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Abstract. We show that the apparently exotic double poles in the sine-Gordon 
S-matrix are nothing but ordinary anomalous thresholds. 

1. Introduction 

The most astonishing property of the sine-Gordon S-matrix (other than that it is 
known [1]) is the host of double poles that populate the physical sheets of forward 
scattering amplitudes. Such double poles have long been known to be present in 
analogous nonrelativistic models [2] ; nevertheless, it is a surprise to find them in a 
relativistic field theory, where we would expect all singularities to be explicable in 
terms of the principles of analytic S-matrix theory ('°analyticity + unitarity '°) as laid 
down, for example, in the text of Eden et at. [3]. 

The purpose of this note is to explain the double poles in terms of these 
principles. To be more explicit, we show that the double poles are Landau 
singularities of a perfectly ordinary sort, just like those that occur in the real world 
in deuteron-deuteron scattering, for example. It is only the dimensionality of phase 
space that makes these singularities double poles in two dimensions and branch 
cuts in four dimensions. Thus the double poles have nothing to do with the special 
features of sine-Gordon theory (infinite number of conservation laws, factoriza- 
bility, etc.) and should appear in any two-dimensional theory with appropriate 
mass spectrum. 

In Section 2 below we explain the detailed mechanism responsible for the 
double poles. In Section 3 we verify our explanation by computing the locations of 
the double poles in the sine-Gordon S-matrix. We obtain all the double poles in 
the S-matrix and we obtain no double poles that do not appear in the S-matrix. 

All our arguments are trivial and all our computations are pedestrian. That is 
the point of this note. 
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Fig. 1. The graph that produces anomalous thresholds in four dimensions and double poles in two 

2. Anomalous Thresholds and Double Poles 

For real external momenta, there is a simple rule for locating all singularities of a 
Green's function: Singularities occur only for those values of the momenta for 
which one can draw a space-time graph of a process involving classical particles all 
on the mass shell, all moving forward in time, and interacting only through energy- 
and-momentum-conserving interactions localized at a space-time point [41. 
Furthermore, there is a simple set of rules, the Cutkosky rules [5], for evaluating 
the discontinuity associated with such a singularity : One evaluates the graph as if 
it were a Feynman graph, with two exceptions: the point interactions are to be 
replaced by actual S-matrix elements, and Feynman propagators are to be 
replaced by mass-shell delta-functions, ~(p2_ m2)O(pO). 

Unfortunately, these rules are inapplicable to singularities that lie below 
threshold; these occur for complex values of the external momenta. However, one 
can frequently push these singularities into the region of real momenta at the cost 
of an analytic continuation in the external masses. 

As an example, let us consider the graph of Figure 1. (Ignore the angle defined 
in the graph; this will be explained in Section 3.) This graph produces a singuIarity 
in the forward scattering of two (unstable) particles, A and B. Time runs upward in 
the graph. At the beginning of the process, A and B are heading directly towards 
each other. Before they collide, though, A decays into a particle of type a and one 
of type c. The Lorentz frame is chosen such that c is at rest. B decays into a particle 
of type b and a second particle of type c, also at rest. b and a scatter in the forward 
direction (the central dot) and recombine with the stationary c particles to reform 
A and B. This process is obviously physically possible for classical particles with 
appropriate initial momenta, provided only that A is sufficiently massive to decay 
into a and c and B sufficiently massive to decay into b and c. 

For example, if the mass of the deuteron were greater than twice the nucleon 
mass, this process would be possible for deuteron-deuteron forward scattering, 
with a, b, and c nucleons. Of course, the real deuteron is lighter than two nucleons; 
however, if we continue the deuteron mass from an unphysical unstable value to its 
actual value, the singularity can not disappear utterly and moves below deuteron- 
deuteron threshold to become an anomalous singularity. 

