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An exact solution of the SU(2)-symmetric theory with four-fermion mnteraction 1n one spatial and one time dimension 1s

derived

In this article we study the SU(2)-symmetric theory
with four-fermion interaction 1n one spatial and one
time dimension and give an exact solution of it We re-
strict ourselves to the massless case The interaction
lagrangian 1s of the form

Ly = —3y(¥7, )" - 38, (By, 10 )
W 15 the doublet of Fermu fields, 7¢ are the 1sotropic
matrices, ¥, the Dirac matrices vq = 0%, vy, =107,
vs = 6¢ The theory 1s interesting since, due to the ab-
sence of bare mass in the chosen interaction, 1t pos-
sesses continuous s nvariance The presence of the
infrared catastrophe [1] for g, > 0 evidently leads to
the spontaneous appearance of mass [2,3]

The model 1s also of interest since 1t 1s dual to the
theory of the three-component n-field with the action

$=(1/23) [ (@ m?d%,

like the massive Tharring model 1s dual to the two-com-
ponent n-field As has been shown by Berezinskn this
system, with the vortices taken into account, 1s equiva-
lent to the Coulomb gas, which 1s 1n the plasma phase
if the temperature 1s above the critical value

Coleman has proven the equivalence of the partition
function of the Coulomb gas and the massive Thirring
model (the exact equivalence should be sought in the
vicinity of the critical value of the temperature when
vortices with circulations >1 are not essential)

The three-component n-field model (SU(2) symme-
try) and the more general case of the CP(V — 1) model
(SU(V) symmetry) are, as has been pomnted out, two-
dimensional analogues of the gauge theories Wonderful

properties of the chiral and fermon theortes in 1 + 1
dimensions are the hidden symmetry and the complete
mntegrability discovered on the classical and quantum
levels So far the hidden symmetry has not been dis-
covered 1n gauge theories However, 1f we believe in the
two-dimensional analogy, its existence 1s beyond doubt
The exact solution given 1n this article 1s based on the
hidden symmetry which the theory with the interac-
tion of the form (1) possesses in the massiess case and
that 1s why 1t 1s interesting The method of solving the
model 1s closely related to the 1deas of Onsager and
Baxter [4], Yang [5], Gaudin [6], Berezin and
Sushko [7,8], Faddeevet al [10,11] and Kulish [12,1:
In this article we will find wave eigenfunctions and
energy levels of the hamiltonian in terms of pseudopar-
ticles 1n a finite volume 1In order to find the physical
spectrum 1t 1s necessary to let the volume tend to 1n-
finity, to introduce a boundary momentum, to fill the
Dirac sea and to perform dimensional transmutation
The total hamiltonian corresponding to (1) 1s, 1n
second quantization representation, of the form

A= (¥ x)0f, (3/ax)%2 (x)

1 +

*2 \1,7101 (x)q'hﬁ1 &) [gsa(’nazsﬁl B2 +gv'r§1a2 Tg1 32)
z .z

X (611125!1]2 ~ %% 1)) q,;;z(x)\p]ﬁzz ()}

Here the Latin indices 1,7 denote the Dirac indices, the
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Greek 1ndices a, § denote 1sotopic components of
spinor fields The complete symmetry group of (2) 1s
the group U(1) X SU(2) X U(1)5 of global transforma-
tions By virtue of this fact the overall number of fer-
mions (pseudoparticles) is conserved

N= vy, ®3)

and the difference of the number of night-handed and
left-handed fermions 1s

= [¥o wax @)

Evidently hamiltonian (2) has a pseudovacuum eigen-
vector, |0), satisfying the equations

T (x)[0Y=0 (5)

By virtue of the conservation of the number of pseudo-
particles N the eigenfunctions of (2) may be sought
with a fixed value of N

M= [dv, dxy (6)

X fel ’gyN(xl, XN E(x) \Il,;/"‘N(xN)IO)

