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Singularities and Discontinuities of Feynman Amplitudes* 

R. E. CUTKOSKyt 

Carnegie Institute of Technology, Pittsburgh, Pennsylvania 
(Received March 31, 1960) 

The Landau singularities of the amplitude calculated from an arbitrary Feynman graph are considered. 
It is shown that the discontinuity across a branch cut starting from any Landau singularity is obtained by 
replacing Feynman propagators by delta functions for those lines which appear in the Landau diagram. 
The general formula is a simple generalization of the unitarity condition. The discontinuity is then 
considered as an analytic function of the momenta and masses; it is shown that its singularities are a sub
class of the singularities of the original amplitude which corresponds to Landau diagrams with additional 
lines. The general results are illustrated by application to some single loop graphs. In particular, the general 
formula gives an immediate calculation of the Mandelstam spectral function for fourth-order scattering. 
Singularities not of the Landau type are discussed and illustrated by the third-order vertex part. 

I. INTRODUCTION 

KARPLUS, Sommerfield, and Wichmanl and 
Landau2 have emphasized the importance of 

examining the analyticity of the amplitudes correspond
ing to Feynman graphs, and have discussed some 
simple graphs in detail. Landau has also given a 
criterion for determining the position of certain 
singularities of the amplitude for an arbitrary graph. 
In this paper we shall derive a formula for the dis
continuity across a cut starting from anyone of 
Landau's branch points, and shall determine where 
this discontinuity is singular. The result is a very 
natural generalization of the well-known expression, 
given by the unitarity condition, for the discontinuity 
across a cut starting from any physical threshold. 
The general result is extremely useful for analyzing 
spectral representations. For example, it leads im
mediately to an explicit expression for the Mandelstam 
spectral function for the fourth-order scattering 
amplitude.3 

Before proceeding with the calculation, let us 
recapitulate Landau's discussion. He considers the 
amplitude 

(1) 

(where Ai=M?-q? and B is an arbitrary polynomial) 
corresponding to a graph with N internal lines and n 
independent loops. In (1) and the following we adhere 
closely to Landau's notation. The qi are linear com
binations of the ki and the external momenta Pi. On 
its principal branch F has no singularities for sufficiently 
small, real P?; if the M? are positive, we may take the 
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1 R. Karplus, C. M. Sommerfield, and E. H. Wichman, Phys. 

Rev. 111, 1187 (1958); 114, 375 (1959). 
2 L. D. Landau, Nuclear Phys. 13, 181 (1959). Note added in 

proof. Results similar to Landau's were also obtained by J. C. 
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p? to be positive without passing a singularity, and 
begin the investigation with real Pi4 and imaginary Pi. 
We denote by Za the independent invariants formed 
from the Pi. 

Now introduce the Feynman parametrization 

F= (N -1)1j II(da)II(d4k)BD-No(1-a), (2) 

where D= Li=lNa.A. and a= La •. Let rp=maxk(D) 
(the maximization is carried out with real ki4 and 
imaginary k i ). According to Landau, if min <,0> 0, F is 
nonsingular, where the minimum is taken with respect 
to nonnegative a'S satisfying a= 1. As the p? are in
creased, the first singularity of F occurs when minrp -+ O. 
This, Landau shows, means that for each i 

a;A.=O, 

and for each closed loop 

Laiqi=O, 

(3) 

(4) 

where the sum is extended over all the lines in the 
loop; moreover, (4) must be satisfied with nonnegative 
a's. Landau pointed out that a singularity exists when 
(4) is satisfied with arbitrary ai, but did not give an 
explicit proof of this; as this point is important to our 
subsequent discussion we show that this follows from 
an analytic continuation in the internal masses, and 
the continuity theorem for singularity surfaces.4 

The following remarks are contained implicitly in 
Landau's paper. 