The Cutkosky rules show that in four dimensions the singularity is a branch 
point. We have an eight-dimensional integral (from the two loops) over six delta- 
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functions (from the six internal lines); thus we obtain a finite discontinuity over the 
cut. However, if we lived in two dimensions rather than four, we would only have a 
four-dimensional integral from the two loops. Thus we would have two delta- 
functions left over from the Cutkosky integral, and the singularity would be such 
as to have a double delta-function for a discontinuity; that is to say, it would be a 
double pole. 

You may find the argument of the last sentence a bit too sloppy, so here is a 
more careful (though longer) one: Consider an individual Feynman graph 
contributing to the forward scattering amplitude, with the heavy dots in Figure 1 
replaced by arbitrary insertions. By momentum conservation, the two virtual c 
particles carry equal momenta, which we denote by Pc. Thus the Feynman integral 
contains two factors of 1/(p 2 - m 2) and can be written as the derivative with respect 

2 of an integral with only one such factor. (For purposes of this differentiation, to m c 
we consider the masses of any c particles hiding within the heavy dots as 
independent variables.) The discontinuity of this new integral can be evaluated 
straightforwardly (that is to say, without any doubletalk about double delta- 
functions) by the Cutkosky rules, and is proportional to 2 2 fi(Pc - me). Also, the 
Cutkosky rules fix Pc in terms of the external momenta. Thus the singularity of the 
new integral is proportional to 1/(p 2 - m ~ ) ,  and the singularity of its derivative is a 
double pole. 

There are other graphs that have identical kinematic structures to Figure 1: 
Firstly, the a and b particles can simply pass each other without interaction. 
Secondly, if there are particles degenerate in mass to a (or b), a (or b) can be 
transformed into one of these particles at the central dot. For brevity, we will not 
explicitly discuss these cases except when they lead to significant differences in the 
argument. In the case at hand, if there is no central interaction, then, in four 
dimensions, we have a four-dimensional loop integral and four delta-functions, 
still (barely) giving us a branch point, and, in two dimensions, we have a two- 
dimensional loop integral and four delta-functions, still giving us a double pole. 

This is our explanation for the double poles in the sine-Gordon S-matrix. They 
arise from processes like those shown in Figure 1, processes identical to those that 
produce the anomalous thresholds in deuteron-deuteron scattering in four dimen- 
sions. In the next section we will verify this explanation by computing the 
locations of the singularities predicted by Figure 1 for all possible assignments of 
A, B, a, b, and c and showing that these predict all the double poles in the sine- 
Gordon S-matrix. 

3. Explicit Computations 

3.1. T w o - D i m e n s i o n a l  K i n e m a t i c s  

Because of our well-developed feeling for classical kinematics, the easiest way to 
understand singularities is the method of the previous section. However, for the 
actual computation of singularities that lie below threshold but on the real energy 
axis (the case of interest to us), another method is more suitable. 

In this case we may always choose the time components of the external 
momenta to be real and the space components to be imaginary. Thus we can 
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B 7r(~/(C,B;A)/~ 
C ~ ~  ~(A'B;c) 

Fig. 2. Definitions of angles for a three-line vertex 

associate with every momentum a real two-vector whose time component is that of 
the momentum and whose space component is i times that of the momentum. We 
call this two-vector the pseudomomentum. The rules for finding a singularity are 
[6] : (1) The graph must be a geometrical figure in Euclidean two-space. (2) With 
every internal line there must be associated a pseudomomentum of length m, the 
mass of the particle associated with that line. (3) The pseudomomentum must be 
parallel to the associated line. (4) All pseudomomenta at a given vertex must sum 
to zero. Thus, locating a singularity becomes a problem in Euclidean plane 
geometry. 

In particular, these rules imply that for a three-line vertex (Fig. 2) all angles are 
determined. For  example, 

m 2 + m~ + 2roAm B cosrc~b(A, B; C) = m 2 , (1) 

with similar equations for the other angles. (The unnatural factor of 7r in the 
definitions of the angles is chosen to agree with conventions used in the sine- 
Gordon literature.) Also, by convention ~b(A, B ; C) = ~b(B, A ; C) is always chosen to 
lie between 0 and 1. 

