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Operator solutions of the Schwinger model are given in several gauges. The correct 
interpretation for the covariant solution with indefinite metric is discussed. A class of 
noncovariant gauges, particularly well suited to the analysis of the gauge-invariant 
algebra is obtained. As a result of this analysis, it is seen that there are no physical 
electron excitations in the model. Charge sectors can be introduced, but only at the 
price of violating the spectrum condition. The Coulomb gauge solution is shown to lead 
to a very pathological indefinite metric. Quantum electrodynamics as limit of a vector 
meson theory and broken symmetry aspects are discussed in the concluding sections. 

I. INTR~DIJCTI~N 

Quantum electrodynamics in two dimensions, shown to be exactly soluble by 
Schwinger [l], has been the subject of various investigations [2, 3,4]. It is the 
purpose of the present article to explore a number of interesting features of the 
model which have received little or no attention in earlier treatments, but which 
are essential to a correct interpretation of the theory. 

The previously overlooked aspects of the Schwinger model will emerge in the 
course of a formulation of the theory in terms of explicit operator solutions, 
whose construction will be based on methods used effectively by Klaiber [5] in 
the case of the Thirring model. Particular emphasis will be placed on the relations 
between solutions in various gauges and the properties of the gauge-invariant 
algebra of observables. 

Schwinger’s original solution will be shown (in Section 11) to correspond closely 
to the Gupta-Bleuler formulation of four-dimensional quantum electrodynamics, 
in the sense that Maxwell’s equations are satisfied only on a physical subspace of 
the overall (indefinite-metric) “Hilbert space.” The Wightman functions of this 
version of the theory cannot be interpreted directly as physical probability ampli- 
tudes. Instead, one is left with the task of extracting the positive-metric Hilbert 
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QED IN TWO DIMENSIONS 173 

space of physical states and corresponding operator realization of the equations 
of motion which lie buried in the indefinite-metric formalism. Only then does the 
striking simplicity of the physical content of quantum electrodynamics in two 
dimensions become obvious. 

As we shall see in Section III, it is possible to construct a one-parametric class 
of positive-metric operator solutions which are related to that of the Schwinger 
solution by gauge transformations and which share the properties (a) the Lorentz 
condition, %,AU = 0, is satisfied and (b) the electron field satisfies commutation 
rather than anticommutation relations, a reflection of the bad behavior at infinity 
of the Coulomb potential in two-dimensional space-time. The positive-metric 
operator realization derived from Schwinger’s covariant solution turns out to be 
of particular interest, since it contains no spurious (gauge) excitations. With the 
aid of this solution we shall examine (in Section IV) the algebra of observables 
and show that the electron excitations completely disappear from the theory. 
This is in agreement with Schwinger’s intuitive picture of the total screening of 
the electronic charge [l]. The algebra of observables is isomorphic to that of a 
massive, scalar free field, and the usual picture [6, 71 of charge sectors corre- 
sponding to inequivalent representations of the algebra is not valid. We shall see, 
however, that it is still possible to introduce representations which can be inter- 
preted physically as corresponding to charge sectors, but which violate the spectrum 
condition. 

The Coulomb gauge, which is closely related to the charge sector representations, 
will be derived (in Section V) as the formal limit of solutions related to our previous 
ones by gauge transformations. The resulting Wightman functions correspond 
to the Green’s functions of Brown [2] and, as we shall show, define a vector 
space with a very pathological indefinite metric, a further consequence of the bad 
asymptotic behavior of the Coulomb potential. The Wightman functions are not 
tempered distributions, and the energy-momentum spectrum cannot be defined 
in this gauge. 

We shall conclude our study of the Schwinger model with a discussion (in 
Section VI) of the relation between our solutions and the limit of a vector meson 
theory [4,8], and with some comments (in Section VII) on the broken symmetry 
aspects of the model. 

The following notational conventions will be used throughout: 

x = (x0, xl), 

s 00 = --$1 = $0 = E01 = 1 



174 LOWENSTEIN AND SWIECA 

11. COVARIANT SOLUTION 

The covariant solution of quantum electrodynamics in two dimensions with 
zero electron mass, obtained by Schwinger [l] with functional methods gives rise 
to the following fermion Wightman functions: 

(0 I $(x1) ... 4(x,) &Ill> ... $(J&) IO) = e~F(~*~)Wo(xl ... xnyl . ..yJ (2.1) 

with W, the free zero mass Wightman function and 

GQ) 

O-(x) = i 1 
(274 

dzp 6(p” - m2) e-ip.XB(p,) 

is the two-point function of a mass m free scalar field and 

(2.3) 

- Wx) = c2;) s 
d2p 6(p2) 6(po)[eciD’” - @K - po)] (2.4) 

is the infrared regularized two-point function of a zero mass field [5]. 
The Wightman functions (2.1) correspond to renormalized fermion fields 

differing from Schwinger’s unrenormalized ones by a finite renormalization 
constant (cf. Appendix). 

