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An exact solutmn of the SU (2)-symmemc theory with four-fermmn interaction m one spanal and one rime dlmensmn is 
derwed 

In tins artmle we study the SU(2)-symmetrlc theory 
with four-fermion Interaction In one spatial and one 
time dlmensmn and give an exact solution of  it We re- 
strict ourselves to the massless case The mteractmn 
lagrangaan Is of  the form 

LI = - ½ g s ( ~ " / / a ~ )  2 - ½ gv (~Tu  r a ~ )  2 (1) 

is the doublet of  Fernu fields, r a are the xsotroplc 
matrices, 7** the Dlrac matrices 70 = ox, 71 = IoY, 
75 = oz The theory is Interesting since, due to the ab- 
sence of  bare mass m the chosen mteractmn, ~t pos- 
sesses continuous ~'5 invanance The presence of  the 
infrared catastrophe [1 ] for gv > 0 evidently leads to 
the spontaneous appearance of  mass [2,3] 

The model is also of  interest since it is dual to the 
theory of  the three-component n-field with the acUon 

S = (112g 2) f (Our/) 2 d2x ,  

lake the masswe Tinrring model is dual to the two-com- 
ponent n-field As has been shown by Berezansl~l tins 
system, with the vortices taken into account, IS eqmva- 
lent to the Coulomb gas, whach is m the plasma phase 
if the temperature ~s above the crmcal value 

Coleman has proven the eqmvalence of  the partmon 
functmn of  the Coulomb gas and the massive Tinrnng 
model (the exact eqmvalence should be sought in the 
VlClmty of  the critical value of  the temperature when 
vortices with circulations > 1 are not essential) 

The three-component n-field model (SU(2) symme- 
try) and the more general case of  the CP(N - 1) model 
(SU(N) symmetry) are, as has been pointed out,  two- 
&mensmnal analogues of  the gauge theories Wonderful 

properties of  the cinral and ferrmon theories in 1 + 1 
dimensions are the hidden symmetry and the complete 
lntegrablhty discovered on the classical and quantum 
levels So far the hidden symmetry has not been dis- 
covered in gauge theories However, if we beheve in the 
two-d:menslonal analogy, its exastence IS beyond doubt 
The exact solution given in tins article is based on the 
Indden symmetry winch the theory with the interac- 
tion of  the form (1) possesses m the massless case and 
that is why it is interesting The method of  solving the 
model xs closely related to the ideas of  Onsager and 
Baxter [4],  Yang [5],  Gaudm [6],  Berezln and 
Sushko [7,8], Faddeev et al [10,11] and Kullsh [12,1" 

In tins amcle we will find wave exgenfunctlons and 
energy levels of  the hamfltoman m terms of  pseudopar- 
tlcles m a fimte volume In order to find the physical 
spectrum it is necessary to let the volume tend to in- 
finity, to introduce a boundary momentum, to fill the 
D~rac sea and to perform &mensmnal transmutatmn 

The total hanultoman corresponding to (1) IS, m 
second quanhzatIon representatmn, of  the form 

i/= (x) 
1 2 2 

x 

1 a,+C~l (x)xp~ & + a a + : ~ 1  (x)[gsS~qa26~l~2 gvr~l~2r&&) 

_ 0 z 0 z 
X (~1112~1112 ' ii2 ]112)1 xI/~22(X)~'tf122(X)} 

X {qt~(x) , l 'y(y)} = 8~t~8,18 (x - y )  (2) 

Here the Latin indices 1,1 denote the l~rac lndxces, the 
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Greek indices cz, B denote isotopic components of  
spmor fields The complete symmetry group of  (2) is 
the group U(1) X SU(2) X U(1)5 of  global transforma- 
tions By virtue of  this fact the overall number of  fer. 
mlons (pseudopartlcles) is conserved 

gr = f,i,+,i, dx, (3) 

and the difference of  the number of  right-handed and 
left-handed fermlons is 

iV 5 = f ~+o z'Itdx (4) 

Evidently hamlltonlan (2) has a pseudovacuum elgen- 
vector, 10), satisfying the equations 

,I~, (x)10>= 0 (s) 

By virtue of  the conservation of  the number of  pseudo- 
particles N the elgenfunchons of  (2) may be sought 
with a fixed value of  N 

IN> = f d x  I dx N (6) 