For a forward scattering process (Fig. 1), the angle 4) is related to the usual 
variable s by 

s = m~l + m~ + 2roAm B cos ~zqS. (2) 

From this equation we see that q5 is O/ix, where 0 is the modulus of the rapidity 
difference of particles A and B. Thus, ~b = 0 is the threshold for AB scattering and 
q~ = 1 is the threshold for the crossed process, A/~ scattering. 

Note that if Figure 1 is a possible graph for A B  scattering, Figure 1 rotated by 
90 ° is a possible graph for A/3 scattering. If B and/~ are identical, these are the 
same process, and thus we should consider singularities both from Figure 1 and 
from its rotation. The most efficient way of doing this (which we shall adopt) is to 
restrict our geometric analysis to Figure 1, and then, when we are done, deduce the 
singularities of the rotated graph by using crossing symmetry, that is to say, by 
replacing ~ by 1 -  qS. 

For Figure 1 to be a possible graph, the a and b lines must intersect; thus, 

~b(b, c; B) + qS(a, c; A) < 1. (3) 

If this condition is satisfied, Figure 1 can be drawn. The angle q~ is then determined 
by elementary geometry: 

~b = 2 - ~b(A, c; a) - ~b(B, c ; b). (4) 
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These equations are all we need to locate the double poles for any forward 
scattering process in any theory. All we have to do is plug in the particle masses 
and turn the crank. 

For  the sine-Gordon equation, the particle spectrum consists of the following: 
(1) A particle called the soliton or fermion. We will denote this particle by f and 
choose our mass scale such that its mass is one. (2) The antisoliton or antifermion, 
also of mass one, which we denote by f .  (3) A sequence of bosons that can be 
thought of as f f  bound states. These are labelled by a positive integer n, bounded 
above by a real number 2, the only dimensionless free parameter of the theory. The 
masses of the bosons are given by 

m, = 2 sin (zcn/22). (5) 

Most three-particle vertices vanish because of the conservation laws of the 
theory. For  the non-vanishing vertices, the relevant angles may readily be 
computed from Equations (1) and (5) to be 

n 
qS(f, f ;  n) = 1 - ~, (6a) 

~b(n,f;f)=~b(n,)V;f) = 2 1 + , (6b) 

n+m 
q~(n, m; n + m ) -  2,~ ' (6c) 

and 

n 
~b(m, n + m; n) = t - 2-}~" (6d) 

Equations (3), (4), and (6) are what we need. 

3.2. Fermion-Fermion Scattering 

If both A and B are fermions, then either c is a fermion and a and b are bound 
states or vice versa. In either case, Equation (6b) implies that Equation (3) cannot 
be satisfied. Thus our formulas predict no double poles. This is indeed the case [1]. 
Identical arguments apply to fermion-antifermion scattering. 

3.3. Fermion-Boson Scattering 

A is f and B is n. While the initial fermion must always decay into a fermion and a 
boson, the initial boson may decay into either a fermion-antifermion pair or two 
bosons. Thus there are several possibilities for the internal particles: 

1) The initial boson decays into a fermion-antifermion pair. In equations, 

a=m, b=?, c = f .  (7) 

By Equation (3), 

2 n -  m > 2. (8) 
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By Equation (4), the locations of the double poles are given by 

1 2 m -  n 
~ b = ~ +  2 ~  (9) 

It will be convenient to introduce a new variable, 

s = n - m .  (10) 

the range of s is given by 

n>s>.; t - -n ,  ( t l )  

while 

1 n - 2 s  (12) 4=g+ 
2) The initial boson decays into two bosons. Even after we have specified the 

quantum number of one decay product, there still remains a choice for the 
quantum number of the other. In equations, we always have 

a = f  , c = s ,  (13) 

but we can have either 

b = n + s ,  (14a) 

b = s - n ,  (if s>n) ,  (14b) 

o r  

b = n - s ,  (if s<n) .  (14c) 

In both case (a) and case (b), Equation (3) becomes 

n - s > 2 .  (15) 