One can represent 4 in terms of independent free-field operators as 

c$(x) = exp[i(r)1/2 r”(q-l(x) + z+-(x))] #(x) . exp[i(n)li2 y5(f-(x) + z-(x))], (2.5) 

where # is a free zero mass fermion field, 2 = z+ + ,J?- is a mass m free scalar 
field with 

(0 I ax) 2(‘(v) I 0) = ; d-(x - y), 

‘E I 0) = 0, 

and +j = +j+ + ;i- is a zero mass field quantized with indefinite metric 

0.6) 

(0 I fj(x) fj(y) I 0) = q D-(x - y). (2.7) 
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lt is straightforward to obtain (2.1) from (2.5) using free field commutation 
relations. 

There are two reasons for using an indefinite metric in the quantization of the 
field 7j: (1) it is needed to obtain the minus sign in (2.7) and (2) it is necessary 
because of the infrared problem of the zero mass scalar field in 2 dimensions [9]. 
The latter problem could be dealt with by a method invented by Klaiber [5] 
without the need of indefinite metric, whereas the change in sign in (2.7) intrinsically 
requires an indefinite metric in the covariant solution. In Section III, where 
solutions in a positive definite Hilbert space will be obtained we shall employ 
Klaiber’s method. 

From the Dirac equation 

wa,+cd + ; y” py {A,6 + c> 4(x> -t #J(x) AJX - c)> = 0 (2.8) 
2<0 

one gets, with (2.5) 

(2.9) 

where 

m = e(77)li2, P+j(x) = a+)(x). 

This is in agreement with Schwinger’s Green’s functions for the “photon” field 
Au which are, up to a (in Schwinger’s solution indeterminate) longitudinal zero 
mass part the Green’s functions of a free “vector meson” of mass e/d;. 

Let us look now into the current which corresponds to the properly defined 
(in analogy to [lo]) gauge invariant limit [1 1] 

j”b> = 1;~ [$(x + ~1 V&x) - (0 I &x + c) y”+(x) I OX1 - ie@A,(x))]f-I(c), 
G#O 

(2.10) 

with f-‘(O) corresponding to the (in this case, finite) renormalization constant. 
With (2.5) we get 

(2.11) 

where the first term of the r.h.s. of (2.11) is just the free current 

j&x) = :$5(x) y$h(x):. 
The term 

(2.12) 

“j/(x) -- _‘= a+)(x) = jp(x) 
d7r 

(2.13) 
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is a purely longitudinal zero mass contribution to the current. Although jLii 
creates zero norm states from the vacuum, i.e., 

it cannot be set equal to zero, since 

Lidw d(Y)1 = -@W - v> 4(Y). (2.15) 

This means that Maxwell’s equations 

t3,Pfx) = -eju(x) (2.16) 

are not satisfied, so that the Wightman functions (2.1) do ?lot correspond to a 
solution of (2.8) and (2.16). (This assertion can also be checked directly using 
Schwinger’s own functional methods.) 

It is clear, however, that we have a simultaneous solution of (2.8) and the 
modified equation 

q,P(X) = -e(j”(x) - j,qx>>. (2.17) 

Tn analogy to what is done in the Gupta-Bleuler formalism, one can define a 
physical subspace Zr,hys by 

(2.18) 

This subspace may be constructed explicitly by applying Wightman $olynomials 
in Pi, j,(x), and 

exp[i u’; q+(x)] 4(x) exp[i t/G v-(x)] 

on the vacuum, since j,(y) commutes with all such quantities for al x and y. 
Between physical states, (2.17) reduces to (2.16), since 

(2.19) 

The existence of aphysical states and the fact that Schwinger’s solution describes 
quantum electrodynamics only on a subspace arise in a straightforward manner 
from an examination of the operator solutions (2.5), but are not directly obvious 
in the original Green’s function formulation. We shall come back to this point 
in Section VI, where quantum electrodynamics will be discussed as a limit of 
vector meson theory. 
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III. NONCOVARIANT SOLUTIONS 

Now that we have a more complete analysis of Schwinger’s covariant solution, 
we turn to the problem of constructing operator realizations of the equations of 
motion in Hilbert spaces of positive-definite metric. From one’s experience with 
four-dimensional quantum electrodynamics, one does not expect to find explicit 
covariance and locality of all fields in such formulations. One naturally thinks 
first of the Coulomb gauge, but, unfortunately. this is not an appropriate frame- 
work in two-dimensional space-time, due to the growth at infinity of the Coulomb 
potential (see Section V). Instead, it is most advantageous to return to the covariant 
solution of Section 11 and try to construct an explicit operator solution in the 
physical subspace. 