The equation H|N) = E'|N) 1s equivalent to the follow-
ing equation for the function fil, & &L LX)
which 1s an equation for N fermlons nteracting with
a 8-function pair potential

N
0
{ 2 —107 =— +3 Z; (8 +&yt,t,) (1 — i,

n=1 a
X 8(x, —xm)}f=Ef (7

oﬁ and ‘r,‘;, as regular spin matrices, act on the Dirac
indices 1, and the tsotopic indices «,, of the wavefunc-
tion, respectively They act on the remaining indices
as unit operators

Apart from eq (7) the wavefunction obeys the anti-
symmetry requirements

(¢4 4
f’qlf ' ’qJ‘\I/N (g, Xay )
= (“'l)anﬁl lN-aN(xls !xN) (8)
Here 0 =(qy, ,qy)1sacertain permutation of (1,

,N), ng 1s the parity of the permutation
The last requirements for the wavefunction are the
pertodic boundary conditions
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f( ’xn+L’ )=f( ’xn’ ) (9)
Let us divide the space of the coordinates x,, into a nun
ber of regions which will be denoted by 0 =(q,, ,

an)
Q xg, <x5, < <xp (10)

The value of the wavefunction 1n the region Q 1s denot-
ed by f@(x;, ,xp) Since mn each region the coordi-
nates do not comcide, the wavefunction obeys by vir-
tue of eq (7) the free N-particle Dirac equation If for
the time being we 1gnore the antisymmetry condition
(8) the wavefunction 1n a certam region,eg @ =1,1¢
I=(1, ,N)andx; < <Xxp,maybechosenasa
superposition of plane waves

7 ()= Zi(-1yea,

aN

Xt (0y,) (05 )exD@x, K, ) (11)

Here

w=(,) wen=()).

Ky, ,Kuy1sa fixed set of momenta P= (pl, ,DN)
1s a permutation of (1, ,N), A are so far ar-
bitrary coefficients and oy, , UN are ﬁ/ehcmes taking
on the values *1

If we restrict ourselves to the two-particle sector
N =2, then due to the conservation of energy and mo-
mentum the wavefunction in the region @ = (2, 1),
1e,x, >x;, will also be a superposition of plane
waves with the same momenta K| and K, The Bethe
hypothesis, which will be proven below, states that
even 1f N > 2 a set of momenta 1n all regions Q will be
retained It 1s clear that matching of the wavefunctions
for coinciding coordrnates (x,, = x,,,) imposes rigid con-
ditions of self-consistency These conditions are equi-
valent to the factorization equations of the two-particle
S matnx of the pseudoparticles It should be mention-
ed that this condition 1s observed only if the bare mass
mq =0 This occurs for any value of the coupling con-
stants g, and g,

When the antisymmetry conditions are taken into

account, the wavefunction fQ 1n the region Xq <
<x,,, can be given i terms of the coefficients AP of

the wavefunction f/ by the following expression
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Q - _1\nP4 QP
! zp;( D A°‘611 egN

X “11(0171) u,N(opN)exp(vcnKpn) 12)

QP denotes the product of permutations
Let us now find the conditions which arise from eq
(7) when a pair of coordmates comncide For the two-
particle case, we arrive at the relation
12 _ (1 2
Agla, =0G(oy — 0 )AZ)

Q102 s Y %)

+a(3(0) — ) 4554,

=K 43! (13)

ayag ’
Kyp =b(0y3) +a(012)P)3,

P12=%(1 +‘!1 “2), 0125(01 —02)

The symbols used here are as follows ¢, and o, are
the helicities of the pseudoparticles taking on the
values 1, Py 1s the operator of interchange of the 1so-
topic indices,

1 o+ 1+10p,
b(o)—f[o— n, 1 —10)\0:] ’ a4
a(o)/b(o) =—1 [(1 + 7\1)\0)/(7\1 - )\0)] g, (15)

