80 ¢
1 a b 1 - 1 a b J ca b\ ., J 5.19
goSS _321_ [(915% - SP)yL + (975% - s%)y’], (5.19)

up to higher twist operators. The operators appearing in the sunvasaan be written as a
sum over operators of definite isospin:

2

1., b (J.hab

503878 =3 0", (5-20)
80 1=0

O(J Dab Plabifda_{_sc .54 (5.21)

0 =
0 gg



348 J. Balog, P. Weisz / Nuclear Physics B 709 (2005) 329-380

Important operators with isospin 2 are

1 1
== (sa " — —5“’). (5.22)
2g0 n
For isospin 1 we have the currents
1 b b
T4 = =5 (8“0, 8" — 579, 8). (5.23)
80
and for isospin 0 we have the energy-momentum tensor
1 a a 1 a a
Tuvo) = — 0,890,8% — B(SWE)(,S 357 ). (5.24)
80
In terms of these, the leading operators of the OPE can be written as
J,2)ab
OEO) Jab _ J /(5 + type | operators (5.25)
1
J.Dab _
o 28’ 174y, + type | operators (5.26)
@0ap 8%
Op = —7T++<0)- (5.27)
5.1.2. Renormalization of the zero twist operators
We will now denote byB(JOl)“b the zero twist operators troduced in the preceding
section. Herex is a multi- mdex it includes the operator type I, 11, [ll and possible further

indices. InD space—time dimensions the mass dimensioB;(ég))“b isJ — ed(f/”). The
corresponding renormalized (finite) operators of mass dimenseme:

(J.Dhab _ (L0 edS"" o(1,Dab
By _Zzaﬂ P By (5.28)
B
where the operator renormalization constant matrix is
(.0 82 (Jl)
Zop = 8ap — Weg +- (5.29)

We now distinguish the types of operators by writing their multi-indices

B({Ol))Cd. for type |,

Bij(é))“’. fortypell (=1,2),

ng(oz))‘d. for type III. (5.30)
In this notation the one-loop results of the previous subsection are

wig? =15, wi = w0 (5.31)

1-1
J,l J,1
wiy = —, 0as. wyp =0, (5.32)
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1
wiy = ~~das. (5.33)
Using the inverse matri%:
g2
S ZGOWE = ey Wi =bap+ Ewl (5.34)
B

we define the anomalous dimension matrix
VD = 37 ZUD(DWID — ed D WD), (5.35)

w

which is finite and is given by
biED = gzwu DD —d§D — 1) + O(g%) (5.36)

to Ieadmg order.

We would like to go to a basis where the leading anomalous dimension matrix is di-
agonal. This basis is easily found due to the triangular structure of the leading anomalous
dimension matrix. The renormalized operators in this new basis are dé’ﬁ}(g{tgff, where
w=a, A andBY""*! are (as before) the renormalized type | operatorslﬁk‘{tﬁ)"d are op-
erators of type Il and (fof = 2) of type Il mixed with lower type operators. In this basis
we have

1(3=1])
vy = ( 7 ————8ap8% +0(g"). (5.37)
TT
-1
Wi = —=sang’ +0(sY) (=12, (5.38)
vy = vf{a” 0(g*) (=12, (5.39)

We also note that the canonically dimensionless2 operatorr(o) is multiplicatively
renormalized:

b
7(0) =Yu %, (5.40)
since there is no other operator with the same quantum numbers to mix with. Here
2

—1-5 4. (5.41)
e
leading to
2
DInY = =~ +0(g*). (5.42)
T
Itis clear that for thé = O operators we can chose the diagonal basis so that
(J,00cd (J,00cd
90 “= =By ‘ (5.43)
and for/ =1, 2 theA = 1 operators so that
B = o]ty =~ vBY P whereB{"?* = 3]7, (5.44)
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(J.D)ed J—1 —e (1. Ded (J,1)ed J—1 yed
By =011 =BV, whereBy VY = oty
We then have

(J.2)ed _ pp(J.2cd (1.2) 2(J.2cd
Q0 =Bigp *+ Z’\a Bioy

Ued _ L0 1ed (J.1) (), Dyed
0) 251<0) + D VB
a

Finally, for (J, 0) = (2, 0) there is just one operator and we have

c cd
2,0)cd —e p(2.0)cd 2,0)cd 3
Bi(o))c =-—To=n BEO whereB>? = T+,
and therefore, the 1-particle matrix element is known exactly:
B9 =2
5.1.3. The operator product expansion in perturbation theory
In bare perturbation theory we have
1
Te—(5“(y)S°(0)),
80
o (Dab; (1) J, l) (J,D)ab j ~(J.,Dab_J
=D A koo (V) + Z > koo N Buo vi + By}
J=1 l,w
which, after renormalization, becomes
Te(Sk (1) SRO),
ZA(l)abk(l) ) + Z Zku 1) B(J hab.,J [ BY: l)abyJ}
lw J=1 l,w
where
7 8721 Zl (7D —ed$"D (1
kD (y2) = kam) “Arwinh,

which satisfies the renormahzatlon group equation (RGE)
(D +y(@)kS"™D =3 kDD,
w

Finally, the original coefficient function;scy D
coefficientsk(ﬂf D by

1 = 930,

and so(4.46)can now be written as
n(] Dy zzku 1) B(J )

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

of (4.37)are related to the renormalized

(5.54)

(5.55)
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The perturbative expansion of the renormalized coefficient functions is

kD (ulyl, g) = 82K + %G5 (lyl) + O(g®). (5.56)
We already computed the leiad (tree-level) terms:

1
KU = 8o, (5.57)
kUv__ L1, kU L0 (5.58)
AT T TR ‘
12 1 2_1. .02
K )=ﬁ5A1, Ky ):ﬁ)‘y g (5.59)

A building block used in the solution of the RGE is the maﬁz(gé’l)(g), which is a
solution of the matrix differential equation

N I N
Ble)3- Uiz (9) == vy 055" (®). (5.60)
p
If we have such a solution and its matrix invegesatisfying
Y UG @ US (8) = b0, (5.61)
P

we can build the RG-invariant coefficient

GJP =er®@ kD, Ul (2) (5.62)
o
and the RG-invariant numbers

v =" Ul (g)BSD. (5.63)
P
In (5.62)the running coupling is defined as the solution of
(@ =@ +In(ulyl). (5.64)
which, for small|y|, has the asymptotic expansion
- . - 1
2B08° =A+ci2+0(R%), c= E(1*/(1) —Inx), (5.65)
where the effective coupling is defined by
A 2”@
=+ InA=In . (5.66)
Lo on—2 Ayslyl