'XN)X~¢I 1 (1)  
The equation/-)IN) = EIN)  IS equivalent to the follow- 
mg equation for the function fta' 1 zffN(Xl, , XN) 
which IS an equation for N fermlons:mteractmg with 
a ~-functlon pair potential 

a 1 
- -  O n O m )  -- l°Z ~ + ] (gs +gv'Cn'Cm)( 1 z z 

= n 

15 (x n - Xm) } f = E f  (7) X 

o z and r a, as regular spin matrices, act on the Dlrac 
indices t n and the isotopic indices a n of  the wavefunc- 
tton, respectively They act on the remaining indices 
as unit operators 

Apart from eq (7) the wavefunctlon obeys the anti- 
symmetry requirements 

ftq qt ,qgN(Xql , ,XqN) 

= (-1)rtOf~ll . aN(x,, , ~N t XN) (8) 

Here Q = (ql ,  , qN) is a certain permutation of  (1, 
, N) ,  r/Q is the parity of  the permutation 
The last requirements for the wavefunctlon are the 

periodic boundary conditions 

f (  ,Xn + L, ) = f (  ,x  n, ) (9) 

Let us divide the space of  the coordinates x n Into a nurr 
ber of  regions which will be denoted by Q = (ql ,  , 
qu) 

Q Xql <Xq2 < <Xqu (10) 

The value of  the wavefunctlon in the region Q is denot- 
ed b y f Q ( x l ,  ,XN) Since in each region the coordi- 
nates do not coincide, the wavefunction obeys by vir- 
tue of  eq (7) the free N-particle Dtrac equation If for 
the time being we ignore the antlsymmetry condition 
(8) the wavefunctlon in a certain region, e g Q = I, i e 
I = ( 1 ,  ,N )  andx  1 <  <xN,  may be chosen as a 
superposltlon of  plane waves 

f / ( x )  = ~ ( - 1 ) n P A  P aN 

X utl (Op,) uW(opN)exp(lXnKpn) 

Here 

u,(1) = (10), u t ( - 1 )  = (01), 

(11) 

K1, , K N is a fixed set of momenta, P = (p l ,  ,PN) 
is a permutanon of  (1, N / '  ' ) ' A a l  a are so farar- 
bltrary coefficients and a l ,  , a N are ~¢ehcltxes taking 
on the values +-1 

If we restrict ourselves to the two-pamcle sector 
N = 2, then due to the conservation of  energy and mo- 
mentum the wavefunct:on in the region Q = (2, 1), 
i e ,  x 2 > x 1, will also be a superposltlOn of  plane 
waves with the same momenta K 1 and K 2 The Bethe 
hypothesis, which will be proven below, states that 
even l f N  > 2 a set of  momenta in all regions Q will be 
retained It IS clear that matching of  the wavefunctlons 
for coinciding coordinates (x n = Xm) imposes rigid con- 
dltlOnS of  self-consistency These conditions are equi- 
valent to the factorlzatlon equations of the two-particle 
S matrix of  the pseudopamcles It should be mention- 
ed that this condition is observed only if the bare mass 
m 0 = 0 This occurs for any value of the coupling con- 
stants gs and gv 

When the antlsymmetry c o m m o n s  are taken into 
account, the wavefunctlon fQ in the regmn Xqa < 
( XqN can be given in terms of  the coefficients A e of  
the wavefunctlon f l  by the following expression 
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fQ  = ~ ( - 1 )  nPA QP 
p aq 1 aqN 

X utt(oPl) UlN(OpN)exp(vcnKpn ) (12) 

QP denotes the product of permutations 
Let us now find the conditions which arise from eq 

(7) when a pair of  coordinates coincide For the two- 
particle case, we arrive at the relation 

A 12 b(~(o 1 " A  21 ale2 = - - ° 2 ) )  ala~ 

+ a ( l ( o l  -- o "~ah 21 - " 21 (13) 211 a2a l  = K l 2 A a l a 2  ' 

/~12 = b(°12)  + a(°12)et2, 

P12 = 1(1 + $1 ~2), O12=(O1--O2) 
The symbols used here are as follows o 1 and 0 2 are 
the hehcItIes of the pseudopartIcles taking on the 
values +1 ,P12 is the operator of  Interchange of the ISO- 
topic Indices, 

1 [ o + 1 ) ` 1  1 +1o)`0 l 
b(o) ~-2 O-- 1)̀  1 1 --la-~0J ' (14) 

a(o)lb(o) = --1 [(1 + XlX0)/(X 1 - X0)] o ,  (15) 

(1/1)ln [(o + I~l ) / (o  - 1X1)] and (1/1)In [(1 + 10")`0) / 
( 1  - lO;k0)] are the scattering phases for the two par- 
tIcles with total isotopic spin 1 and 0, respectively The 
quantities )'1 and )'0 are given in terms of the coupling 
constants as 

