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FORM FACTORS OF DESCENDENT OPERATORS IN PERTURBED
CONFORMAL FIELD THEORIES

Using the Ising model with a thermal perturbation as an example, we show that the solution
space of the linear equations satisfied by the off-shell form factors of an integrable perturbed
conformal field theory admits a structure which is isomorphic to that of the Virasoro irreducible
representations characterizing the critical theory.

One of the most powerful results of conformal symmetry in two-dimensional
field theories is the classification of the operator content of a given theory
according to irreducible representations of two commuting Virasoro algebras [1] .
According to this scheme, every scaling operator is either a primary operator, or a
descendent thereof. Primary operators with scaling dimensions (h, h) correspond
to highest weight states lh, h) . Descendent operators at level (n, n), with scaling
dimensions (h +n, h + n) then correspond to linear combinations of states of the
form

where Erk, = n and Erk, = n. In general the number of such independent states at
this level is p(n)p(n), where p(n) is the number of partitions of n into positive
integers . However, for the minimal models, the actual number is less than this
owing to the existence of null states which must be projected out to obtain an
irreducible representation . The generating function for the dimensions of the
space of states at a given level is the Virasoro character [2] . The correlation
functions of descendent operators are given, by the conformal Ward identities, in
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terms of differential operators acting on the correlation functions of the primary
operators [1] .
Now suppose that the theory is perturbed by some relevant operator which

drives it away from criticality, so that it corresponds to a massive two-dimensional
field theory . We would expect the set of local operators in this theory to be in
one-to-one correspondence with those in the conformal theory. However, the
perturbation will destroy the conformal symmetry and therefore, in general, split
the degeneracies . For example, the two-point functions of two different operators
belonging to the same level of a representation are identical in the conformal field
theory, but away from criticality this will no longer be true .

In general, the computation of correlation functions away from criticality is a
formidable problem . However, some progress has been made in the case of
theories possessing an infinite number of conservation laws [3] . In these massive
field theories the S-matrices connecting the asymptotic in- and out-states obey the
properties of elasticity and factorization, and may be obtained explicitly [3-13] .
Once the S-matrices are known it is possible to obtain information about the
off-shell theory by considering the form factors, which are matrix elements of local
fields C(x) between the asymptotic states . The correlation functions may then be
constructed as sums over intermediate states . As a result of unitarity and CPT
invariance, the form factors obey the Watson equations, which, in the case of
factorizing, elastic S-matrices, become rather simple functional equations [6] . In
addition, the form factors corresponding to multiparticle asymptotic states are
related by LSZ reduction to those with fewer particles .
These two types of condition, together with analyticity requirements, have been

used to determine some of the form factors in several theories [6,14,15] . In certain
cases the results may be tested against exact or perturbative solutions . However, in
the calculations it is necessary to make certain "minimality" assumptions, roughly
speaking that the form factors have the smallest number of zeros consistent with
satisfying the above two conditions . The status of this assumption is unclear . In
general, the Watson equations and the LSZ reduction formulae form a linear
system of equations, whose solutions therefore span a linear space . In deriving the
equations, no reference is made to whether the operator 6," is the non-critical
deformation of a primary or a descendent operator . Thus one might suppose that
the arbitrariness inherent in solving the equations reflects precisely this fact . One
would then expect that the space of solutions to the Watson + LSZ system is
isomorphic to the space of descendent operators, that is, a Virasoro irreducible
representation .

In this paper we investigate this possibility in the simplest possible model, that of
the c = z Ising conformal field theory perturbed by the energy operator with
scaling dimensions (á , z ) . This theory is known to be integrable ; in fact, it is
equivalent to a massive free fermion [16-20] . For that reason, some of the form
factors, for example those of the energy operator itself, are rather too trivial to test
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the above ideas . However, the spin operator of the Ising model is non-local when
expressed in terms of the fermions, and its form factors, as well as those of its
descendents, are non-trivial .
We shall show that there exists a natural grading of the space of solutions to the

equations for the form factors and that the dimension at the level (n, n) agrees
with that of the corresponding Virasoro representation . We also show that when
the form factors are used to construct the non-critical two-point functions, the
analysis of the ultraviolet behavior leads to scaling dimensions which are precisely
shifted by n and n with respect to those of the primary operator .
Our results suggest that there is a pair of Virasoro algebras acting on the space

of form factors in the non-critical theory . A similar, but distinct, observation has
been made in the spectrum of the corner transfer matrix in non-critical exactly
solvable lattice models [21] . We emphasize that our results concern the continuum
theory in the scaling region .