Putting the building blocks together we have

n=1

21 \n2
10009 = (25) T ne S e, (5.67)
w

n—2
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Note that if with some’
Ded —e 0 p(Lhed
Byl = v By, (5.68)
which is the case far= 1, 2 and also foKJ, ) = (2, 0), then
v = Din Y5y, (5.69)

5.1.4. Solution of the matrix problem
In this subsection we will omit the upper indék” and use matrix notation. We want
to solve

N I N
ﬂ(g)@U(g) =—v(®U(g), (5.70)
which is(5.60)in this notation. We know that in our basis

v(g) =2PoAg® + O(g?). (5.71)
whereA is a diagonal matrix with diagonal elements:

=0 A,=0,
1
=1 Ap=0, A,=——,
n—2
2 1
=20 Ap=——F, As= . 5.72
ATho2 YT a2 (5.72)
Using the expansion
v(g) 2A >
AL 22 2 iAW), (5.73)
B(g) g ]
we can take the Ansatz
U(g)=[14R()]e* (5.74)
with
o
R(g)=) g*RY, (5.75)
s=1
and put it into(5.70) We get
s—1
SRW +[RV, A] =AW + Y ACPRP - s=12.., (5.76)
p=1

which has a unique recursive solution unlegs — A, = s occurs for somev, o ands.
In our case this is possible only fer= 1 and only ifn = 3. Forn = 3 we thus take the
modified Ansatz

U(g) =[1+R(g) +Ing?R(g)]g** (5.77)
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with
o o0
R(9)=Y ¢*RY.,  R(g=)Y g*R". (5.78)

s=1 s=1
In this case we start with

=1 RD=a% RY=0  RP=0 RY =0,
RY=0.  RP=aD k=240 &Y=al 679
and
1=2 RP=aA0 RY =0  RY=0  RY=o0,
Ri=o.  Rh=afy RD=AD RR=Jah 680

and after that there is a unique, recursive solution of the system

s—1
SR +[RW, A]=) " A6—PRP), (5.81)
p=1
s—1
SRY +[RW, A] =AW — R 43" AC-PR®) (5.82)
p=1
fors=23,....
Note that from the recursion relations it follows that
R®) =0 fori=1, (5.83)
R®) =0 fori=2. (5.84)

We also note that becausg, is proportional toS1,,

RY=0 and Ry~ sy, (5.85)
and therefore

Uty = %slw, Uty = W81, (5.86)
wherew is the solution of

Ble)w'(g) = y(g)w(g), (5.87)

wherey(g) = DInY(g), the coefficient occurring in Eq5.69) This has the following
important consequences:

Vi=0 fori=2 andforl=1, J>1, (5.88)
Vi=By forl=1 J=1 andfor/=0, J=2. (5.89)
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5.1.5. Leading terms in coordinate space
Using the results of the preceding subseasiwe can calculate thedding terms in the
short distance expansion of the functigasi6) We find

n(J,O) f(J)A.__{l‘I_O(A-)} (5.90)
p @D = f{l))fm{l—i—O(X)}, (5.91)
where
2nnC,
(J) ny,(J,0)
o' = n—2 Vit (5.92)
A 7nCn (1,1
=———B7. 5.93
fl L _o"1 ( )

For the casé =1, / > 1 we have to distinguish between the cases3 andn = 3. In
the former case

1 ~n—
"D = const Fflwﬁm o))}, (5.94)
where
472nC,
g Zﬁfj)v/g"l), (5.95)
1 ~
£y = —ER&W’D + Y AIVREVY gy, (5.96)
a
In then = 3 case we have
1 - -
n"Y = const+ Fflm InA{1+0Mm)}, (5.97)
where
J AUy, ()1 AU 5(1)(J,1
A= ch b LD = ST DREED, (5.98)
A a

Finally, for/ = 2 we find

72 = constt — f“)x{1+o(i%)} (5.99)
where
21 \ 7
£ = (_ fz) nCy Y KVI2), (5.100)
a
le,j)=Rﬁ)u’z)+Z)»,(,J’2)R1(,i,)(]’2)—i—J!éL(,J’Z). (5.101)

b
Using the coordinate space results above and the asymptotic formulgpendix G

we are now in a position to derive the results on leading large momentum behavior of the

spin structure function moments given in Sectibh
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5.2. OPE for the currents

Itis straightforward to calculate the leading operator product coefficients in perturbation
theory:

(J,0) _ 2 1
Wi (%) = TN opge o 22 (5.102)
D2 _ L 1
w =——3§ o), J >3, 5.103
oo () 27 1 - 2 wk +O(2) ( )
w2 -1 ) 4 o(g 5.104
YWy (v )—_g = (80): (5.104)
where the operator associated wiEh103)is
1
By = p (0715 0,80 — 9 71sP . 5, 89). (5.105)
0

Egs.(5.102) and (5.103)an be obtained by tree-level perturbation theory, while the results
necessary to write down the one-loop form{#al04)can be found ifi11]. Also the results
of [3,11] show that the coefficient i(.71)is given by

1
1= —. (5.106)
2
Using renormalization group improved perturbation theory we can write
£UD(32) = Z O (2 v, (5.107)
w
where, as in(5.63)
Va()J,l) — Z U(E){),l) (g)BéJ’l) (5.108)
o)
are renormalization group invariant constants and
o (y Z W D(y U“ D(g) (5.109)

are renormahza‘uon group invariant coefficient functions. Putting everything together we
arrive at the results already given in Sectibf.