~(gv 1 )'1 = tg + gs ) ,  )'0 = tg ~ (gs - 3gv) (16) 

Let us now dwell upon the case N = 3 In this case at 
x 1 = x  2 < x  3 etc a lot of  matching conditions appear 
If  we take into account the unItarIty condition of the 
/(  matrix 

/(12/(21 = 1, (17) 

then there are six independent equations 

A 123 =K23(o23)A 132, A 231 =K23(o31)A 213, 

A 312=K23(o12)A 321, A 231 =K12(o23)A 321, 

A312=K12(o31)A 132, A 1 2 3 = K 1 2 ( o l z ) A  213(18) 

By means of these relations we.can express all the co- 
- f A  123 We can do efftcients AP~P~Paam terms o al a2 a3 

this in several ways, e g ,  we can express the coefficient 
A 321 by two sequences (123) ~ ( 1 3 2 )  ~ ( 3 1 2 )  ~ (321) 
and (123) ~ (213) ~ (231) ~ (321) It is clear that, in 
order to fulfill the Bethe hypothesis, the result m the 
both cases should be the same and the following rela- 
tions should hold 

K23(o23)K12 (a13)K23(o12) ' 

= K12(o12)K23(o13)K12(023) (19) 

Below we will need the operator S12(o ), expressed m 

terms of / (12 

~12(O12) =/~12(O12)P12 = a(o12 ) + b(o12)P12 (20) 

For S12 the relations (19) take the form 

.-~12(012)S13 (°13)S23(o23) 

= g23(O23)g13(o13)g12(O12 ) (21) 

Substitution of  the explicit form of Szk (°d~)into eq 
(21) leads to the equation 

a(ol2)/b(Ol2 ) + a(a23)/b(o23) = a(o13)/b(o13 ) (22) 

It is evident from the form of the functions a(o) and 
b(o) in eqs (14), (15) that eq (22) is fulfilled identi- 
cally Note that if m 0 :# 0, a and b would be hyper- 
bohc functions of  the rapldltles of  the pseudopartlcles 
and eq (22) could not be fulfilled since It requires a 
linear dependence of the ratio a/b on the argument 

a (o)/b (o) = const • o (23) 

In the general case of  an arbitrary number of  particles 
the relations for the coefficients AP~ PN are of  the 

form 

A PnPn+l =~nn+l ( l (oPn_OPn+l ) )A  Pn+lPn anan+ 1 an+lan 

(24) 

Now all the coefficients AP~ PN N are expressed in 
terms of the same A11 N ;  which will be denoted else- 
where by ~ a l  aN This proves [5,6,9] that for com- 
patibility of  the overcomplete set of  eq (24) It IS suf- 
ficient that the factorIzatlon equations (21) be fulfilled 

The last problem we have to attend to is the fulfill- 
ment  of  the periodic boundary conditions (9) Substi- 
tution of  the expression for the wavefunctlon in eq 
(9) and taking eq (24) into account results in the fol- 
lowing equations for the isotopic-spin vector ~ a  1 aN 
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which also define the mgenvalues of  the wavevectors 
K ,  

fPrtO = elK'L¢ , (25) 

whe re 

Tn=Snn+l SnNSnl Snn-1  (26) 

The N equatmns (25) are compatible, 1 e ,  [l"nT"m] = 0 
by wrtue of  the factonzatlon equations (21) 

To solve eqs (25) let us introduce the operator/](1)) 
acting m the 2 N+ 1 -dimensional isotopic space 

N 
/](1)) l - I  i = Son (~ (1) - % ) ) ,  (27) 

n=l  

A i(1) o , ) ) -  i SOn( ~ - = a(~ (1) - On) ) 

+ b (½ (1) - % ) ) e o ,  (28) 
The operator Pon = ½ (1 + x 0 ~n) Interchanges the iso- 
topic indices of  the addmonal particle with the index 
0 and the index of  the nth particle Let us denote the 
trace of / ] (v)  over the radices of  the addmonal partmle 
by 7~(1)) = Tr 0/](v) The operator 7~(v) acts m the 2 N- 
&menslonal lsotopm space and coincides with the par- 
tmular case of  the Baxter transfer matrix [4] As has 
been shown by Baxter, by wrtue of  eq (21) we have 
the relatmn 

IT(u), i/'(1))] = 0 (29) 

It IS easy to check that 

1"(1) = % )  = -7"n (30) 

To find the mgenvectors of  7~(0) we shall make use of  
the beautiful method Invented by Faddeev et al [10, 
11 ] This method is based on the property of  similar- 
ity of  the products of  two operators L(1)) and L ( u )  in 
different orders which is easily derived from eq (21) 
Let us write down the operator/](1)) in a more expllmt 
form 

o(1))) (31) 