Let flphys be the physical subspace of the previous section, and let y% be the 
space of all null vectors in xPhy+, . Then in the quotient space flPhYs/xU we see 
that j,(x) vanishes identically and thus, by definition (2.13) we may identify T(X) 
(in %&@/q,) with the field j(x) defined by 

By the constructron of sPhys , we are led to consider as the appropriate electron 
field not 4(x), but rather the field related to #J(X) by the gauge transformation 

4(x) + exp[i V’G T+(X)] 4(x) exp[i ~4 q-(x)], 

AU(X) + k(x) -I- ;1,?‘“$X) = - ; P2”&). 
(3.2) 

In this way we are naturally led to a construction very similar to the one employed 
by Klaiber [5]. We shall adopt both his notation and his infra-red technique, 
referring the reader to the original article for details. 

Consider thus 

+Cx) = exp [i + (Q + $1 -t- ix+(x)] #44 exp[ix-WI (3.3) 

with 

x*(x) = aji(x) + a(& -- a) Qo,*(x) + t"rr (V7r -- a) @iK*(x) 

+ r5(h j*(x) + 1/G J*(x)), (3.4) 
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wherej,j are the potential, resp., pseudo potential, of the free current with infrared 
cut off, 

j(x) = j+(x) + j-(x) 

= & * SC c+(pl)(e--iP.m - J 
j(x) = j+(x) + 9-b) 

O(K - p”)) + h.c., 

(3.5) 

-- dir s -$$ l ( p’) c+( pl)(e- t h.c., 

(3.6) 

(3.7) 

Q and a are the total charge and pseudo charge, respectively. 
Apart from the additional massive boson field and a Klein transformation 

which will simplify matters later on, (3.3) corresponds to a subclass of solutions 
of the Thirring model [5] with p = 46. This ensures that +a is an operator in 
the Fock space of the free fermion and boson fields, and hence the positive 
definiteness condition is satisfied. 

The different values of a: correspond to different operator gauges. For 01 = v’; 
we obtain the gauge (3.2). 

Introducing (3.3) into the Dirac Eq. (2.8) with m = e/d;, 

P(x) = ; [(a - d;) (jf’Q) - 2 @d,(x) Q - 8&(x) g) - ~i’~ii$(x)]. 

(3.8) 
The gauge invariant current constructed with (3.3) leads to 

(3.9) 

so its zero mass longitudinal part has been gauged away as expected. With (3.8) 
and (3.9) we have a solution of Maxwell’s equations 

iY,P(x) = -e?(x) (2.16) 

as an operator identity on the whole Hilbert space. 
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The fermion Wightman functions can be easily computed from (3.3) as 

with 

WT v> = 1 Ha” - 2 6 E) D-(Xj - Xk) 

j<k 

+ ~y:,y~,wtxi -- Xk) - D-(4 -- Xk)) 

+ nyzj’&k(A-( Y j  - Yk> - D-(Yj - vk)) 

+ "(dj + y",,> '%Y, - vk>> 

+ c {-(a” - 2 &a) D-(x, - yJ 
j,k 

+ ?‘~,‘dk(d-(Xj -- uk) - D-(Xj -- uk)> 

4Ytlc - YZJ D-(Xj - Yk)) + T  jsk (1 + YEjY~k--l+l)~ (3.11) 

where D-, A- are given in (2.4), resp. (2.3), and 

D-(x) = &j 1 d2p 6(p2) B(pO) e(p’)[e+“” - 6(/c - p’)]. (3.12) 

One can also write (3.10) as 

with 

(0 I +(x1) ... y%%) @(yJ ... @(yJ / 0) = eic(J*y)Wa(x, y) (3.13) 

j,k j<k 

where W, are the Wightman functions of the Thirring model with j3 = dz, and 
the last sum in (3.14) corresponds to the Klein transformation. 



180 LOWENSTEIN AND SWIECA 

Due to the nonlocal character of the gauge transformation (3.1), the fields 
e(x) no longer anticommutate for space-like separations, which is a common 
feature of noncovariant gauges. 

In fact, it is easily seen that we have commutation instead: 

[$Nx), $“(.Y>lA- = 24KY) +“(.a [W4, fYv>l = 0, (x ~ y)” < 0. (3.15) 

To obtain such a simple commutation scheme it was necessary to introduce 
the Klein transformation (compare with [5]). 

On the other hand, it follows from [5] that W, , and, therefore, our Wightman 
functions (3.13), are invariant if 4” is taken to transform as a (two-component) 
scalar field, which may be interpreted as a noncovariant formulation for a “spin i” 
field. 