6. Structurefunctionsfor n =3
In this section we consider the case- 3, where it is possible to compute the structure
functions accurately in the whole rangexofor a giveng?. The case: = 3 is rather special

for various reasons, e.g., the spin and current 2-point functions exhibit in this case very
similar properties and there are miraculous scaling relaf@nshich relate then?.In the

5 See also the OPE in Sectidn
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S-matrix bootstrap approach its distinguishing feature is that it is the model for which the
r-particle form factors can most easily be obtained explicitly. They take the simple form

f];ll...br (91’ cee 9,-) = lI/’. (91? R Qr)gzlb, (917 cee 9")7 (61)
where
1
O, 0 =52 [T v -6, (6.2)
1<i<j<r
0 —mi 0
0) = ——tanif =, 6.3
VO = G 5 (6-3)

and the reduced form factogg ,, are polynomials in the rapities. There are well de-

fined recursive procedures for computing fleem factors, the only practical limitation
being that they become very involved. So far the record we have achieved is the 7-particle
form factor of the spin field13]; already its algebraic expression in MAPLE involves
many megabytes of storage. Fortunately, for the structure functions we only require sums
over bilinear factors of the form factors which are computationally more manageable. In

correspondence {®.1)we define reduced form factor squapé’s) through

‘,[(r)(BL LR Br) = |'Ilr+l(l.77’ /517 LR Br)‘zj[(r)(ﬁl’ R Br) (64)
1 L . _
= Zn3’+1[HA(ﬂi>}[ I1 B(ujk)}j} 'Br.....B). (6.5)
i=1 1< <k<r
where we have introduced two new functions
62 1
AP) =y r —6) (92+n2)2tanﬁl%’ (6:6)
02 + 72 0
B®) = |v©) = kil H (6.7)

——————tani’ —.
62(62 + 472) 2
The reduced form factor squares o= 2, 3,4 are given inAppendix H Forr > 4 the
expressions are too lengthy to exhibit in print; the results-fer5, 6 can be obtained in
the form of files from the authors.

Forr = 1 we then have (noting that sir%rb =k for x = 1),

4
w® = %A(b)a(l —x), (6.8)
where the factors:; are given in(2.38)

6.1. Case =2

For the case = 2 the delta-function constraint in the integral representation is simply
solved and we obtain the analytic expression

6,2

wf? (4% 3) =00 = 2T A + /DA~ 6/DB@ICI(4.9). (6.9
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where the kinematic variables A, ¢ are given by

2cosh§ =w, (6.10)
_w 2 2

w=5 We=(p+q)°, (6.11)
2

cosha = M-+ Pd. (6.12)
MW

and
Cl(A, )= jP(A+¢/2, A—¢/2). (6.13)

Using the expression fq‘g(z) in (H.2)—(H.4)we have

Co=812+4A%+3¢2, (6.14)
1
C1=—21°42A% + §¢2, (6.15)
3
Co=21%—-2A% + §¢2. (6.16)

Despite its relative simplicity, this case exhibits many features in common with higher
The structure function approaches its asymptotic values very slowly, e.g?2 fixed

272
(14 2%)% xIn?(42)

with eg = 1, e1 = ep = 1/4 (consistent with the small behavior derived in Sectio8),
while for —¢2 — oo, x fixed we have

a)l<2) (qz, x) ~ ¢ forx — 0, (6.17)

R m8x A(—In(1—x))
L8 — 0 In(=¢2/ M2)2

(6.18)

6.2. Results for the entire range

Just as for the 2-point functiof@] we find that for a fixed-42 only states with a limited
number of particles contribute significantly. To appreciate this better we consider the sum
of the field and current structure functions, which is a rather peculiar thing to do in general,
but which is in fact rather natural in the special case 3. Figs. 1 and 2llustrate how the
structure function (wo 4 wo) is built up from states with increasing particle number for
the cases-¢2/M? = 107 and—q?/M? = 10%, respectively. We see that the higher states
contribute very little and that we obtain nearly exact values for the structure functions for
all values of—g?/M? < 10° by including only intermediate states with5 particles for
the current andl 6 particles for the spin field.
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Fig. 1. Approximations ta:(wqg + wg) as functions of G< x < 1 for —qZ/M2 =100. Curves correspond to sums
up to and including 23, 4, 5, 6-particle intermediate states. The last 3 curves are indistinguishable on this scale.

2

Fig. 2. Approximations tor(wg + wg) as functions of 0< x < 0.95 for —qZ/M2 = 10" Curves correspond to
sums up to and including 2,3,4,5,6-particle states.

In Fig. 3we plotxwo(g?, x) as a function of logy(—¢?/M?), for a selection ofx-
values® The function increases asg? increases for all values of in this range and
seems consistent with Bjorken scaling as mentioned in Sedtion

6 For this model we prefer to show this rathtean the typical HERA plot where one adddog;(x) to

separate the-values, because the latter would obscure—ting variation which is rather small compared to the
variation of —logqg(x).
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0.05
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log_10(-q*2/MA2)

Fig. 3.xwg(¢?, x) for various values of = 1071/5,

6.3. Threshold behavior

Note that inFig. 2 we have cut off the plot at = 0.95. This is because near= 1
the function develops a big bump with a peak70 which, if included in the same plot,
would obscure the features we wanted to show there. The behaviorofitialel structure
functions nearc = 1 is indeed rather involved. For a fixedg? the contribution to the
structure function from the-particle statev” vanishes for greater than some threshold
value

x(—¢%) =[1- (2= 1)M?/q?] "

The big bump inx (wo+ o) referred to above is at this value-ef;2/M? = 10* practically
entirely due to the 2-particle contribution. For this contribution:

(6.19)

w® ~ E(¢%)/x2(—q?) —x, x—x2 —q°fixed (6.20)
F
;Z)N%, g% 00, xfixed, (6.21)
In“(—g*/M?)

where E;, F; are some (known) functions. The bump arises becd&use quite singular
near thresholdf; ~ [(1 — x)In?(1 — x)]~L. The analytic behavior as— x2 sets in only
extremely close to threshold, e.qg., feg2/ M2 = 10* the position of the peak of the bump
is atx = 0.99954 whereas the function vanishescat= 0.99970. At—g2/M? = 10* the
3-particle contribution also has a bump but it is less pronounced (peak waRig at

x ~ 0.9953). We conjecture that the threshold behavicméSf in the O(3) model igx, —
x)(r2—3)/2_
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6.4. Moments

Forr = 1 the moment$2.29)are simply given by

M5 (q%) = A(2 asinhc). (6.22)

The moments withV > 1 are quite simple to evaluate numerically, but /6= 1 some
care must be taken to obtain accurate results.

The problem arises already for= 2 where we have integration just over. The /-
factor together with the? factor in the integrand is

FiP = A(BD) A(B2) B(up)¥°. (6.23)

Now for uy very large B, ~ (—q_2 + M?)e 1 is exponentially small and so also~
—q%e1, Noting (i) for u; large 1 ~ u1 and (i) A(9) ~ 16/(7*0?) for & — 0 we have
for largeuy

F?~ . 2A (u1) (6.24)
v\ M) T |

where

1

(u? +72)(W? +4n?)’
The integral over large; gives a sizeable contribution because the integrand decays only
aSMIZ. The integral is thus broken up into two parts where for the laigegion the sub-
stitution (6.24)is made and there computation of exponential functions of large argument
are not necessary.