Let Dm be obtained from D by setting the ai= 0 for 
i>m, and let rpm=maxk(Dm). If for some ai, maxk(Dm) 
occurs for q?-=M?(i~m), then for any other non
negative ai(i~m), rpm~O. Now, we may choose the 
M?- for i>m so large that rpm is the minimum of <,0 for 
nonnegative a's. For any ai>O(i~ m) and pl>O we 
determine qi which satisfy (4) (this is just the maximi
zation problem) and define for i ~ m masses M i by the 
equation q?=M? Hence masses exist such that any 

4 H. Behnke and P. Thullen, Theorie der Functionen Mehrerer 
Komplexer Veranderlichen (Springer-Verlag, Berlin, 19304). p. 49. 
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"Landau diagram" corresponds to the first singularity. 
There are two cases to be considered, which can easily 
be distinguished upon inspection of the Landau 
diagram. If some of the masses obtained by the pro
cedure described are constant, or satisfy a relation 
independent of the a's and the z's, then we do not in 
general have either a solution to (4) or a singularity. 
Otherwise, as the a's and z's are varied these masses 
take on all possible values, in which case it follows 
from the continuity theorem that for any internal 
masses there is always a singularity when Eqs. (3) and 
(4) are satisfied, although this singularity might not 
appear on the principal sheet of the Riemann surface. 

In order to discuss the analytic continuations of F, 
we eliminate the delta function from (2), by replacing 
the ai by Mi, multiplying by a suitable entire function 
of A (say e-A) and integrating over A. This gives the 
equation 

F= (N-l)!! IT (da)IT(d4k)B])-Nii-1 exp( -ii-l). (5) 

In (5), the ai vary independently over any suitable 
contours from 0 to <Xl. We may use this equation to 
interpret Landau's conditions in the complex region. 
We use an idea introduced by Hadamard,5 which has 
already been exploited in a similar problem by Eden. 6 

If we first integrate over the kip, we obtain an integrand 
which is singular when cp vanishes, where in the general 
case cp is an extremum of D. The singularities of F 
occur when some of the ai are fixed at the lower limit 
of integration, while the contours over which the 
remaining ai are" integrated are trapped between 
coalescing singularities. In other words, cp must have a 
double zero with respect to each of the free variables, 
which leads directly to Landau's conditions (3) and 
(4). It is also necessary that for Za in the neighborhood 
of a singularity of F, the contours actually pass between 
these nearly coalescent zeros. We know that this 
occurs when we consider the first singularity; we 
obtain an illustration of the continuity theorem if 
we note that when the Mi are varied, if the Za are 
simultaneously varied so as to keep the zeros in a 
nearly coalescent configuration, the contours must 
remain entrapped. 

Since the integrand in (5) is always singular when 
ii=O, if D vanishes for ii=O the condition of a double 
zero with respect to the free vl!riables is relaxed. In 
this case we might have a singularity even if conditions 
(3) and (4) do not hold, although such a singularity 
could never appear on the principal sheet. We shall 
show, in Sec. III, that an "anomalous" singularity of 
this type actually occurs in the third-order vertex. 

i]. Hadamard, Acta Math. 22, 55 (1898). 
G R. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952). Note 

added in proof. Mter submission of this paper, the author re
ceived two papers containing a similar discussion of the complex 
singularities: ]. C. Polkinghorne and G. R. Screaton, Nuovo 
cimento 15, 289 (1960);]. Tarski,]. Math. Phys. 1, 154 (1960). 

II. DISCONTINUITIES OF FEYNMAN AMPLITUDES 

A. Calculation of the Discontinuity 

We shall prove the following theorem: Let F denote 
the amplitude defined by Eq. (1), and let Fm denote 
the discontinuity of F across a branch cut starting 
from a singularity defined by Landau's conditions (3) 
and (4) in which Ai=O for i~m; then 

Fm= (21ri)m 

f 
BIT(d4k)op(q12_M12) .. 'Op(qm2- Mm2) 

X . W 
Am+1•• ·AN 

(The notation implies a particular ordering of the 
lines.) The subscript p on the delta functions means 
that only the contribution of the "proper" root of 
q/' = M /' is to be taken. Equation (6) is a simple 
generalization of well-known results, and follows 
directly from the Hadamard-Eden analysis. 

Consider the contracted Feynman graph obtained by 
fusing the vertices connected by the lines i> m. Let II 

be the number of independent loops in this contracted 
graph. We can choose the kj so that the qi(i~ m) 
depend only on those k; for which j::; II. If the mX411 
matrix 

Ji,jp=iJq?/iJkjp 

is of rank m, we may choose as integration variables 
~i=q? for i::;m, and 411-m additional variables. The 
q/' are the squared distances between certain points in 
momentum space, and the ~i for m<i~411 may be 
interpreted as related angle variables. We shall discuss 
later the circumstance that Ji,j" has a rank smaller 
than m for all kjp.. If the rank is too small only when 
the kip. satisfy particular relations, these exceptional 
points may in general be avoided by appropriate 
indentations of the k jp. contours. We therefore obtain 

J =det(iJ~;jiJkjp.). 