This is impossible, because both n and s are less than 2. Thus we are left with case 
(c). By Equation (3), 

s < 2 - n .  (16) 

By Equation (4), 

1 n - 2 s  
~ = 2 - ~  22 (17) 

Surprisingly, Equations (12) and (17) are the same equation, and the in- 
equalities (11) and (16) describe complementary portions of the range 

n > s > 0 .  (18) 

Thus, despite the fact that the double poles spring from two quite distinct families 
of graphs, we end up with a single sequence of double poles evenly spaced in ~b, just 
the right answer [1]. (Crossing symmetry gives us no new information, because the 
family of singularities we have found is already crossing symmetric.) 
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3.4. Boson-Boson Scattering 

A is n and B is m with n > m by convention. Once again there are two possibilities 
to be considered: 

t) Both initial bosons decay into boson pairs. We will always choose c = r, but 
there remain several choices for a and b: 

a=n+r,  b=m+r,  (19a) 

a = n - r ,  b=m+r,  (if r<n) ,  (19b) 

a=n+r, b = m - r ,  (if r<m) ,  (19c) 

and 

a = n - r ,  b = m - r ,  (if r<m) .  (19d) 

In case (a), by Equation (3), 

n + m > 22. (20) 

This is impossible, since both m and n are less than 2. In case (b), by Equation (3), 

m-n>O.  (21) 

This is also impossible, since, by convention, n > m. In case (c), by Equation (3) 

n -  m > 0. (22) 

This is true unless n = m. By Equation (4), in this case, 

n+ 2 r - m  
q5 = 1 22 (23) 

In case (d), by Equation (3), 

n + m < 22. (24) 

This is always true. By Equation (4), in this case, 

m + n - 2 r  
~b = 22 (25) 

Thus, in contrast to the preceeding case, we obtain two distinct families of 
double poles, given by Equations (23) and (25). These two families change places 
under crossing symmetry, so crossing gives us no new singularities, with one 
exception: When n = m, the direct derivation of Equation (23) breaks down, and it 
must be derived from crossing symmetry and Equation (25). 

2) Both initial bosons decay into fermion-antifermion pairs. This case is 
different from all the others we have considered; there are several ways of 
identifying the internal particles that give graphs with identical kinematics. This is 
a consequence of the degeneracy in mass of fermion and anti-fermion. For 
example, Figure 3 shows two graphs that produce double poles in identical 
locations. (As usual, the directed lines represent fermions.) In addition to these, 
there are two other graphs, obtained from the ones shown by reversing all directed 
lines. 
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m n m n 

n ~ r n  n ~ m  (a) (b) 
Fig. 3, Two graphs which individually produce double poles which cancel 

We will now show that the double poles produced by these two graphs have 
opposite residues and thus cancel each other out. 

The two graphs differ only in the two left-hand vertices and the scattering 
process at the center. The vertices in one graph are charge conjugates of the 
vertices in the other. It is known that the bound states have alternating charge- 
conjugation parities. Thus the vertices produce a relative factor of ( -  1) "+m. As for 
the central scattering, if we read the graphs sidewise, in one case we have fermion- 
antifermion forward scattering (transmission) and in the other we have fermion- 
antifermion backward scattering (reflection). Thus, the sum of the two residues is 
proportional to 

t(¢') + ( -  1)"+mr(~b'), (26) 

where t is the transmission coefficient, r is the reflection coefficient, and ¢' is the 
angle defined in the figure. 

From the figure and Equation (6a), 

¢ ' =  1 - qS(f, f ;  n ) -  ¢( f ,  f ;  m) = n + m  _ 1. (27) 
2 

It is known [1] that, in general, 

sin~2 
r(¢) = sin n2~  t(¢). (28) 

Thus, in particular, 

r(¢') = - ( -  1)" +mt(¢'), (29) 

and the expression (26) vanishes. 
Thus the only double poles are those given by Equations (23) and (25). Once 

again, this is the right result [1]. 
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