For the case of higherthe procedure is similar. Here the integrations amger . ., u, 2
can be done safely by introducing for them (large) cutoffs (and monitoring the dependence
on them), since the integrands are exponentially suppressed. But for the integration over
largeu, _1 the integrand is not exponentially suppressed and in this region one replaces the
correspondingy -factor by

Ap(u) = A(u)B(u) = (6.25)

" —4q° 2
Fy'~ 1‘[A3<u,r) [T Baw. (6.26)

2[ q J,-M(” l)(u)z] 1<k<I<r—1

In Figs. 4 and 5ve plot the separateparticle contnbutmnMé’; andM{’i respectively;
some corresponding numbers are giveMables 1-3 in Appendix. IThey are typically
bell-shaped (except for = 1) and perhaps obey scaling relations similar to those of the
spectral functions examined in RE9]. The figures show how they build up the sum of mo-
mentsMo.2 + A710;2 andMz1.1 + Ml;l. Using the exact ratio of the mass to theparameter
Eq.(4.18) we also exhibit the perturbative results up to and including terms of argéy.

The agreement of the summed terms and PT is impressivedéfM? ~ 10°. For values
of —g?/M? >~ 10° contributions from states witk 7 particles must be taken into ac-
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0 2 4 6 8 10
log_10(-q*2/MA2)

Fig. 4. ContributionsMé,’% for n =3 from (r = 1,..., 6)-particle states. The upper full line is their sum. The
dashed line is the perturbative expansiomy  + 11710;2 =1+ A up to and including terms of Ol’dal(qz).

0.6 —

04—

Fig. 5. As forFig. 4 but for the moment =1, N = 1; here the PT result is& 0(22).

count. Note we have also included the contribution of the one particle states in the sums;
these tend to improve the agreement at lower valuesqt and fall asymptotically as

1
M~ mim® /1412 (— g2/ M),
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7. Sigmamodel structurefunctionsin the 1/n approximation
7.1. The spin field structure functions

In the framework of the An approximation the spin amplitud2.19)has an expansion
of the form
1
bicd _ [r] bd [rlcad ¢b [r]gab gcd
zabied(p gy = Zn—r[sl’ gacsbd 4 sylgadsbe 4 sylgabsed], (7.1)
r=1
and so for the various isospin channels

o0

&)[(qz,x) = niru?yl(qz,x), (7.2)
r=1
with
by = s+ sy s, (7.3)
=) sy 7
= sp s 5)

The Feynman rules for the/& expansion of the.-model has been described in many
places (see, e.g., R¢lL4] and references therein) and will not be repeated here. We only
mention that the diagrams involve the barepagator of the fundamental spin field, and
the bare propagata—1 of an auxiliary isospin scalar composite field, which we aall
which is the inverse of the scalar 1-loop integral giverppendix J

In leading order 1n the only contribution to the scalar structure function is the tree
diagram involvingh exchange in thes~channel”; one thus gets an amplitude proportional
to the imaginary part oB—1:

st =st—o, (7.6)
—q°M? shg
(—q%+M?)2 ¢? + 72’

whereg is as in(6.10) Note we already anticipate‘ii” = 0 by starting the sum overat

S = 476(w - 2) (7.7)

1lin(7.2).
In the limit of smallx we have
2 1 .
sty i x>0, —q>fixed (7.8)

L 1-M?%/g»2xin?x
consistent with the general res(8t15)for [ = 1, 2, the scalar Adler function in the leading
order I/ n beingjustAo(z) = (14 M?/z)~2. Note the limit is approached extremely slowly.
E.g., denoting the asymptotic function on the rh§o8) by Sasymptone hasS&l] / Sasympt=
0.245,0.441,0.638 0.907 forx = 10-°,10710, 10720, 10190 respectively.

One also observes the limit
1 2r(1—x) 1
Y In?(—g2/M2)’
q°/M?)

—g%— o0, x fixed, (7.9)
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and the threshold behavior:
m_ A=q*/M?)3?
Y- g3/ M?2x;
We caution that the limits — oo andx — x2 may not commute.
The moment$2.28)have an 1n expansion of the form

o0

- 1 -

Min(g%) =) :n—erl;rIl,(qz). (7.11)
r=1

Jio—x, x—xa —q?fixed. (7.10)

One then shows (e.g., numerically) that fog? — oo

- 2
78 (,2) ~ ,
1)~ gz
- 2
Y (42) ~
(@) N(N —1)In*(—q?/M?)
consistent with the resul{@.15)and(4.16) The 1/ In(—¢?) behavior for theV = 1 mo-
ment comes from the singular behaviowat 0.

So far we have only obtained the leading order for the isosgirl, 2 channels. This is
because E(.7.3)shows that to obtain the leading ordewlapproximation fod = 0, one
has to take into account also the amplittﬂi@. To this amplitude the only contribution
comes from a diagram with twio-exchanges in ther*channel”

—44q? d’k
sl — 4 Im/ d(k+q®)d(k — pF)B(k) 2, 7.14
3 27'[(—6]2—}— M2)2 (271,)2 ( +q ) ( p ) (k) ( )

whered (k) is the Euclidean bare spin propagator

1=1,2, (7.12)

forN>11=12, (7.13)

dk) = (K> + M%) 7, (7.15)

andgF = (iqo, 1) and similarly pE with pF2 = —p2 = —M2. Using the spectral repre-
sentation ofB (k)1 and the cutting rulés(seeAppendix J we get

—q? Ow—2) 1
s~ q Z[Blks) 2+ Bk_)"2], 7.16
3 MZ(—42+M2)2wVw2—427T[ (k)™ 4 Ble)™] ( )
where
RM? 1—y)(1+4 2x2y2/R
K2 = 1Y 4 (A=A 22y°/R) ’ (7.17)
y R 1-y+2y/R
2
x —q
=— R=—5—. 7.18
Y x2(—q?) 2M?x3(—q?) (7.18)
Again the smalk limit
2 1 .
st~ il x—0, —g?fixed (7.19)

(1—M?/g%)? xIn?x’

7 One can initially introduce a UV cutoff in the spectraldgtal and remove it after invoking the cutting rules.
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is as expected. For the largé and threshold behaviors we have

[2] 2 1
S3~ ,
x(1—x) In?(—q2/M?)
21 _ 87(—q2/M?)Y2x, sinfg 1

—g%— o0, x fixed, (7.20)

% A—@/M? @ Jo—x ® —q* fixed (7.21)
where
(pzzasin( M Rz_ 1). (7.22)

For the leading isospin 0 moments we then have

1
- 2wt N [sintfo,  sintPo_
My (0%) = 525 zfdz -~ s |- (7.23)
’ Re(1—M?/q%) , Sz, g9 L 6% 6<
where
. 0
k2 = 4M?sint? %E (7.24)
$(z.¢%) =vVA—2A—z+2z/R). (7.25)
Numerically one extracts the behavior
- 2
MY (D)~ —=— forN =2, 7.26
O;N(q ) In(_q2/M2) or ( )

in perfect agreement witfd.10) The dominant asymptotic piece comes from tte
contribution in(7.23) and the dominant largg? behavior originates from the singularity
near threshold.