IV. THE GAUGE INVARIANT ALGEBRA 

The whole content of a theory like quantum electrodynamics should already 
be present in the algebra of gauge invariant quantities. Besides the electromagnetic 
fields (just the electric field in two dimensions) and the current, this algebra should 
contain bilocal quantities corresponding to the formally defined 

A natural nonformal definition for such quantities in a theory where 4, AU 
are given in terms of free fields (as in (3.3), (3.Q for instance) is: 

T(x, Y) = expW+(x, ~11 W> $*(v> expW(x, ~11 (4.1) 

with 

K*(x, y) = e JB A,*(t) dt” + x*(x> - x*(Y). 
a 

(4.2) 

The T so defined enjoys the following properties: 

1. It is explicitly gauge invariant under both c-number and q-number free 
field gauge transformations, as is immediately seen from (4.1) and (4.2). 

2. It has the correct locality and Lorentz transformation properties. To 
see that, we insert -x*, A,* given by (3.4), resp. (3.8), into (4.1), (4.2) and, using 
the commutation relations of the free fields involved, obtain 
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where 

= exp -MD-(x - y)(l + yz5yy5) + D-(x - y>(yz5 + yy5) + +(1 - yn5yy5)] 
(4.4) 

and 4~‘; is the field (3.3) in the gauge OL = ~‘71. 
From the commutation relations (3.15) and the locality of the free 2 field it 

follows that T can be associated with a region in space-time corresponding to 
the path followed in the line integral of (4.2). Also, since under a Lorentz trans- 
formation [5] 

D-(h) = B-(x) + & x, 

where x is the Lorentz angle, and +d” transforms as a scalar 

U(A) T(x, y, C) U-l(fl) = exp - [+ (yz5 + YUS)] W'k fl.11, AC), (4.6) 

where the dependence on the path C has been explicitly denoted, and T trans- 
forms as if it were bilinear in “spin 4” fields. 

T has a simple physical interpretation as creating a charge dipole with an 
electric field between the two charges. The current can be conveniently defined 
as a limit 

p(x) = I!_:: - Tr{y”yU( T(x + E, x) - (0 I T(x + E, x) I 0))) 
S#O 

(4.7) 

leading again to 

jq,) == - + P&E(X). 
i7 

Due to the particularly simple expressions of T in terms of the fields $dG, 
this gauge will play a central role in the following discussion. 

Writing with (3.3) 

$dq(x) = exp[i & 2;+(x)] ( @2’,“’ )ri2 a(x) exp[i z/;T J-(X)], (4.8) 

one has from (3.13) and [5] 

(0 I Al ... 4L) ~2(~m+1> ... (72GGJ 

x “l”(Y1) ... %*(Yn) ~2*bn+l) ... ~2*hJ I 0) = 1, (4.9) 
b(x), 4Y)l = 0, (4.10) 
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and all other Wightman functions not obtainable from (4.9) by permutations are 
zero. 

This leads immediately to 

a&x) = UC(O) --= ui , (4.11) 

g.*u. zzz cJi(Ji* = 1. z t (4.12) 

The u’s form, therefore, an abelian algebra of constant unitary operators. It is 
clear that the field algebra is a reducible one (in conformity with the failure of the 
linked cluster property; cf. Eq. (4.9)) and the Hilbert space cyclically generated 
from the vacuum / 0) will contain many vacua. There can be conveniently para- 
metrized as 

I % , n2> = (%P (ff,P I 0) (4.13) 

with n 1 , n2 arbitrary integers. 
One can in standard fashion [12] obtain the irreducible representations of the 

field algebra as 

(4.14) 

with P an arbitrary Wightman polynomial in $dG and Afi and (~P!&+1,2 defining 
the irreducible representations 

(QPQ),,,, w,f - 4) w,’ - 0,) = (w,’ I P I he,). (4.15) 

Here I f?,e,) are the “eigenstates” of (TV , u, : 

(4.16) 

In each one of the irreducible sectors, (rl , u3 are c numbers 

i61. (31=e ) u2 = e iez (4.17) 

and the field algebra becomes isomorphic with the algebra of the free scalar field 
with mass m. 

The electrons completely disappear from the theory, in agreement with 
Schwinger’s [l] physical picture of the complete screening of the electric charge, 
leading to the nonexistence of an electron spectrum. 

Although in other gauges the field algebra will no longer possess such a simple 
structure, it is clear that the observable algebra, being gauge invariant, should 
have the same representations independent of the gauge of the field algebra it is 
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constructed from. In other words, excitations other than the massive boson ones 
that will be present in other gauges are not physical and can be gauged away. 

Let us look now into gauge invariant (observable) algebra. First we notice that 
there seem to be two natural candidates for such an algebra: 

Case (A). y5 invariance is taken as a superselection rule, and the algebra of 
observables will be generated by the electric field P’(x) and the bilocals T,,(x, v), 

T& Y). 

Case (B). Only gauge invariance is required; then we have a larger observable 
algebra generated by the P’(x) and T(x, v). 

In the first case, we have from (4.3) (4.8) and (4.12) 

=( Kc ) N,,(x - y) : exp i & [ - j: l a,&t) OPt, + Z:‘(Y) - z(X)]: 

=i 
Kc ) N,,(x - y) : exp i ~5 [ - 1: l “a,Z(t) rlt, + t;(x) - al;)] : , 

which defines a local isomorphism between the algebra of observables and the 
algebra of the free mass m scalar field. 