2 . Equations for the form factors

In this section we review the Watson equations satisfied by the form factors . We
stay close to the notation and development of ref. [6] . Similar results may be found
in ref. [14] . For convenience we consider a theory with only one type of particle .
We have complete sets of in and out asymptotic states Ip j , . . . , pn ) ; � and
IP 1, . . . , Pn )ouc, and S-matrix elements defined by

Sn(Pl> . . . . P')

	

oot(PI,"',P,IPI, -' *I Prr)ln,

where the n-particle S-matrix has the factorizing form

Sn(P1- . .,Pn)
_

I]S2(Pi,Pj) ~

	

(3)
i <j

As usual, it is more convenient to label the momenta by the rapidities B;, where
pi = (cosh 9 ;, sinh Bi) (we use units where the mass of the particle is set equal to
unity) . Then SZ depends only on the difference

Bij
= I Oi - Bj 1 .

The form factors are matrix elements of local operators 0(x) between out-states
and in-states . We define the functions

Fn = 0 1 0(O)IP1 , "' , P,/in '

If e has spin s, Lorentz invariance implies that Fn is of the form e", times a
function depending only on the differences Bij . The usual arguments imply that
this function is the boundary value on the real axis of an analytic function of the
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6;j . The most general n-particle form factor is

out( Pt, . . ., P.nl e'(0) 1P.1 1, "' , Pn)in *

	

(5)

Crossing implies that this is obtained by analytic continuation of eq . (4), and is
equal to

where 1<i<j<m,1<r-<m<s<n,andm<k<l-<n .
The Watson equations are derived by inserting a complete set of in-states before

the operator O, and of out-states after this operator, in eq . (5), and using eq . (2) .
The matrix element with in- and out-states interchanged is obtained by CPT
invariance from eq . (5) by changing the signs of all the eij . Thus

Fn( eij ,l 77' - Ors , ekr) = (I1S(eij))Fn( - eij , i 7T + Ors , - ekl)(llS(ekl))-

	

( 7)
i<j

	

k<l

In the case n = 2, these simplify to

F2(0) -F2(_9)S2(9),

Fn(eij1 b?f - ers , e kl)

	

( 6)

= Kn1 1Fmin(eij) ,

	

( 9)
i <j

F2 (irtr-0)=F2 (i7r+6) . (8)

It was shown in ref. [6] that the general solution to the Watson equations has the
form

where Fmin(e) has the properties that it satisfies eq . (8), is analytic in 0 < Im 0 < 217,
and has no zeros in 0 < Im e < 2-tr . These requirements uniquely determine this
function . The remaining factor Kn then satisfies the Watson equations with S2 = 1,
which implies that it is a completely symmetric, periodic function of the e i .
The other constraint on the K n is that they contain all the physical poles

expected in the form factor under consideration . This will of course depend on the
operator &, and its transformation properties under any global symmetries
the theory may possess . However, all operators corresponding to states within the
same Virasoro representation should have the same global symmetry, and there-
fore a priori the same pole structure in the Kn . The arbitrariness therefore resides
in the numerator which multiplies these poles . However, this is further constrained
by the requirement that the residues of the poles are proportional to form factors
with fewer particles .
To proceed further, it is necessary to specify the particular theory . We therefore

proceed to consider the main example of this paper . The massive quantum field
theory corresponding to the zero-field Ising model perturbed by the energy
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operator is known to be integrable, with a single 71 2-odd particle and S2 = -1 [6] .
This is of course related to the free fermion nature of the theory, but we shall not
use this fact, since we wish to construct an example which may be generalized to
other perturbed conformal field theories . In this case, the minimal solution of
eq . (8) is simply

Fm; �(B) = sinh ie .