7.2. The current structure functions

We now turn to the current structure functions for which the non-trivial parts are more
complicated to compute in the/ & approximation than those for the spins. We have

o0
wab,cdef(p’ q) = Z n_r[_Yab,cdc,fW:{r] N Yba’cd"fWg] + Xab,cdefW3[rl], (7.27)
r=0
and so for the various invariant isospin channels

o
1
wy (qz, x) = Z n—rwl[r](qz, x), (7.28)
r=0
with
wy = 2wl 2wl whrt, (7.29)

wil =wi —wi, (7.30)
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Wl = _wlr ol (7.31)
At leading order one has the simple diagram with the 1-particle pole in-tti@nnel;
this contributes to the structure functions only tern&(1 — x).
We denote the amputated two-current two-spin correlation functioﬁ[ﬁy"d"’f with
.. . . r] . . . ]
coefficients in the An expansioriy. whose imaginary parts are proportional to 17128
There are 3 types of diagrams contributing’ﬂé‘w which involve onex propagator. One is

the box diagram, another involves a vertex correction, and the last involves a spin self en-
ergy diagram. They can be camniently combined togethto yield (in Euclidean space)

d’k _
Tin(p5 ) =8/ oy D (P55 ) Dy (pF. a5 ) (k + ) B(pE 1)

(7.32)
with
Dy(p,q.k)=(k+q/2),dk)+ (p+q/2),d(p+q). (7.33)
So contracting ovep, v
YT (p.a)=F(p) +8/ﬂD(p q.k)d(k+q)B(p— k)~ (7.34)
Lup (271’)2 4 > :

m

1
D(p,q.k) = (p+q/2%d(p+q)*+ Sl +q) +aw)],

+[=(p =%+ p? + pg — M?]d(p + q)d (k) — %[q2+4MZ]d(/€)2,
(7.35)

whereF is a function ofp? alone. Since we are only interested in the structure function
only one term appearing in the cutting rule is relevant. Still in Euclidean space, and omit-
ting pole termsx §(1 — x), the relevant term is

A
sink«
YT (r5.a5) ~ —160TM4deK2+nZB(pE+qE; M.m)(I +1), (7.36)
. 0

whereA is some ultraviolet cutoff and
m = 2M coshk/2, (7.37)
I+ = ZD(PE, LZE, ki(PE, qE)), (738)

K (p,q9)=—ap - [M?(p? + ap) +m?(q® + qp)]
= g +p)?

ieqp 2 5 5 > 30
F s eV [P HO? ot MP][(p a2+ m— b)) (7:39)

8 One can conveniently use lattice UV regularization at intermediate stages.
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So going over to Minkowski space

(C4 + C_)sinFk
(k2 4+ 72)y/[W2 — (m + M)2][W2 — (m — M)?]

Ko
wiltl = am®o(w — 3m) f die
0

(7.40)
with kg defined through
ko W-—-M
h— = 7.41
cos > M ( )
and
AM? + Apq + ¢° 1 5 2
Ci=— — 14+ 2(— —2M°)d(K
+ 2(W2 — M?)2 WZ—MZ[ +2(=pg+m )d(K+)]
1
+d(Ks) = 5(—¢% +4M?)d(K2)%, (7.42)
K2 _ [M2(M? +qp) + m*(q° + qp)]
+=49p — W2
(PCI)Z—quz\/ w2 21 w2 M)2 7.43
T P W = G+ )W — o - M2 (7.43)
Numerically for smallx we find consisten&with the general resu(B.14)
2
wf! ~ —ai(-q?). 1=12, (7.4
xIn“x
with
a1(~q?) = —|3- (24 costw) (7.45)
2n sinhg ’ '
. 0
—g%=4M?sint? > (7.46)

sincea1(z) is the leading order [z contribution to the Adler functiom(z). In leading
order I/n the current vacuum 2-point function amplitutie= i1 with1°

1 4M?
_ e+aM)

i1(z) = — r), r’=z. (7.47)
Tz

We have not yet computed thesi contribution to the isospin O structure functiog.
This also involves computin@sli]]) which is more complicated because it requires the eval-
uation of 2-loop graphs involving alsopropagators.

9 We did not yet confirm this analytically.
10 Forz = —¢2 we have

9
— 2—' =
z 3Z11(z)

2 il [ 0 coshy/2

~ 4+ _ = .
7 2M%sinhg 96 87Tsinhg(9/2} @)
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8. Summary and conclusions

In this paper we calculated the DIS structure functions (and their moments) in the family
of the 2-dimensional @r) non-linear sigma models using standard field theory techniques
available in any asymptotically free field theory model. In the special case of tBe O
model we compared the results to the nonrative (bootstrap) determination of the
same structure functions.

The very good agreement between the results (in the intermediate energy range, where
both the perturbative field theory results and the non-perturbative bootstrap results are
expected to be valid) strongly indicates—once again—that standard field theory and the
bootstrap define the same model. On the other hand this agreement provides some further,
indirect proof for all the assumptions that are used in the derivations in both methods.

The study of the structure functions has lead us to two interesting findings. First, we
found that the isospin 0 structure functions exhibit exact Bjorken scaling=§6r— oo
the structure functions go to some non-triviathdependent limits. Second, the exact small
x asymptotics of the structure functions are shown to be different from the soft-Pomeron
like fractional power behavior: the asymptotics eft{mes) the structure function is loga-
rithmic.