There are no inequivalent representations of the observable algebra corre- 
sponding to the usual charge sectors [6, 71, since the formal sectors characterized 
by 1 nln2) are equivalent to the vacuum sector 

(0 I A I 0) = ov, I A I w*h (4.19) 

for any element A of the (A) observable algebra. 
One can still look, however, at representations of the (A) algebra that can be 

physically interpreted as corresponding to charge sectors by considering a limiting 
situation of a dipole state in which one of the poles is removed to infinity. Since 
our algebra is isomorphic to the free mass nz field algebra, those representations 
will violate the spectrum condition [13] but are nevertheless worth considering, 
since the physical situation to which they correspond can, for local measurements, 
be approximated with arbitrary precision by the dipole states of the vacuum 
representation [14]. 

Consider the state 

I g, x0) = exp [i JG J dxl g(x’) a”J(xo, xl)] 1 0) (4.20) 
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where g is any real function with (-Vz + &Y!“g square integrable. The expec- 
tation values of the electric field and charge density in this state at time x0 are 
given by 

(g, x0 I E(xO, ~1) / g, x9 = eg(x’), (4.21) 

&(x1> (g, x0 j e,j”(xo, xl) 1 g, x0> = e nxl . (4.22) 

As expected, the expectation value of the total charge in the state 1 g, x0> 
vanishes., From (4.22) we see that except for this condition on the total charge, 
we may construct a state 1 g, x0> corresponding to any reasonable, localized 
charge distribution at time x0. In particular, point charges may be obtained as a 
limiting situation corresponding to discontinuities in g(xl). 

It is easy to see that the vectors 1 g> E 1 g, Oj (we fix x0 = 0 without essential 
loss of generality) define unitarily equivalent representations of the algebra of 
observables (equivalently of the algebra of the free scalar field of mass nz). 
Specifically, 

where 

(g I ~FOCk(~l) ... ~FO,,<Z,, I g> = (0 I z;,(z,> ... Z(G) I o>, (4.23) 

&i,(z) = T$FOCk(~) Tg = &,&z) - 2/G 1’ dxl g(x’) Z”rl( -z”, 9 - xl), 

(4.24) 

T, = exp i I,& [I g(xl) 3°&,Ck(0, x1) cl&]. 

We now wish to construct representations of the observable algebra which 
correspond to right-handed, left-handed, and symmetric charge monopole states, 
starting with appropriate dipole and quadrupole states of the type / g). Defining 

g(x1, y’ I z’) = &(zl - xl) - &(z’ - y’), (4.25) 

which by (4.22) corresponds to a positive charge at x1 and a negative one at yl, 
we set, for an arbitrary observable A in the (A) algebra, 

(x’(&)l A I x’(i)> = j;$ <g(x’, a I -1 I A I gb’, a I .)i 

<x’(s>l A I x1(s);) (4.26) 

= lim ai 7x ( 
gw, a I .> + gw, --a I .> 

2 2 I I 
A gw, a I .) + g(xl, --a I *) 

2 > 2 . 

Strictly speaking, I g(xl, a I .)> is a well defined vector only for step functions 
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with rounded-off corners. However, the expectation values of (4.26) are meaning- 
ful even in the point-charge limit. 

The charge monopole states which we have written as improper vectors 1 x1( *)> 
and 1 xl(s)) correspond as in (4.23) and (4.24) to representations 

&*t,(z) = &,,,(z) - \G ji” i;Od(-z”, z1 - y’) dyl, 
2 (4.27) 

&,)(Z) = &&(Z) - q j c(yl - 2’) iiOd(-20, 21 - y’) dyl. 

It is clear that these free-field representations are inequivalent to the Fock 
one and even have different asymptotic behaviour for z1 + &co:’ 

E(z) - cos mz”. 
::I -a m 

From [13] it follows that these representations violate the spectrum condition, 
and it is easily seen that, in fact, there is no unitary implementation of the trans- 
lation group in them. Physically, this is quite understandable since the represen- 
tations (4.27) are based on states which represent a charge localized at x1 for x0 = 0 
and an electric field extending to infinity. The charge remains localized within a 
finite space region but is not constant in time, due to currents extending to infinity. 
Also the energy-momentum leaks in and out from infinity, leading to the non- 
existence of a unitary representation of the translation group, since the system is 
not a conservative one. 

We can, of course, also obtain representations corresponding to an arbitrary 
number of monopoles and even continuous charge sectors, corresponding to the 
fact that the charge is not a conserved quantum number. 