	

(10)

We consider the case where O is a 71 2-odd operator, and is therefore the
non-critical deformation of some operator in the conformal tower of the primary
magnetization operator. In that case the 77 2 symmetry implies that F� vanishes
when n is even . The pole structure of K� may be deduced as follows . There
should be poles in every three-body channel . One may argue that no explicit poles
should occur in n-body channels with n > 3, because crossing would then imply the
existence of inelastic processes . Using the fact that

( Pi + pi +Pk ) 2 - 1 = 8 cosh áB ig cosh z B;k cosh zBkr ,

	

(11)

we see that all possible three-body poles may be taken into account by letting

R �
K�

	

Fl< <, cosh '0� '

	

(12)

where the function R� has no singularities . Note that when n is odd, the
denominator in eq . (12) is periodic in each rapidity variable B;, and therefore so
must be R� . We may therefore consider it as having a Taylor expansion in the
variables ed i and e -' , . As will become clear in sect . 3, in order for the ultraviolet
behavior of the two-point function to be power-law bounded, this expansion should
in fact terminate, so that R � may be written in the form

R� =P,(p1, . . . . pjexp(-Nr_Oi
)

(13)

for some integer N. Here P� is a totally symmetric polynomial in the variables
p; = e'i . From this we may read off the transformation properties under a Lorentz
boost B; - B l + a . If the spin of & is s, we see that P� must in fact be homoge-
neous of degree s + N.

In the conformal theory, the scaling dimension and spin of an operator at level
(n, n) are equal to h + h + n + n and h - h + n - n respectively . Initially we shall
consider only those operators corresponding to states with n = 0, that is, given by
only the generators L _k (rather than the L k) acting on the highest weight state .
These operators are located along the diagonal of the fig . 1 . For a given s, these
are the operators with the lowest scaling dimension . Thus we should expect their



39 2

	

J.L . Cardy, G . Mussardo / Descendent operators

Fig. 1 . Tower of operators in the conformal family of the primary field 0.

form factors to be those with the mildest possible ultraviolet behavior, that is, the
smallest possible value of deg P� + N. Thus we choose N = 0. This argument will
be justified more completely in sect . 3 when we consider the ultraviolet behavior in
more detail . We are therefore faced with the problem of constructing symmetric
homogeneous polynomials of degree s in n variables . A well-known theorem (see,
for instance, ref. [22]) states that any such polynomial may be expressed as a sum
of products of the form Qk ak- . . . , with Eik i = s, where the o-k are the elementary
symmetric polynomials

Q1=Pt+P2 + . . ., 02 =P1P2+P1P3 + . . ., 0-3=P1P2P3 + . . ., (14)

and so on . Then, before the LSZ reduction formulae are used, the dimension of
the space of solutions to the Watson equations at this level is given by the number
P(s) of partitions of s . (We here assume that n >_ s, since we are interested
ultimately in large n . The Qk are defined to vanish when k > n .)

However, not all linear combinations behave correctly when we go to one of the
three-particle poles (see fig . 2) . We next investigate this constraint . We have

Fn = Pn(Pl1P2, . . .,Pn)FItanh29ij .
i<j

e2

	

_ "-

	

2

3

	

0,

Fig . 2 . Bootstrap equation for the form factor 5'. .

(15)
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From eq . (11) we see that the pole at (PI +P2 +P3)2 = 1 may be reached by, for
example, setting OZ = i-rr + 0 1 . Note that this constraint is independent of 03 , a
remarkable peculiarity of (1 + 1)-dimensional kinematics . The residue of Fn at this
pole is

n(p I ,-pt,p3, . . .,pn) 8sinh ( -Zi~rr)sinh 15(i7r+013)sinh2013P

X

	

tanh 110 Ik tanh z (iTr + 0Ik)

	

11

	

tanh Zd kl
k>_4

	

3_<k<1

= Pn(P I , - PI,P3- . .,P n ) - 4sinh0,3 fl tanh2okl .

	

(16)
3-<k <1

On the other hand, by LSZ reduction, this residue should be equal to

'Out031 0 1 , i9T + 0 1, 03iinFn-2(B3, . . ., On) .	(17)

By crossing, the amplitude appearing in eq . (17) is, apart from a factor of i, just the
two-body T-matrix element, related to the S-matrix by

'T2 = 4sinh 0, 3[S(0i3) - 1] .