In the first case we have obtained concrete results in {3 @odel only but we think
that our findings are more generally valid: it is probable that exact Bjorken scaling is due
to the presence of the (infinitely many) higher spin conserved charges characteristic to
integrable models. Also in the second case we believe that the snaslymptotics we
found here is valid in a more general setting. Whether something similar applies to QCD
remains to be seen.
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Appendix A. O(nr) notationsand identities

The Qin) generatorg?? act in the defining (vector) representation as

[0*, ve] =iz, (A1)
where the generator matrix is

146 = gacghd _ gadghe, (A.2)
This corresponds to the usual relation

[0 VP]=ieveve (A3)

in then = 3 case withQ® = Je<Qbe.
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The generator matrix in the 2xilex tensor representation is

ab _ 4abgdv cu ,ab
tcd;uv - tcu 8 +6 tdv’
and similarly for higher representations.
Projector matrices in the 2-index tensor representation are

abia'’ _ 1 ab qa'b’
PO —;5 87,

be;a’b' _ %( aa’(sbb/ _ 8ab/8ba’)’
Pab:ﬂ/b/ _ 1 Saa’abb/ aab/ﬁba’ 15ab5a/b’
=5 + ) -~ :

They satisfy

’

ab;a'b' a/b/;a//b// _ ab;a”b”
P, P =du P

N ’ /
Z Plab,a b — 56!(1 abb ,
l

and
P]?b;ab —_
with
nn-—1 m—Dn+2
= Ty = —
2 2 2

Inthen = 3 caser; =2 + 1.
6-index invariant tensors, antisymmetric in the last two index pairs are

mo=1, 1

Xab;cdef — (Sab(sceadf _ 3Cf8de),
Yab;c'def — 8”"5b88df _ aadﬁbeﬁcf _ 5a08bf5de + 5ad5bface,

(andy?@cdef) The irreducible combinations are
Rab;cdef — EXab;cdef
0 . ;

sz;cdef _ %( ab;cdef Yba:,cdef)7

Rab;cdef — gXab;cdef _ }(Yab;cdef + Yba;cdef)
2 n 2 ’
which satisfy
sz;cdefRzz’b’;cdef _ (Skl’:l P[ab;a’b'
with

fo=2n-1), M=rro=4(n —2).

(A.4)

(A.5)
(A.6)

(A7)

(A.8)
(A.9)

(A.10)

(A.11)

(A.12)
(A.13)

(A.14)
(A.15)

(A.16)

(A.17)

(A.18)
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Note that in then = 3 case the antisymmetric tensor representation coincides with the
vector representation and indeed in this case

%chyeduszzb;xyuv _ P[ab;cd_ (Alg)

Finally, we note the following identities. The generators of the vector representation
satisfy

et = Z v, P (A.20)

with
Vo=2n—-1), Vi=Vo=n-2, (A.21)
and similarly for the antisymmetric tensor representation

b;cd
tgj;uvtebj)‘c;uv Zl; uv cf vu Z Tl a ‘ Ef (A22)
where
To=4(n—2), Ti=n-2  T=4-n (A.23)

Appendix B. Particle states, rapidity integrals

The r-particle “in” states are characterized by théQlabelsay, ..., a, and the de-
creasing set of rapidities, .. ., 6, and their normalization is
in<a3791;'-'7 r,9r|al,91,~-~;a,,9r>in
= (47) 8% ... 5U U865 — 1) -~ 56 — 6,), (B.1)

corresponding to the completeness relation invtparticle sector

no = (47T)r Z /d91/d92

ay..ar
Or-1
x f db, la1, 01 . ..; ar, 6,)"ay, 01: ... ay, 6. (B.2)
“o0
As usual, we introduce the set of positive rapidity differences
ur==061— 6o, up=06r—063, ..., uU_1=60,_1—20, (B.3)
and ther-particle invariant mass/ ") (1) with the definition

,
MOwe =M e =E + P, =P £ P, (B.4)
i=1
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whereM is the mass of the @) patrticles.
Ther-particle rapidity integral can now be written

00 01 Or—1 00
/d91/d92-~-/d9r=/dA/Du(’),
“oo oo “00 o0

where

[o)e] o0 [o)e]
Du(r):/‘dul/‘duzn/‘dur,l.
0 0 0

The inverse transformation is
0 =pi +A—vL +07,
where
ﬂj:l,{jr, j:l,...,r—l,
ujp=uj+ujy1+---+u1, 1<j<k<r,
/3r=0,

and

1 r—1
r _ = Bi
i=1
We note that

(r) (r)

vy vl =Inu,,

whereu, = M) (u)/M is the dimensionless invariant mass.

Appendix C. S-matrix asymptotics

The Zamolodchikov @) S-matrix is[4]

Sabicd(0) = 01(0)8°P5° + 02(0)5* 8" + 03(9)5“/ 6™,

where
_ —2mif 52(6)
) = =28 —2ni’
_ 52(0)
02(0) =(n — Zwm,
52(0)

03(60) = =2l o

(B.5)

(B.6)

(B.7)

(B.8)
(B.9)
(B.10)

(B.11)

(B.12)

(C.1)

(C.2)
(C.3)

(C.4)
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and the “isospin 2” phase shift is given by

00
Q@=—a4z/%%WMMﬂm}
5 w
with
e 4 g i
Specially forn =3

Kp(w) =

0—im
0+im
Using the asymptotic formula

s2(0) =

Ooda) . I k' (0) 1
/Zsm(éa))k(a))z Ek(0)+ 2 +O<ﬁ>’
0

we get the largé@ asymptotics of the S-matrix, which can be written as

2i 1
Supca () = 8954 12+ 0 = ).
ab,cd( ) + (I’l _ 2)9 bd + (02)

Appendix D. Residue asymptotics

371

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

For any(r + 2)-particle form factor in the @) model Smirnov’s residue axioff] can

be written as
Fibay..a,(B+17 +2.B.01,....0,)
L2 N
= ;{Sabfal...a,. (91, ceey 9',)
— Shay...ar:by..bra(01, ..., Or |/3).7:£b’ 61, ..., Qr)}’
where

Shay...ay;by..bya (015 - .., 0r|B)
= Sbay:c1b1 (B — 01) Scyanicoby (B — 02) -+ -
X Se, sar_1icr_1by1 (B = Or—1)Se, _1a,;ab, (B — 6r).
If Bis large we can usgC.9)to get

) - A i
Fibayoa BHim+e.B.01,... 00 ———— > "4oh FA (1.

(n—2)ep

i=1

(D.1)

(D.2)

0r).