In the case of the (B) algebra, the irreducible representations satisfying spectrum 
condition correspond to the I 0,0:!> sectors, where r,, and Tzz are given by (4.18) 
and 

--r’(l) 
Tl,(X, Y> = ( “e2n ) Nl& - 4’) 

x :expid\/7T [ - jl ya,z?(t) dt, - ,2(x) - Z(y)] : ei(s1-s2). (4.28) 

There are infinitely many inequivalent representations of the (B) algebra corre- 
sponding to the broken y5 symmetry angle (0, - Q,). By requiring parity to be a 
good quantum number, the only possibility is e1 - e2 = 0. 

One can also introduce, as for the (A) algebra, representations which violate 
the spectrum condition and correspond to charge sectors. 
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V. COULOMB GAUGE 

In Sections III and IV we have presented a positive-metric version of two- 
dimensional quantum electrodynamics which is particularly well suited to the 
analysis of the algebra of observables. From the intuitive point of view, however, 
this treatment leaves something to be desired, since the “electron” field +dF has 
the rather strange property of creating only charge zero states from the vacuum. 
The question arises whether it might not be possible, by means of a gauge trans- 
formation (which will not affect the algebra of observables), to construct an electron 
field which not only satisfies the field equations of QED, but also creates a localized 
charge one state from the vacuum (such states do not, of course, correspond to 
vectors in the Hilbert space of the $J 471, but, as was shown in Section IV, may be 
constructed as the limit of vectorial states). We shall discover that the construction 
of such a charged electron field will lead naturally to the Coulomb-gauge formula- 
tion of QED in two dimensions. 

The simplest way to approximate an electron field with the desired properties 
is to define (see (4.20)) 

. exp i dG 
[f 

K!dxl, a I y’) + gb’, --a / y’)) aG(y) dyl]. (5.1) 
mO=yO 

The improper state 40(x) 1 0) has a charge distribution which differs from that 
of / $(g(xl, a I 0) + g(xl, --a 1 0))) of Section IV, (4.20), (4.24) only by a short- 
range cloud of total charge zero. 

The “field” 4,(x) satisfies the equation of QED with A, = 0, and thus corre- 
sponds to the Coulomb gauge. Of course, it is only in the limit a+ co that we 
expect to be able to define a translationally invariant charged field 4,(x). 

To see what sorts of problems might be encountered in passing to the limit, 
let us examine the two-point function 

(0 1 4,~~) 4,*(u) ! 0) = ( Ke~~‘l) ) (0 1 uTuu* I 0) e[x~Js)~x~+(y)l, (5.2) 

where 
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so that 

&a-(x), xc&+(y)1 = 2 j dfl ao2A--(xo - y”, t’) 11 xl - yl - t’ / 

Asymptotically, for large a, 

[xa-(X), &+(y)] = - ; j dfl a,%d-(xo - yo, tl) (I xl - yl - tl / - a + ; 1 tl I) 

+ ; j dfl aod-(xo - yo, tl)(y,5 + yy5) 6(X1 - yl - t') 

- +z5yy5&x - Y) + 46 x, y), (5.4) 

where ~(a, x, v) vanishes exponentially for x, y fixed and a + co. 
The term 

leads to a divergent two-point function (even after smearing with test functions) 
in the limit. We are thus led to make the additional gauge transformation 

JJx) == eiia+(s~)~a(x) &JS~), (5.6) 
where 

4 
__ <n’(Xo) = ?V?lU 4 &k&m0 (5.7) 

and 
p+, b-1 = 1. (5.8) 

The b* are creation and destruction operators of a harmonic oscillator of angular 
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frequency m, which we have quantized in an indefinite-metric Hilbert space 
adjoined to the positive-metric space of the $dG by means of a tensor product. 
It turns out that the gauge transformation (5.6) which affects neither the Coulomb 
gauge condition A, = 0 nor the role of the modified electron field as an approxi- 
mate charge-raising operator, leads to a well-defined set of Wightman functions 
in the limit a --f co. In particular, defining (formally) 

4,(x) = lim exp 
[ (5.9) a+r; 

where the Klein transformation has been undone in order to compare our result 
with [2], we obtain 

(0 I &(x1> **- $,(x,, #b*(.vl) ..* &*(yn) I 0) = ei-s)wo(x, y), (5.10) 

with 

F&Y)= 7f c /($c 
j<k 

d-(X, - Xk) - D-(Xj - Xk)) 

+ ~Z,~~,(~-(Xj - Xk) - DHXj - X?J) 

+ (YF& + Y$) ( G  A-(Xj -  X,) - D-(Xj - xi;)) 

Yr)) 1 - 

+ Y:jY;,(mx.i - Y!J - wxj - YhJ) 

+ c& + r”,,, (WXj - Yd - z;& wxj 

In (5.11) 

YJ) 1. (5.11) 

&f(x) = J dtl(; I x1 - tl / + ; I tl l)f(xO, t’). (5.12) 

The presence of the second term in the Green’s function V2 is due to our 
particular choice of limiting procedure (with two symmetrically placed image 



QED IN TWO DIMENSIONS 189 

charges which recede to infinity). With more complicated configurations of image 
charges (for example, with the number of such charges increasing with a, the 
second term can be reduced in magnitude and even eliminated entirely, giving 

&j(x) = ; i’ dfl / x’ - tl l,f(xO, f’). 