	

(18)

The kinematic factor of 4 sinh 0,3 derives from relating the conventional T-matrix
obtained by LSZ reduction (in which an overall energy-momentum conserving
delta-function is taken out) to the quantity S, in which rapidity-conserving delta-
functions have been factored out.
Using S = - l, we see that eq . (16) may be satisfied, as long as

Pn(PI, -
PI ,P3- . ,Pn) =2iPn_2(P3, . . .,Pn)

Pn(P I , -Pt,P3, .-,Pn) =Pn-2(P3, . . .,Pn)

(19)

Note that deg Pn = deg Pn -2, which shows that it is possible to find a solution with
N = 0, that is deg Pn = s, independent of n . In other theories, the situation is not
quite so simple, and the degree of Pn increases with n . In the case s = 0, which
corresponds to the primary magnetization operator, we see that Pn is just a
constant, proportional to (2i)n/ 2 . This is in agreement with the result of ref . [6] . In
the general case, it is convenient to absorb this factor, and to define Pn = (2i)n/2Pn,
so that

(20)

The important feature of the above equation is that the right-hand side is
independent of p l . This places a severe constraint on the allowed polynomials.
Since these polynomials are to be expressed in terms of the Qk , we must see how
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the latter behave when we set p2 = -pl . It is straightforward to show that

-PI,

	

_

	

- 2

	

21O'k(PI ,	P3,. . .,pn) - Ok(P3, . . .,pn)

	

1l rk-2(P3, . . .,pn),

where we adopt the convention that cro = 1, and that ak = 0 if k < 0 . It is
conceptually simpler to suppress the explicit dependence of the ak on the p;, and
to regard the P,, as depending on the variables Qk , which transform according to

07k ---> 0-k + ß2O'k - 2 1

where (3 2 = -P; is an arbitrary parameter . The above linear transformations,
when iterated with parameters 13

2
(t), ß22), . . . , ßá"), generate a group whose most

general element is

therefore be generalized to

(Tk ---> O'k + ß2 0'k-2 + ß4Uk-4 + . . . +t'2[k 12](Tk-2[k 12]

where 82 = Y-1ß2` ß , /3 4 = El#ß(3z')ß2'), and so on . We may always choose M suffi-
ciently large so that the parameters P j are independent . Thus, the general
transformation is of the form

0-k

	

ßk-1~7*1 ,
1

where ßj = 0 if j is odd, or if j < 0, and /3 0 = 1 . The condition eq . (19) may

Pn( lo'k)) -Pn-2( Lßk-10_l)
.

1

(22)

(23)

(24)

Now the polynomials Pn belong to the space ~s spanned by the (Tk,Qk2 . . . with
Y- lk l = s . In general, a polynomial in this space, will, under the above transforma-
tion, be mapped out of this space, in fact, into a linear combination of polynomials
in .~5, -"~s-2, and so on . For a polynomial to satisfy eq . (25) it must not be mapped
out of the space . The structure of the transformation eq . (24) then implies that this
polynomial will be invariant under the group of transformations eq . (24), and that
the polynomial Pn-2 will have, as a function of the ak, the same form as Pn .
The structure of the transformations eq . (24) suggests that we define the

generating function

(25)

f(x1,x2, . . .,xn ;t) -- - 0-ktk

	

(26)
k=0
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whose transformation properties are simple :

or, equivalently,

They obey the recursion relations

f(t) -~ (1 +P1t2+P2t4+ . . .)f(t)

f(t) - P(t) ƒ(t),

g(t) -
f(t) -f( -t)

f(t) +f(-t)
.

I3 =0'3 - cr2Qi,

(27)

(28)

where (3(t) is any even function of t, satisfying /3(0) = 1 .
In order to construct polynomial invariants of degree s we therefore need to

construct functions of f(t) invariant under eq . (28), and expand them in powers of
t. For example, consider

(29)

This generates an important class of invariants IS , of degree s, with s odd, of the
form

IS =QS + . . . ,

	

(30)

where the omitted terms each contain at least two factors of the Q, . The first few
examples are

I5=Q5-Q4Q1-Q3Q2+Q22 0'1 .