A/)In[(o + A )/(o — )] and (1/)In [(1 +100g)/

(1 —10X()] are the scattering phases for the two par-
ticles with total 1sotopic spin 1 and O, respectively The
quantities A; and A, are given 1n terms of the coupling
constants as

A =tei(e, t8), Ao =tgglgs —38y) (16)

Let us now dwell upon the case N =3 In this case at
x| =X, <x3 etc alot of matching conditions appear
If we take mto account the unitanity condition of the
K matrix

then there are six independent equations

23 _ =
Al 3 —K23(023)A132, A231 —K23(031)A213,
4312 =K23(012)A321, A231 =K12(023)A321,

A=K 5(03)412, AB =K (014 (18)

By means of these relations we.can express all the co-

123
efficients 451220 31n terms of 4,775, 0, We cando
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this 1n several ways, e g , we can express the coefficient
A3 by two sequences (123) ~(132) ~(312) ~(321)
and (123) > (213) = (231) > (321) [t1sclear that,n
order to fulfill the Bethe hypothesis, the result in the
both cases should be the same and the following rela-
tions should hold

K)3(093)K12(013)K23(012) *

= K15(012)K23(013)K2(023) (19)

Below we will need the operator §1,(0), expressed 1n
terms of Ky,

S12(012) = K12(012)Py2 =a(0y3) + b(013)Py;  (20)
For § 12 the relations (19) take the form

812(012)513(013)523(023)

= §73(023)513(013)812(012) (1)

Substitution of the exphcit form of Szk (0,) to eq
(21) leads to the equation

a(012)/b(0y2) +a(023)/b(023) = a(013)/b(013) (22)

It 1s evident from the form of the functions a(¢) and
b(0) n eqs (14), (15) that eq (22) 1s fulfilled 1dents-
cally Note that if mg # 0, 2 and b would be hyper-
bolic functions of the rapidities of the pseudoparticles
and eq (22) could not be fulfilled since 1t requires a
linear dependence of the ratio a/b on the argument

a(o)/b(0)=const+0 (23)

In the general case of an arbitrary number of particles
the relations for the coefficients A2} {."% are of the
form

A PnPn+1

_é 1
apopy1 | Onntl (5(0pn_0pn+l))‘4 Zﬁi}gﬁ

(24)

Now all the coefficients AZ? PN are expressed in
terms of the same A} . NaN which will be denoted else-
where by @, Thus proves [5,6,9] that for com-
patibility of the overcomplete set of eq (24) 1t 1s suf-
ficient that the factorization equations (21) be fulfilled

The last problem we have to attend to 1s the fulfill-
ment of the periodic boundary conditions (9) Substi-
tution of the expression for the wavefunction i eq
(9) and taking eq (24) 1nto account results n the fol-
lowing equations for the 1sotopic-spin vector &, 4
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which also define the eigenvalues of the wavevectors
K

n
T,0=cknlg (25)
where
T Sn n+1 S:nN‘S:”l ‘§n n—1 (26)

The N equations (25) are compatible, 1 e | [f’n f‘m] =0
by virtue of the factorization equations (21)

To solve eqs (25) let us introduce the operator i(v)
acting in the 2V*+1.dimensional 1sotopic space

N
Le)= 11 $,Go-0,), @7)

SonA 0 —0,)=a(G - 0,)

+b(3(v — 0,)Pg,, (28)

The operator Py, = %(1 + T, 1, ) interchanges the 1so-
topic indices of the additional particle with the index
0 and the index of the nth particle Let us denote the
trace of L (v) over the indices of the additional particle
by T(v) = Tr, L(v) The operator T(v) acts in the 2.
dimensional 1sotopic space and coincides with the par-
ticular case of the Baxter transfer matrix [4] As has
been shown by Baxter, by virtue of eq (21) we have
the relation

[T@), T@)]=0 (29)
It 15 easy to check that
f’(v =g,)= —Tn (30)