(D.3)
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So far the operator index did not play any role. For the case of tensor operators, where
A is an Q) (multi) index, the form factors are invariant tensors @dd) can equivalently
be written

A

fabal a(ﬁ+in+8’ﬁ’91""’9)2mtAB ai...ar

61,...,6,), (D.4)

wheret 7 is the Qin) generator in the appropriate representation.

Appendix E. Operator basis

In the operator product expdoas we use a basis spanned Jaﬁ)“b, Bf,f’”“b and
BC(UJ’I)“b, where these basis elements are hermitian local operat@fs @t and/ =0, 1
or 2 tensor operators (in the index paib) under Qn). Under the action of the parity
operatorV they transform as

VADay = gab ypUDaby _ FDab (E.1)

Their Lorentz spin can be read off the relations

[M, ADP] =0, (E.2)
[M B(J l)ab] JB(J l)ab (E3)
M. BLD98] = i g3, E4)

whereJ is a positive integer and is the Lorentz boost operator. Finally, under the action
of the (anti-linear) CPT operat@y,

OAD? O = (—1)! AL, (E5)
@B((Uj,l)ab@ — (_1)185)1,1)(4!7’ (E_G)
OB Dbg = (—1)! B Dab, (E.7)

The one-particle matrix elements ofthbove operators are parametrized as

(a, 014D p, g) = Pred D), (E.8)
. i M .
<a,9|B;’*1)‘dlb,9>=<—’7 ) Pt girb, (E.9)
5(J,1)ed iM o\ b .0
(@, 01850 b,0) = ( ——-e" ) PR, (E.10)

Note that we have considered operators with non-vanishing one-particle matrix elements
only.
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Appendix F. Notationsand conventions

We will use the notation

Wo = —iWp (F.1)

for any vector (and higher tensor) index. The light-cone components are
1 1

Wi = E(WO FWy = E(i W2 W) (F2)

and similarly
1 1.

0 = 5 (B0 F 8) = 5 (102 F 9. (F.3)
We treat the two-dimensional Euclidean coordinates exceptionally since here we use

Y+ =Fy1—iy2 (F.4)
which gives

yiy-=—y% (F.5)
as opposed to the Euclidean square of vecto(B.2), which is given by

(W)= W2+ WZ=—aW, W_. (F.6)

Two-dimensional Fourier transformation is indicated by tilde:

fo) = / Py e £ (y). (F.7)

For functions depending oy? only we also define
) d\’ oy
fo) = (Qz)”l(d—Qz) f Py e £ (). (F.8)

Appendix G. Asymptotic expansions
Assume thaS(y) has an asymptotic expansion
S(y) = for 1+ O(17) (G.1)

in terms of the effective coupling defined in(5.66) ThenS(Q) can be asymptotically
expanded as

$(0) = 27) (=1’ J1(1— o) for” + O(r° ") (G.2)
in terms of the effective coupling defined by

1 1 |0

— InA=In—. G.3

A + n— 2 : : AI\/TS ( )
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In the special case

S(y)=fo%+0(1), (G.4)
we have

$(0)= (Zn)(—l)’J!fo<1+ n—iz’\> +0(»?), (G.5)
i.e., in this case we also know the coefficient of the sub-leading term. Finally, if

S(y) = foln’ +0G) (G.6)
then

$(Q) = —(2n)(=1)’ 1! for + O(3?). (G.7)

An alternative way of presenting the above results is as follows. If the derivative of the
function W (y?) has the asymptotic expansion

d - -
yZEW(yZ) =ar’ + O()\‘H'l) (G.8)

then in Fourier space we have

W(0?) = —4ra(—=1)" J1° + O(r°*1). (G.9)
In the special case = 0 if

d
2
y2—
dy2

then

(v3) =a + Br+0(32) (G.10)

~

W(Q?) = —4n (-1’ Ji{a + 1.+ O(22)}. (G.11)

Appendix H. Reduced spin and current form factor squares

The space of homogeneous symmetric polynomials variablest;, i =1,...,r, is
spanned by products of’), 1<k<r,

o= Y 6y by (H.1)
1<ip<<ig <r
For the reduced spin and current structure functions we haves$dz:
j$? = 4(of — 30p) + 872, (H.2)
2 =062 — 20, — 272, (H.3)
2 = ol — 60y + 272, (H.4)
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Forr =3:
Jég) = 4(—60?03 + 20’120'22 + 1910203 — 6023 — 90’32)
+ 472 (dof — 216205 — 190103 + 3402)

+87%(901 — 220) + 647°, (H.5)
J£3) — 203:_303 + 012622 + 2010203 — 2023 + 963?
20} - e+ sy - ) - 224(arf ) S, ()

12( 601 03 — 01 02 38010203 + 602 + 9903
-2 (01 - 901 o2 + 80103 + 1602) — 21 (3612 - 1702) — 87", (H.7)
Forr =4
i$P = 16070502 — 48050% — 480503 + 152010205 — 7203
— (480203 — 14405 — 152530203 + 476010503 — 560702 — 520205 )04
— (720 — 52020, — 35202 — 12801(;3)(;4 6407
+ 472[80f0y — 2405 — 42030203 + 131010503 + 6801 0%
— 24% 20,02 + 730%0% 4 550103
— (380702 — 27102 + 528053 + 175003 — 66%10203 + 133504
— (1577 + 3202)07]
+ 4743600 — 1840203 + 26005 — 880703 + 447070203
+ 25% 202 — 696010203 — 2480202
+ (1857 — 11565707 + 21202 — 7400103) 04 + 9607
+47°[320 — 232705 + 780 70f — 99253 — 5325205 + 126%10203
+2957% + (12117 — 322053) 04
+ 16786001 — 27870, + 40557 — 21205103 + 43404]
+ 128791707 — 3707 + 128072, (H.8)

154) 01262203 202 03 201 03 + 2010203 + 90’3

(—201 02 + 402 + 20’1 0203 + 20102 o3+ 1801203? — 620’20'3?)0’4
+ (907 — 620207 + 800F)02 + 1283

— 27 [Ul oy — 2025 - 361302203 + 30162303
401 03 + 330'1 0'20'3 390'2 0'3 + 70’10’3

+ (1000, — 45020F + 7803 — 15003 — 36010203 — 11802) 04

+ (—1407 + 26407)07]