0-2k+I = I2k+I + 0'2I2k-1 + 0-4I2k-3 + . . . +0'2k li .

(31)

(32)

We now show that any invariant -.0' of finite degree may be expressed as a
polynomial in the 'odd . For it is certainly a polynomial in the O-odd and the O-even .
Using eq . (32) repeatedly, it may then be expressed as a polynomial in the Iodd and
the O'even . Let k be the largest integer such that 0'2k appears in the expression .
Consider the particular transformation eq . (24) with 82 =164 = . . . = P2k-2 = 0,
and t'2k 0 0, so that 0'2k -)' 0'2k + /ß2k I while all the other O-even, and of course the
,odd, remain unshifted . Since --1 is invariant, it must therefore be independent of
a2k . Now consider the transformation with all the Bj = 0 except for P2k-2 . Since
0'2k has already been eliminated, the only argument of -.0' which shifts is 0'2k-2 .
Thus

	

must be independent of 0'2k-2. Repeating this argument, it is clear that in
fact

	

cannot depend on any of the 0e�en, and is therefore a polynomial in
the Iodd .

	

Q.E.D .
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It follows that the dimension of the space of invariants of degree s is equal to
the number q(s) of partitions of s into odd integers . It is well known that this is
equal to the number of partitions of s into distinct integers [22], whose generating
function is

L q(s)x' = fl (1 +x') .	(33)
s-o r-1

Apart from the factor of x '/ 24, this is the character for the h = ,''6 representation
of the Virasoro algebra with c = z . Thus we establish our main result, that the
dimension of the space of solutions to the equations for the off-critical form
factors of the most relevant operators with spin s is equal to that of the space of
such operators in the conformal field theory .
So far, we have considered only the case N = 0 in eq . (13), which we have argued

gives the form factors of operators corresponding to states obtained by the action
of a single Virasoro algebra on the highest weight state . In the general case, we
would like to argue that the function R � may be written as a sum of products of
the invariants Ik(p) and the invariants Ik(pi), where pi =p,- ' . This would then
correspond to the usual commuting left-moving and right-moving Virasoro alge-
bras . We shall argue that this is indeed the case .

First, note that the function Rn may always be written in a unique way as sums
of products of the (Tk and the Qk , where Qk =Qk(p). This is because the polyno-
mial Pn may certainly be written in terms of the Qk , as a sum of terms of the form

Uk Qk,
. . . 07k,,

with k, < k 2 5 . . . < km , and El ks = deg Pn = s + Nn. Now apply the identity

O.n-k = (PI � ' Pn)

to absorb the factors of (p, . . . pn)-' . We choose to apply this beginning with k,n ,
in decreasing order of the kj in eq . (34), until all the factors are exhausted . If there
are such factors remaining at the end, they should simply be renamed as Qn .
We therefore have written the function Rn as sums of terms of the form

O_k tTkvo-k l O'ke

(34)

(35)

(36)

Note that, because of eq . (35), not all such terms are independent . However, we
now declare that we only consider such expressions in which the degrees in the pi
and the Pi , namely Ejkj and Ej kj are finite as the number of particles n is allowed
to grow . This is because, as will be discussed in sect. 3, only such form factors will
lead to acceptable power-law ultraviolet behavior for the two-point functions . In
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that case, for large enough n, all the above expressions will be independent, and
thus form a useful basis for the function R � .
Now consider the behavior of such functions under the restriction pz = -pi

required when we study the residue of the three-particle poles . In analogy to eq .
(21) we have

25:k
~k~~k _pl

z
ak-21

	

~k~
5
k-p

-
l

	

-2* (37)

The apparent problem is that the two transformations are not independent, and it
might therefore seem possible to construct invariants which are not invariant
under the transformations separately . This is not the case, however, since we may
iterate the transformations eq . (37) as many times as we choose, and, in analogy to
eq . (24) find that they close only on the group of transformations

0-k ___~ LJOk-10-T ,

	

&k ---) 1: F'k-1~1 ,
1

	