The limits of integration (a;,b j ) for the q? integration 
are the extrema of q? for fixed q?(i<j). This leads to 
the equations (for each loop of the contracted graph) 

L, (i5,jl!3iqip. = 0, (8) 

~here the !3i are Lagrange multipliers. From (8) for 
J=m we see ~hat Landau's conditions (3), (4) imply 
that when a smgularity develops, the point where the 
Ai = 0 for i::; m lies on the boundary of the region of 
integration. Equation (8) also shows that the rank. of 
Ji,jp. is always too small on the boundary of the inte
gration region, but this gives no difficulty. In certain 
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cases each set of the qil corresponds to two points in 
momentum space; in these cases we interpret the 
qm2 integration as being taken over the closed contour 
which encloses the two points a". and bm where J is 
singular. 7 

For brevity we denote by z a point in the (many
sheeted) space of the invariants. Let Zo denote any 
point on the singularity surface in question which does 
not also lie on some other singularity surface. 

We first suppose that all the integrations in (7) 
have been performed, except that over q12. Then we 
write 

bl 

F= i dq12(M l2_ q12)-lF (1) (q12). (9) 
Gl 

Now, by hypothesis, (A) F is singular when z ~ Zo, 
and (B) F would not be singular at Zo if the factor 
(M12_ q12)-1 were absent or if the mass Ml were 
changed. Therefore, the contour of the q12 integration 
must pass between the pole q12=M12 and a singularity 
of F(1)(q12) at q12=Q2, where Q2~M12 when Z~Zo. 
We may replace this contour by one on the other side 
of the pole q12- M 12 and a very small circle enclosing 
this pole, where the contour which avoids the pole 
gives a contribution to F which is regular in the 
neighborhood of zo. The singular part of F is therefore 

F.=±27riF(1)(M12). (10) 

The argument given is not sufficient to determine the 
sign. 

Mter applying the foregoing argument in succession 
to the variables q22 .. 'qm-12, we obtain 

F.= f: dqm2(MmLqm2)-lF(m) (qm2). (11) 

In (11) a". and bm are the limits calculated with 
q12 = M;' for i < m. When z ~ zo, it follows from (8) 
that one of these limits coincides with the point 
q",2=Mrr?-. It is obvious that the discontinuity across 
a branch cut starting from Zo is 27riF (m) (M ",n. When 
the q",2 integration is taken over a contour enclosing 
the points a". and bm , the two branches of F. are deter
mined by whether the pole q",2=Mm2 lies inside this 
contour or not so we obtain the same result. 

We now defi~e the sign of Fm by analytic continuation 
from the case where the masses are such that the 
singularity in question is the first encountered as the 
z are continued through real values from the 
singularity-free region, and z is.a real point just.beyond 
this singularity. It was shown m the Intro~uctlO? t~at 
it is possible to do this. We define the dlscontmUlty 
F",(z) to be the difference betwee~ F~z) a~ calculated 
by giving the masses small nega~t~e ~ma~nary parts 
and that calculated with small posthve Imagmary parts; 

7 For some graphs with more than one loop. several of the q.2 
integrations need to be interpreted in this way. 

that is, 
(12) 

Now consider the q",2 integration: Equation (12) im
plies that the discontinuity is given by a clockwise 
contour around the pole. But the same result must 
hold for all ql. This proves Eq. (6) for the case that 
the rank of the matrix aqljakil' is equal to m, except 
that in transforming back to the k;I' we must be careful 
to keep only the contribution from the proper root 
of ql=Mil. 

There are two cases in which the rank of Ji,il' is too 
small' either this happens only for z which satisfy , . 
some particular relation, which restricts these z to lie 
on some surface, or else it occurs identically, for all z. 
In the first case, (6) is valid for all nonexceptional z, 
but the discontinuity might be singular when hjl' is 
singular. If the rank is always too small, as when 
m>4v, we consider the singularity obtained by 
eliminating a sufficient number of lines (say for 
m' <i~m) that the rank of the reduced matrix aq?jak;I' 
is m'. The singularity of the larger matrices implies 
that the eliminated qi2 can be expressed in terms of the 
ql for i ~ m'. Hence when we evaluate the discontinuity 
Fm, by Eq. (6), we find that F"" has not a branch point 
but a pole when op.e of the eliminated A. vanishes. 
These exceptional cases will be illustrated in Sec. III. 