To find the eigenvectors of 7(v) we shall make use of
the beautiful method invented by Faddeev et al [10,
11] This method 1s based on the property of similar-
1ty of the products of two operators L(v) and L () n
different orders which 1s easily derved from eq (21)
Let us write down the operator L(v) in a more explicit
form

. _(A®) BO)
L(v)—(C(v) D(v))

(€2))

1+7f ~
20n +b0n 2 bOnTn
z

1 -1,
a0n+b0n( 2 )

N
=1
n=1

+
bOnTn

120

PHYSICS LETTERS

22 October 1979

Here ag,, = a(% w—o0,),bp, = b(% (v —0,)) Note
that while o,, = 21, the parameter v takes on arbitrary
values From egs (21) and (15) 1t 1s easy to check the
following relations

bu—-v)
MO, 501 = 5 =5 BOAO-sea@]
D). B@)] = 20— BWDE) -B@)D@W] (33)
[B), BE)] =0 (34

It 1s necessary to diagonalize the operators
T, =~ [4(0,) +D(q,)]

It 15 easy to check that the state &g, with all the spins
directed upwards, 1 ¢ , T; Dy = P, 15 an eigenvector of
the operator A (v) + D(v)

N
[4 () +D()] =an1 G- 0,)+5GE - 0,)]

N
+ I=Il a(t(- an))} ®, (35)

We shall construct the eigenvectors of 4 + D according
to Faddeev et al [11], with the operators B(v,) acting
on ®; as formation operators Relation (32) and (33)
remind us of the commutation relations of the forma-
tion operator with the hamiltoman The spurious terms
occurring in the right-hand sides of eqs (32), (33) due
to the second terms are destroyed by the correct set of
values of v, So, the vector ® should be sought n the
form

M
$= f_ll B(v,)®, (36)

Then
[A(U)+D(U)] (I)=A(U’Ulr ,UM)CD > (37)

where
N
A@, v, ,vy) = nIJ1 [a(G W —0,))+b(:©—0,)]

M a(3 (v — ) +5(3 (v, — V)
x 11 (v, —v)

(38)
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M (5 (0 —vy)) +b(3 (v —v,))
a=1 a(%(v - Ua))

N
+ Hl a( @ - 0,))

if

rf[v a(3 (v — 0,)) + b (3 (v, —0,))

n=1 a(3 Vg — 0,))

L[] SG 0= b (G g —vg)

5=1 a2 (0= 05)) — b(E (v, — vg)
The last M eqs (39) define the admissible values of v,
and are a consequence of the requirement of annthila-
tion of the spurious terms 1n the right-hand side of eq
(37) The sufficiency of these conditions was proven
inref [10] The necessity becomes evident from the
following statement belonging to S Manakov The
left-hand side of eq (37) has no poles at v =v, There-
fore, eqs (39) arise as the equations of the annihila-
tion of the residues 1n the points where a(% w-v,)
becomes zero, since 1t 1s evident from eq (15) that
a(0) =0 Substituting the explicit expressions for a(v)
and b(v) nto eqs (38) and (39) and introducing 1n-
stead of v, the quantities g, Telated as, Go =V TN,
we obtain

(39)

elKan_N g, — g+ 210 gy — Oy t 1N
=1 0y — 07— 21\ g=1 Gq — 0y —1\’

N " (40)

0 qa—on+1)\=_l_1 do —dg * 21N @1

n=1 qo — 0, — 1A g=1 qa—qﬁ—21)\

Here
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Egs (40) and (41) should be supplemented by the rela-
tions for the energy and the momentum of the given
state

™=

P= 24 K, (42)

I
[

n

E= 0,K

n

M=

n (43)

n
—

n

Eqs (40)—-(43) completely describe the eigenstates of
hamiltoman (2)

I greatly appreciate the valuable discussions with
D Burlankov, P Vigman, V Dutyshev, A Zamolodchik
and V Faddeev
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