1
(38)

where the coefficients ßi are as before, and /ßz = ~;(ßz`~)
- ~, and so on . Once

again, by choosing M sufficiently large, the parameters ßi may be taken indepen-
dent of the ß j . Thus the two groups of transformations may be taken to act
independently on the o-k and the Uk .
We conclude, by our previous analysis, that the only functions R � satisfying the

LSZ reduction formulae are expressible as sums of products of invariant polynomi-
als of the p ;, multiplied by similar invariant polynomials of the pr . Note that, for
this argument to work, we had to insist that the number of particles n was larger
than the degrees of the polynomials . However, we may always start with this case .
The lower values of n will then follow by LSZ reduction, and by the general
structure, must also be expressible as invariants. However, it may well occur that
two operators which have distinct form factors when coupling to a sufficiently large
number of particles, have the same coupling to fewer particles . It should therefore
be possible to form linear combinations of operators which do not couple to less
than a certain number of particles . It would be interesting to investigate this
structure in more detail .

3 . Ultraviolet behavior

In the last section, we showed that there is a way of classifying the solutions to
the Watson + LSZ system of equations according to a set of integers (n, n) such
that the dimensions of the vector spaces at level (n, n) match with those at the
same level in the representations of the right- and left-moving Virasoro algebras .
To complete the identification one should show that the scaling dimensions of the
operators whose form factors are thus constructed come out correctly when the
ultraviolet limit of their two-point functions is taken .
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The two-point function of an operator in momentum space is

G(k)-Ik2(K )d+ie'

where the spectral function is given in terms of the form factors by

1 dB
P(KZ) -

	

n~ I

	

47r
5 (K

O - Y cosh O;~ô(K, -

	

sinhB;) 1
Fn ~2 ,

	

(4(1)

where K = (KO, K 1 ) and K2 = K 2 - K2 . A less familiar, but simpler result follows for

the two-point function in real euclidean space :

1

	

d0i

G(r) = L n! ƒ

	

47r e

	

(-
i
r

i

	

cosh 9;)
jFn 1 2 .

	

(41)

First consider the case of the primary magnetization operator, where Fn is given

by eq . (15) with Pn = (2i)nl2 . Then if we define

V( y) = -lntanh2 2y,	U(y)=e y,

	

1=ln(2/r),

	

(42)

the above expression may be rewritten in the very suggestive form

where

G(r) = z~ (1/21r,1) + z~(-1/21r,1),

	

(43)

m Zn

~(z,1)=

	

n! l~
d8;exp(-~U(B;+l)+U(1-e;))

n-o '

(39)

Xexp(- EV(B;-Bj)) .

	

(44)
i<j

This is nothing other than the grand partition function for a one-dimensional gas

of particles, of fugacity z, interacting with each other via a two-body potential V,

and with two walls, located at ±1, with a potential U. Note that both of these

potentials are repulsive and short range. Thus, we expect, on the basis of the usual

arguments about the thermodynamic limit of such a system, that as l ~, we may

write the thermodynamic potential as

-ln - - -2pl + 2f + O(e-ü6) ,

	

(45)

where p is the pressure, f, is the surface or boundary contribution to the free
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energy, and 6 is of the order of the correlation length . We see therefore that each
term in eq . (43) should have a power law dependence on r, with an exponent
proportional to the pressure p . Since we expect the gas with positive fugacity
[corresponding to the first term in eq . (43)] to have the larger pressure (a result
which may be checked within the virial expansion), we have the prediction that,
as r -> 0,

const .
G(r) -

	

r 2p

	

.	(46)

Hence the overall scaling dimension of the operator is nothing other than the
pressure of this fictitious gas, with fugacity z = 1/27r . In fact this argument is very
similar to that used to derive Regge behavior of elastic scattering amplitudes when
expressed as unitarity sums over multiparticle production amplitudes . In that
context, it is often called the Feynman gas [23] .
Note that this argument does not immediately give the value of p . In fact it is

rather surprising that it should turn out to have the rational value of -~' . We expect,
of course, the pressure to depend smoothly on the fugacity, so it would seem that
for this particular value this one-dimensional gas should be exactly solvable* . We
have solved a simpler problem, in which the particles interact only with their
nearest neighbors . Since the interaction is repulsive, and the density turns out
to be small, this gives a remarkably good approximation to the exact answer,
namely p = 0.12529 .