B. Singularities of the Discontinuity Function 

We may think of Fm(z) as the difference between 
the values of F(z) on two different sheets, so the 
singularity surfaces of Fm(z) will be contained among 
those of F(z). We discuss these singularities by intro
ducing N-m Feynman parameters a.(i>m) and 
repeating Landau's calculation. When we integrate 
over the k.", we obtain a singularity for those values 
of the ai for which 

cp = ExtremuIIlk (L.>ma;A.) 

vanishes. However, the variables k.I' are not all in
dependent, because they satisfy the constraints Ai=O 
for i~ m. These constraints are introduced into the 
extremization by using m Lagrange multipliers, which 
we also call a;(i~m). This leads to the equation 
La;q;" = 0, which is identical to (4). The integration 
over the Feynman parameters is singular when some 
of them are zero, and cp is a vanishing extremum with 
respect to the rest. This leads to Eq. (3) for i>m. We 
are not allowed to omit any of the conditions A.=O 
for i ~ m, so the singularities of F(z) which are also 
singularities of Fm(z) correspond to Landau diagrams 
in which lines have been added to the Landau diagram 
which defined the original singularity. The other 
singularities of F necessarily appear on both sheets 
and cancel when we calculate the difference. As we 
have pointed out before, there is also a possibility of 
non-Landauian singularities. 
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Let us denote by Fm.m·-m(z) the discontinuity of 
Fm(z) across a branch cut starting from the branch 
point for which Ai=O for m<i~m'. We calculate 
Fm,m'-m by the same method used to calculate Fm; we 
use the q? as variables for i~ m'. It is clear that all 
the steps in the proof (except for determination of the 
sign) are identical. Moreover, we find that 

(13) 

[We use Eq. (13) to define the sign of Fm.m'-m.] It 
may be noted that it can be proved independently 
(by extending the argument in the Introduction) that 
the singularity of F which corresponds to Ai=O for 
i ~ m' only appears on one of two adjacent sheets 
connected by the branch point corresponding to A;=O 
for i~ m. 

C. Unitarity Condition 

Consider two graphs, each with m outgoing lines, 
and with rand s incoming lines, respectively. Let F 
and G denote the corresponding amplitudes. The 
unitarity of the S matrix implies that these two graphs 
give a contribution to the imaginary part of the T 
matrix (for r outgoing and s incoming particles) which 
is, apart from numerical factors a)ld with neglect of 
the spins of the particles, 

(14) 

where dTm is the volume element in the phase space of 
m particles. Let qi and Wi denote the momenta and 
energies of these m particles. As a consequence of 
momentum conservation, the qi depend linearly on 
m-1 integration variables k i . With a covariant 
normalization of states, we have 

(15) 

where A i= M l+it- q? for lines belonging to the graph 
F, and Ai=Mi2-ie-qi2 for lines belonging to the 
graph G. 

Equation (17) is just a special case of the general 
discontinuity formula (6) for the graph obtained by 
joining the graphs F and G by the m common lines. 
In (17) the analytic continuations have been defined 
in a particular way (by the ±ie rule), while in (6) the 
masses may be considered to be arbitrary. The dis
cussion in Sec. n.B of the location of the singularities 
of Fm(z) applies without modification to '[' .. em). 

The correspondence between the unitarity condition 
(17) and the general discontinuity formula (6) suggests 
that the general discontinuity may be looked on as a 
pseudounitarity condition. The particles, instead of 
being divided into the two groups of "initial" and 
"final" particles, may be divided into three or more 
groups. 

III. ILLUSTRATIONS 

In this section we illustrate the results derived in 
Sec. n by applying them to the three graphs shown 
in Fig. 1. 

A. Fourth-Order Scattering 

The singularities correspond to the vanishing of the 
following combinations of the Ai: (13), (24), (12), (23), 
(34), (41), (123), (134), (124), (234), and (1234). The 
ordinary threshold is the (13) singularity. The cor
responding discontinuity is obtained by replacing A 1-1 

and A g-l by 211'i!5p (Al) and 211'i!5p (Aa). The discussion 
in Sec. II.B shows that this discontinuity has only the 
singularities (13), (123), (134), and (1234). The 
Mandelstam spectral function3 is, apart from a factor 
of four, the discontinuity of this discontinuity function 
across the (1234) singularity, which is 

(18) 

where E is the total energy. We may introduce m-1 
new integration variables ki4 and write (15) as follows: Reverting to the variables used in the proof of (6), 

dTm=d4k1 • • ·d4km-l!5p (q12_M12) . . ·!5p (qm2-Mm2). (16) 

In (16) the qi4 are the same functions of the ki4 as the 
qi are of the k i . The SUbscript p means that only the 
"proper" root of ql=M?, that for which qi4 is positive, 
is to be considered when the integrations are carried out. 