/ N aon +bon bonr  n- 
= l - I  

n=l  + 
~bonr  n aon + bon 

Here aon =- a(}  (1) - On) ), bon =- b(½ (1) - On) ) Note 
that while o n = -+ l, the parameter 1) takes on arbitrary 
values From eqs (21) and (15) it is easy to check the 
following relations 

b (u - 1)) 
[A(1)),B(u)] - a(u 1)) [ B ( u ) A ( 1 ) ) - B ( o ) A ( u ) ]  , 

(32) 

b(1) - u) 
[D(1)), B(u)] - a(v - u) [B(u)D(v)  - B ( v ) D ( u ) ]  ,(33) 

[B(u), B(v)] = 0 (34) 

It lS necessary to &agonalize the operators 

l"n = - [A(on)  + D(an)]  

It is easy to check that the state (b0, with all the spins 
z (i)0 = ~0,  IS an elgenvector of  directed upwards, 1 e ,  r n 

the operator A (o) + D(o)  

[ A ( o ) + D ( o ) ]  dP 0---[ f i  [a(l(O--On))+5(½(1)--On) ] 
n=l 

+ H a ( ½ ( 1 ) - O n )  ) ~I' o (35) 
n=l  

We shall construct the elgenvectors o fA + D according 
to Faddeev et al [11 ],  with theoperatorsB(va) acting 
on (I) 0 as formation operators Relation (32) and (33) 
remind us of  the commutation relations of the forma- 
tion operator with the hamlltonlan The spurious terms 
occurring in the right-hand sides of  eqs (32), (33) due 
to the second terms are destroyed by the correct set of  
values of  va So, the vector • should be sought m the 
form 

M 

(I) = H B(va)(I) 0 (36) 
a=l  

Then 

[A(o) + D(v)] • = A(o, 0 1 ,  , OM)¢~, (37) 

where 

N 

m(v, Vl, , VM) = I-I [a(½(v - %)1 + b(½(v - %// ]  
n=l 

M I 
× H a ( ~ ( v . - v ) l + b ( ½ ( v . - v )  

i (38)  
a=l a($(vo~ -- v)) 
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N M i l a(~-(v - va)) + b(~ (v - va)) 
+ 1 - I ,  (2'- (o - o~)) ~1  . . . . .  

n = 1 = a (  1 (v  -- vow)) 

If 

N 1 
I-I a(~(o~ - on)) + b(½(o,~ -o.)) 

1 
n=l a ( ~ ( v a  -- On)) 

M 1 + 1 a(~(v,~ - on)) b(~(v~ - v ) )  
= - [-'I ~ . . . .  ~ - - -  (39) 

~=1 , ( ~ ( v ~ -  re)) - b (~(v~  - v~)) 

The lastMeqs (39) define the admissible values of v~ 
and are a consequence of the requirement of annihila- 
tion of the spurious terms m the right-hand side of eq 

(37) The sufficiency of these condmons was proven 
m ref [10] The necessity becomes evident from the 
following statement belongang to S Manakov The 
left-hand side of eq (37) has no poles at v = v,~ There- 
fore, eqs (39) arise as the equations of the anmhlla- 
tlon of the residues in the points where a(½ (v - v~)) 

becomes zero, since it is evident from eq (15) that 
a(0) = 0 Submtu tmg the exphmt expressions for a ( v )  

and b ( v )  into eqs (38) and (39) and introducing m- 
stead of v~ the quantities q~ related as, q~ = v~ + IX, 
we obtain 

N M 
e 1KnL = - H  On - Ol + 2oil 1-I q a  - on + l~k 

l = 1 O n  - -  O l  - -  21~,1 ~= 1 q a  - O n  - 1X ' 

(40) 
N M 

H qc~ - On + l~k _ H q "  - qo + 21x (41) 
n = 1 qc~ - o n - 1X 3 = 1 q a  - q3 - 21)t 

Here 

X = (k 1 - k0)/(1 + k 1XO) = tg2g v 

Eqs (40) and (41) should be supplemented by the rela- 
tions for the energy and the momentum of the given 
state 

N 

P = ~ K n ,  (42) 
n=l  

N 

E = ~ O n K  n (43) 
n=l  

Eqs (40) - (43)  completely describe the elgenstates of 
hamlltonlan (2) 

I greatly appremate the valuable discussions with 
D Burlankov, P Vlgman, V Dutyshev, A Zamolodchl~ 
and V Faddeev 
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