The Wightman functions (5.10) with (5.11) and (5.13) correspond to Brown’s [2] 
set of Green’s functions ,for QED in Coulomb gauge (except for a finite renormaliza- 
tion). They can also be obtained using our original limiting procedure, but with 
<*(x0) in (5.6) taken to satisfy 

[L-(-yO), L+(xO)l = - -2 J‘ dtl 3,24-(x0 - yo, tl) (a - ; [ tl 1) (5.14) 

instead of (5.7) and (5.8). The different choices of V2 correspond to different 
gauges (all satisfying A, = 0), and are equally acceptable as Coulomb gauge 
solutions of QED (see [4]). 

Let us now examine some of the properties of the Wightman functions (5.10). 
It suffices to look at the long distance behavior of the two-point function 

to see that the Schwartz inequality is violated and one has a very pathological 
indefinite metric. Due to their exponential growth for space-like separations, the 
Wightman functions of the Coulomb gauge field 4e are not tempered distributions. 
The test functions must be analytic in momentum space, and thus one cannot 
define the energy-momentum spectrum of the theory. 

It should be remarked that since the above pathologies occur through applica- 
tion of a gauge transformation, as far as observables are concerned, one has the 
same picture as in the previous section. We are naturally led to representations 
corresponding to charge sectors by considering expectation values 

(5.16) 

Contrary to what is expected in the case of a gauge transformation of the first 
kind [6, 71, there exists no local charge-raising operator in the theory. In addition, 
in two dimensions the growth of the Coulomb potential for spacelike’ separations 
prevents the existence of any charge-raising operator in a positive definite Hilbert 
space. This is the reason for our troubles with the electron field in the Coulomb 
gauge, since +c is directly a charge-raising operator. 
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VI. THE VECTOR MESON THEORY 

We shall investigate in this section the way in which quantum electrodynamics 
can be understood as a limit of a vector meson theory when the bare mass of the 
meson tends to zero [S]. 

Starting from the coupled equations 

~,F”“(x) + mo2Bu(x) = -ej”(x), (6.2) 

where p(x) is the gauge-invariant current. (Since we are interested only in the 
electrodynamics limit we do not take the more general current definition of 
Hagen [4].) 

Making the Ansatz 

with 

d(x) = eix+(z)#(x) eix-(x) (6.3) 

x’(x) = Ki*w + 46 - 4 Qo,*(x) + /3(&i - a) Q&*(x) 

+ y5 (ww + f Wx) 

+ 4d\/’ - B) &4?(x) + B(z/G - p> mx,), (6.4) 

4(x) transforms as a 
as long as [5] 

Inserting (6.3) into 

B”(x) = (ci - 

1 
m 

“spin 3” field and satisfies local anticommutation relations 

(a - -\/G)(/3 - 2/G) = n. 

(6. l), we get 

(6.5) 

Pa,/qX). (6.6) 

The gauge-invariant current defined as in electrodynamics (4.7) leads to 

j”(x) = (1 - $)(jfu - 5 
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where the first three terms on the r.h.s. of (6.7) correspond to the free current 
with infrared corrections [5]. 

With (6.2) we get 

and 

leading to 

and, with (6.5) to insure locality when nzo2 # 0, 

(6.9) 

(6.10) 

(6.11) 

We see that as nz, + 0, p + i/G and a: + co. The Wightman functions of the 
fermion fields are 

(0 I (b(Xl) ..’ #<xn, i(Y1) ... $-(Yn> I 0) = eiGcss~)~o(x, VI, (6.12) 

Taking the limit tno2 ---f 0 one sees that fermion Wightman functions diverge. 
The divergent part can, however, be gauged away, in two different ways: 

1. Instead of #J given by (6.3) one can consider eiaq+(s)$(x) ei”q-cZ) with 7 
an independent zero mass free field with indefinite metric, which in the limit of 
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~~~~~ --f 0 leads us to Schwinger’s solution. The reason that one does not in this 
case satisfy Maxwell’s equations on the whole Hilbert space (cf. Section II) is 
that although formally the free part of the current (6.7) vanishes as /)ro2 + 0, its 
commutator with the fermion fields tends to a nonzero limit (cf. (2.15)). 

2. Making a nonlocal gauge transformation 

$tx) + eia’i+(z)#(X) e-i~‘~-(x) 

with the appropriate infrared corrections, and taking 01’ - a: finite as t~z~* 4 0, 
one is led to the noncovariant solutions discussed in Section 111. 