Equation (14) is first obtained for real momenta. 
To continue it to the complex region we introduce the 
explicit forms of G and F, with the notation that qi is 
the momentum of any internal line, and k i is any 
integration variable. Then (14) becomes 

f 
I1(d4k)B!5p (qlLMI2) .. ·!5p (qm2-Mm2) 

<frB(m) = , (17) 
Am+1•• ·AN FIG. 1. Feynman graphs considered in Sec. III. 
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we have 

(19) 

where J = detilqN ilk!, = 24 detqi!' is evaluated for qi2 
= M ? The result of Mandelstam3 and KibbleS is 
obtained from (18) by noting that [detqi!']2=detqiqj. 

The reader will recognize detqi!' as the volume of the 
four-dimensional parallelepiped constructed with the 
qi as edges. The vectors qi have lengths M i, and they 
have such directions that when drawn from a common 
vertex Q, their ends are vertices of the tetrahedron 
constructed from the external momenta (see Fig. 2). 
Complex vectors are to be used in drawing the figure, 
when necessary. This figure (a simplex) is one corner 
of the parallelepiped; its volume V is 1j4! times the 
volume of the parallelepiped. Hence J = 244 !V. 

Landau's condition for the location of the (1234) 
singularity is that the point Q should lie in the hyper
plane of the tetrahedron. In this case V = 0: It should 

\ 
\ 

\ 
\ 

\ , 
b \ 

\ 
\ 

\ 

FIG. 2. The Mandelstam spectral function is the reciprocal 
of the volume of this figure. 

be noted that the transformation from the kp to the 
qi2 is singular when the tetrahedron degenerates to a 
planar figure. But 4 V is the product of the volume of 
the tetrahedron and the altitude of the point Q from 
the hyperplane of the tetrahedron, and when the 
volume of the tetrahedron vanishes, the altitude, for 
fixed lengths of the qi, becomes infinite in such a way 
that V-I is analytic. 

B. Third-Order Vertex 

The discontinuity across the (123) branch cut is 

Consider the point Q whose squared distances from 
the vertices of the triangle (Pa, Pb, pc) are q? (see Fig. 3). 
The locus of Q in four-dimensional space is a circle 
whose radius K is the altitude of Q from the plane of 
the triangle. Transforming. to new variables, we have 

d4k= Kdq;d3k= Kdcpil(dq?)J3-1, (21) 

8T. W. B. Kibble, Phys. Rev. 117, 1159 (1960). 

FIG. 3. Geometrical con
struction associated with 
the third-order vertex. 

where J 3=8 detqia is a 3X3 determinant. Hence we 
obtain 

(22) 

Now detqia is 3! times the volume of the tetrahedron 
in Fig. 3, which in turn is tKCt, where (t is the area of 
the triangle. Therefore, 

Fa=2-46,-1 

= t{Pa4+Pb4+PcC 2P}PbL 2Pa2N- 2Pb2pc2}-!. (23) 

We see that Fa, and therefore also F on at least one 
sheet, is' singular when 6,=0. In this example, a 
singularity of the matrix ilq?/ilkp actually is associated 
with a singularity of F. The singularity can be shown 
to correspond, in terms of the Feynman parametrization 
discussed in the Introduction, to the case 0:1 +0:2+O:a = O .. 

C. Example of Redundant Lines 

Consider the graph shown in Fig. 1 which has five 
lines in one loop. Landau's procedure shows there is a 
singularity when all five Ai=O, but this is not a branch 
point. The discontinuity across the (1234) branch cut 
is shown by the method of Sec. lILA to be 

(24) 

where J and q62 are functions of the external momenta 
and of M 1, ••• ,M 4. When the external momenta are 
such that q62=M52, F4 has a pole. Since F4 is the differ
ence between values of the amplitude F on two adjacent 
sheets, and since the (12345) singularity only appears 
on one of them, F also has a pole. The location of the pole 
corresponds to the possibility of drawing the Landau 
diagram with four-dimensional vectors; the nonexistence 
of a branch cut corresponds to the impossibility 
of buckling the diagram into an extra dimension. 
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