Leaving aside the question of how to compute the scaling dimension exactly
from eq . (44), we now consider correlation functions of descendent operators,
whose form factors we have argued differ from those of the primary operator by
invariant polynomials in the variables ee i and e -e i, of respective degrees n and n .
Their correlation functions are therefore related to expectation values of these
polynomials in the fictitious gas ensemble, and will in general have the form

(z,1)(P({ea' }, {e-e:})i,
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(47)

where the partition function is, as before, essentially the two-point function of the
primary operator, and P is homogeneous of degrees 2n, 2n, respectively, in the
two sets of variables . Recalling the definition of the interaction U(B), we may write
the above expectation value as

e2(n+n)l{P(U(l - 0j), U(1 + 0j)) . (48)

* Schroer and Truong [20] have shown how a slightly different expression for G(r) may be expressed
in terms of a free bosonic theory and hence evaluated in the UV limit. This method appears to be
special to the Ising model .
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Now we would expect the latter expectation value, which is related to the
probability for finding a given number of particles close to one or other of the
walls, to be finite in the thermodynamic limit l - - . Thus, in that limit, the scaling
dimension of an operator whose form factors contain polynomial of degree (n, n)
has a scaling dimension shifted by (n + n) from that of the primary field . Of
course, it is clear from the Lorentz transformation properties of its form factors
that it corresponds to spin n - n .

4 . Discussion

We have chosen a particularly simple, albeit non-trivial, case, that of the
magnetization operator in the thermally perturbed Ising model, to illustrate our
general thesis, which is that one may uncover the full structure of primary and
descendent operators expected on the basis of conformal invariance by studying
the equations determining the form factors of the theory away from criticality .
However, the Ising model is in some ways a deceptively simple case, since the
order of the polynomial multiplying the minimal solution turned out, for a given
operator, to be independent of the number of particles n. In other models we have
studied, for example the Yang-Lee or the three-state Potts model, the situation is
already more complicated . In addition, in theories with a larger number of
different types of particles, but no obvious selection rules, it is much harder to see
how to proceed .

It is interesting to see how the infinite number of conserved charges, which
makes the theory integrable, manifests itself in the computation of the form factors
of the descendent operators . For the Ising model with a thermal perturbation,
conserved charges Q,, of spin s exist for all odd s . When these charges act on an
asymptotic state Ip1 , . . . , p,,) they give a factor of Ejpi . Thus if we commute the
primary operator S with a conserved charge Qs , we obtain an operator with form
factor

(al[Qs,sllp l , . . .,pn) a Y- p; « ) lslpt, . .-Pn)

It is straightforward to show that the polynomial EjPj may be written in terms of
the invariant polynomials Ik , with k _< s, defined in sect . 3 . By continuing the
process, forming multiple commutators,

[QS, . . .1[Qsm,Si . . .1,

(49)

(50)

we may construct operators of different spins, whose form factors will all differ
from those of the primary operator S by invariant polynomials . Moreover, since
the charges QS all commute with each other, the order of the Q's is not important
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in eq . (50) . Thus, the number of different operators of total spin s whose form
factors we may obtain in this way is equal to the number of partitions of s into odd
integers . As we pointed out before, in this case this is just the dimension of the
Virasoro representation at this level . This feature, that we generate all the
operators in the representation by commutation with the conserved charges, is a
particular feature of the thermally perturbed Ising model . In other cases, the
number of conserved charges is smaller, and not all operators are obtained in this
way.
A so far unsolved problem in this approach is the exact computation of the

pressure of the Feynman gas which gives the scaling dimension of the primary
operator . Our results suggest that there is some Virasoro algebra underlying this
gas . If this could be identified explicitly, it should be possible to understand why
such a quantity should be quantized to specific rational values .

One of us (J.L.C .) thanks A.B . Zamolodchikov for some remarks on the
calculation of form factors which led to the investigation described in the present
paper . This work was supported by NSF Grant PHY 86-14185 .
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