VII. BROKEN SYMMETRY ASPECTS 

The equations of motion of quantum electrodynamics in two dimensions with 
zero electron mass are invariant under both gauge and y5 transformations of the 
first kind. It is worthwhile to examine the spontaneous breaking of these sym- 
metries in various operator solutions of Sections 11 and HI. 

In the covariant solution of Section II the gauge-invariant current (2.11) 
generates local gauge transformations and one also has a conserved current 

generating local y5 transformations. The latter current, however, is not gauge 
invariant, since it does not commute with jLU (cf. [ 1.5, 161). There is no spontaneous 
breaking of the symmetries. 

In the noncovariant gauges of Section Ill there is no local current generating 
the y5 transformations, and for 01 = tiG there is also no current generating the 
gauge transformations. This corresponds to a total breakdown of Noether’s 
theorem, a mechanism proposed by Maris et al. [ 171 as a way to avoid Goldstone 
bosons [18] when a symmetry is spontaneously broken. In fact, we have a spon- 
taneous breakdown of both symmetries (cf. (4.14), (4.17)) without zero mass 
particles. The absence of conserved currents implies that there are no local auto- 
morphisms of the field algebra corresponding to the symmetries, and thus 
Goldstone’s theorem [l&22] fails (cf. [12] for a similar effect in superconductivity). 

For (y. # g; a local current generating gauge transformations of the first 
kind does exist and is proportional to the vector potential (3.8), i.e., 

~ dTlY ( -- 1 
2 WO(.Y), P(41E.T. = - 

m 4X 
1 @(x) 6(x1 - v’) + Schwinger terms. 
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Although A”” creates zero-mass gauge excitations for LY # 1/G, these do not 
correspond to Goldstone bosons, since #P(xJ ... @(x,,) (for example) creates 
gauge excitations with a continuous mass spectrum near the origin (cf. (3.13) 
and [5]), and, therefore, gauge invariance is not spontaneously broken [22]. On 
the other hand, the y5 invariance, which is not locally generated by a conserved 
current. is spontaneously broken for any iy, as can be seen from the failure of the 
linked-cluster property (cf. (3.13) and [5]) 

leading to irreducible representations without y5 invariance. 
To summarize, we see that the breaking or not of the gauge and yj symmetries 

depends on the q-number gauge employed. However, in none of the solutions 
studied do we find Goldstone bosons. In every case of spontaneous symmetry- 
breaking, there is no corresponding conserved generator of the local transforma- 
tions, and hence Goldstone’s theorem is not applicable. 

The question arises whether any observable significance can be attributed to 
the broken symmetries of two-dimensional quantum electrodynamics. The answer 
seems to be yes: the absence of charge (and pseudocharge) quantization (i.e. of 
discrete charge sectors) among the irreducible representations of the observable 
algebra is a gauge-invariant expression of spontaneous symmetry breaking, This 
ph~uirat breakdown of gauge and yS invariance, an immediate consequence of 
the lack of physical electron spectrum in the theory, leads directly to spontaneous 
breakdown in the usual, tt~athem~atical sense in the noncovariant representation 
with a -= &. In other gauges, the simple structure of the algebra of observables, 
and along with it the physical breakdown of symmetry. may be masked by the 
presence of spurious gauge excitations. In such gauges, whether or not the sym- 
metries are broken in the usual sense is physically of no importance. 

APPENDIX 

We wish to obtain here the connection between the renormalized fields and 
Wightman functions which we employed throughout this work and the unrenor- 
malized ones which are used by many authors [l&4]. The generic form of our 
Wightman functions is 

(0 1 +(x1) ... c+h(x,,) $( yl) ... fJ(yJ 1 0) = eiF(*.y)WO(x, y) (A.]) 

595/6S/‘-13 
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with 

where A, B, C are sums or differences of free two-point functions. 
Because of parity invariance C(x,) = -C(-x,), so C(0) dzf 0. 
A(0) and B(0) are in general infinite but can be finite and real in special gauges. 

In those cases we can go to the unrenormalized fields and Wightman functions 
by writing 

where 13 is obtained from F by replacing A, B, C by A - A(O), B - B(O), C - C(0). 
Therefore 

exp[iFCx, v)l wok .Y) 

= exp c ifi(x, y) - ml(O) - d(O) + f  [C (ys, + ~5y,)j-'] w,(x, y). (A.4) 
I 

The y5 invariance of the free Wightman functions implies 

SO 

and, with (A.4), 

&F(W) pf70(x, y) = ei~(r,y)e-n(A(O)+B(o)) W,(& y). 

Thus, defining the unrenormalized fields by 

$gx) = e1/2(A(0)+B(O))~(X), 

we are led to the unrenormalized Wightman functions 

(0 / $(x1) ... &xn) J(yl) ... J(yn) IO) = ei~~z~y)Wo(x, y). 

(A.7) 

(A4 

64.9) 
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