+ 2n4[—3af022 + 12012023 — 16051 + ofa3 + ofozagg + 58012032
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2 2
+ 9010503 — 1740703
+ (1507 — 202570, + 45602 — 2560103)04 + 118457 ]
— 27‘[6[40‘16 — 246f02 + 57012622 — 26623 + 3701303
— 19810203 + 260% + (—2720% 4 110072) 04
+878[—30¢ — 20702 + 1302 + 30103 + 12604]
— 256710, + 128712, (H.9)
j2(4) = 012622032 — 605’032 — Gaf'ag + 380’]_0’20’:_? — 9903‘)1
+ (—6012023 + 36024 + 380130203 — 2420102263 + 201203? + 67&)‘20‘3?)0‘4
+ (~9%7 + 670702 — 65605 — 16007103)07 + 35847
— 2712[—0126;' + 60'25 + 901302263 — 550’10'230'3 — 160fo§
+ 9970204 + 103202 — 2570103
+ (=80102 + 210702 + 7803 + 125303 — 762510203 + 16645%) 04
+ (2487 — 82407) 0]
+ 27300 — 320203 + 6405 — 170703 + 16570203
— 280202 — 303510203 + 6320202
+ (5507 — 284070, + 16007 + 6325103)04 — 960 7]
— 27%[~40} + 56010, — 2010205 + 23805 — 370703
— 36010203 + 47205 + (—8207 + 26002) 04]
+878[307 — 46070, + 9302 + 350103 + 5804]
+6471%0? — 802 + 128712 (H.10)
Appendix |. Structurefunction moments
Table 1
Values of momenMé;’%
logo(—4?/M?) M) Moy Mgy Mt Mo M
1 11434 03675 001199 00001163 TIE-7 513E-9
2 05766 05516 01065 0006140 000015 231E-6
3 0.3531 05360 02384 Q004244 00036 Q000177
4 0.2305 04591 03200 01076 0020 0002358
5 0.1592 03762 03456 01716 0053 001093
6 01154 03051 03370 02168 0092 Q02811
7 0.08700 02484 03121 02410 0129 Q005156
8 0.06777 02041 02818 02490 0158 Q07691
9 0.05419 01696 02513 02457 Q177 Q1006
10 004427 01425 02229 02363 0188 Q01196
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Table 2
Values of momenMi’i
logio(—a%/M?) ) Mo My My My ML)
1 05717 03822 002045 0000075 —1.7E-6 —5.0E-8
2 0.2883 05439 01055 000273 —5.6E-5 —3.3E-6
3 0.1766 05565 02107 002029 —8.4E-5 —8.3E-5
4 0.1153 05127 02879 005878 000286 —0.00050
5 0.0796 04545 03301 01072 00139 —0.00069
6 0.0577 03986 03451 01526 00342 000162
7 0.04350 03501 03427 01885 00601 000848
8 0.03389 03096 03307 02133 00873 002014
9 0.02710 02760 03141 02282 01123 003531
10 002214 02481 02959 02354 01333 005215
Table 3
Values of sums of momenM(r% andMﬁ, in the even and odd channels
logyo(—g?/M?) Yi M(Zk Y Yo M(Zk) Yo M(Zk Y Y M(Zk)
1 1.155 0.3676 0.5921 0.3823
2 0.683 0.5577 0.3937 0.5466
3 0.595 0.5786 0.3872 0.5767
4 0.571 0.5690 0.4061 0.5710
5 0.558 0.5587 0.4236 0.5610
6 0.544 0.5500 0.4370 0.5528
7 0.528 0.5410 0.4463 0.5471
8 0.508 0.5300 0.4519 0.5430
9 0.482 0.5161 0.4535 0.5395
10 0.455 0.4984 0.4513 0.5357

Appendix J. One-loop 2d integrals

We start with the 1-loop Euclidean integral with 2 internal scalar propagators with
masse®i1, my:

B(k ) g ! 3.1
ymy,m2) = . .
(21)2 [(q + k)2 + m2][g% + m3]
—00
The integral can be done analytically to obtain
1 \/kZ +m2 + \/kZ +m?2
B(k;my, mp) = N )
zn\/(k2+m%)(k2+m1) \/k2~|—m \/k2+m
where

mi+ =mq £ mo. J3.3)
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For the equal mass casg = m» = M we have

1 ViZ ¥ amM2 + Vk2
B(k)=B(k: M, M) = In + +
27\ /k2(k2 4+ 4M?) k2 4+ 4AM? — k2
9 0
=bO)= ———— fork?=4aM?sintf =. J.4
© 45 M2 sinhd ! 2 (-4)

Note B(k) is analytic ink? with a cut from—oo to —4M?2. Also B(k) # O for all k% and

Ink? )
B(k) ~ 27 k2 for k“ — oo, (J.5)
1

It can be represented by the dispersion relation

1 1 Betio-Be—io
z+ie)— B(z —ie
B(k) = — d
) 27i < 7 —k?
—0o0
1 1
= — d[( N \]7
2710/ k2 + 4M2costt § S

where we have substituted= —4M? cosﬁ% and noted; + ie corresponds to setting
0 =im £+« withk > 0:

1 . o
%[b(ln+’<)_b(l7f_/()]—m. (J8)

The inverse ofB satisfies a once subtracted dispersion relation

@ P Betiot— Be—io
B(k)~t = B(0)~* —/d Lrre) mowTe) 3.9
(k) O+ o z sy (3.9
—00
Noting
1 1 1 47 M2 sinh
I - _ oM sinhe (3.10)
2wi [ b(im +k)  b(im —k) k242
we have
o0
sintf «c /2
B(k) "t = 47 M? 1+2k2/d . J.11
® g [ K(K2+7T2)(k2+4MZCOSHZK/2) (.11)
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J.1. General 1-loop integrals (“cutting rule”)

We consider an arbitrary 1-loop integ@;_; k; = 0):

I(k)=/ﬁli[[(qw)zjtm?]‘l (J.12)
(27_[)2 o1 1 i El .
where

I =ij (I, =0). (J.13)

j=1
The result is simply
1 _
1(k)=Z§(1;+1ij)B(1l~j;mi,mj), (J.19)
i<j
where
- -1
If; = H [(q +1)2+m?] K (J.15)
r=1r#i,j 4=4;j

and the momentqf; are given by!

m2 — m? i
4+ 1
2q;; =i +1j) - T’zij F ﬁ,/s;} +4m3iZ elij, (J.16)
ij ij
lij =1 —1j, 3.17)
sizjzlizj—l—miz—m?. (J.18)
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