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States describing a non-zero number density of massive particles are investigated in the SU(2) 
chiral-invariant Gross-Neveu model. It is found that for a fixed positive density, the lowest energy 
state is color ferromagnetic, with all color spins aligned. For asymptotically large densities, the 
total energy and density are calculated as functions of the Fermi momentum. These quantities 
tend toward their counterparts in a non-interacting theory, with logarithmic corrections typical 
of an asymptotically free system. 

1. Introduct ion  

The  chiral invariant  G r o s s - N e v e u  (CGN) model ,  describing the interact ion of  

fe rmion  fields with SU(n)  internal symmet ry  in (1 + 1)-dimensional  space-t ime,  has 

p roved  to be a fruitful theoret ical  l abora to ry  in which a n u m b e r  of  interest ing 

results can be ob ta ined  exactly [1, 2]. Cor respond ing  formally to the lagrangian 

densi ty  

.~  = i~aao,, + g[(~a~a)=--  (~%/5~/a)2], (1.1) 

the C G N  mode l  exhibits dynamical  genera t ion  (via dimensional  t ransmutat ion)  of  

a non-ze ro  mass m, accompanied  by asymptot ic  f r eedom:  in the limit of  infinite 
coupl ing constant  g appear ing  in (1.1) vanishes ultraviolet  cutoff  K, the bare  

according to  

1 
g ( K )  In ( K / m ) "  (1.2) 

In  contras t  to  what  one  expects of  four -d imens ional  gauge theories,  the asymptot ic  

f r e edom is not  accompanied  by  SU(n)  color  conf inement ;  ra ther  there exist n - 1  

multiplets of  co lor -bear ing  particles of  masses 

• r,/r 
m~ = m sm ~ ,  r = 1, 2 . . . . .  n - 1 .  (1.3) 

n 

In  addit ion,  there  is no  spon taneous  breaking  of  the chiral and SU(n)  invariances 

(such breaking  is, in fact, fo rb idden  by Co leman ' s  t heo rem [3]). 
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Another  interesting feature of the model is the absence of particle creation and 
annihilation in scattering processes, thanks to an infinite set of conservation laws 
[4]. The latter constrain the sets of incoming and outgoing momenta to be identical, 
and allow one to write the S-matrix as a product of two-body S-matrices. Because 
of the conservation of particle number, it is meaningful (here and below we restrict 
our attention to the SU(2) model, with only one species of particle) to speak of a 
gas of • massive Gross-Neveu particles on a line segment of length L, and then 
take the limit L -~ oo with p = ~ r / L  fixed. 

It is our goal in this article to investiga.~, the zero-temperature p r o p e r t i ~ 0 f  the 
finite-density CGN gas. We shall primarily be interested in answering two questions: 

(i) What is the nature of the ground state? 
(ii) What are the physical manifestations of asymptotic freedom in the high- 

density regime? 
Although Coleman's theorem forces the vacuum of the local CGN field theory 

to be a color singlet, there is no such restriction on states of non-zero density, in 
which the massive particles are scattered by one another as a result of an effective 
non-local interaction. In sect. 3, we shall show that in fact the finite-density ground 
state is not a color singlet, but is rather the (degenerate) color ferromagnetic state 
with all color spins aligned. The approach to this ground state as the temperature 
tends to zero will be studied in sect. 4. 

Turning to the second main item of interest, we note that in previous work on 
the CGN model, the notion of asymptotic f reedom has referred primarily, if not 
exclusively, to the renormalization relation (1.2) expressing the cut-off dependence 
of the bare coupling constant. It is expected that asymptotic freedom in this 
constructive sense will be mirrored in the asymptotic short-distance behavior of 
the correlation functions of fields. Unfortunately, the correlation functions are not 
now accessible to calculation, and so one must look at simpler quantities, of a 
macroscopic or thermodynamic nature, to find a physical expression of asymptotic 
freedom. Such a program has been quite successful [5, 6] in a closely related model, 
the Kondo model of a magnetic impurity interacting with the conduction electrons 
of a non-magnetic metal. There one has total screening of the impurity's magnetic 
moment  in the ground state, but for increasingly high temperature or magnetic 
field (relative to the so-called Kondo temperature),  the contribution of the impurity 
to the magnetization approaches more and more that of a free moment,  with 
logarithmic corrections typical of asymptotically free systems. 

It is with the Kondo example in mind that we look for a manifestation of 
asymptotic f reedom in the high-density regime of the CGN model. In sect. 5 of 
this article, we shall set up a perturbation scheme which allows us to determine, 
to arbitrary order in b -1 (m sinh b is the upper bound on the zero-temperature 
momentum distribution, i.e. the Fermi momentum) the rapidity (hence momentum) 
distribution of the density ground state. We then calculate explicitly, to order b -2 
the relations among the density, the Fermi momentum and the total energy. We 
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shall find that these relations are all consistent with asymptotic freedom, with a 
renormalization of the effective mass very similar to the large magnetic field rescaling 
of the Kondo temperature  found in ref. [6]. 

2. Brief survey of the chiral-invariant Gross-Neveu model 

In this section we summarize the main results of ref. [1]. For  a more detailed 
introduction to the chiral-invariant Gross-Neveu model, the reader is referred to 
ref. [7]. 

In a convenient basis with "fermionic bookkeeping" [7] each energy eigenstate 
(in the presence of volume and ultraviolet cut-offs, L and K, respectively) is labeled 

by 
(a) sets of distinct integers, n~, n~ . . . . .  nN~,~ where N± are integers; 
(b) a set of distinct complex "rapidi ty" parameters yl ,  X2 . . . . .  XM, with M ~< 

½(N+ + N_) -- ½N, satisfying 

r i( lc 1 , , ,+. , , ,  
Li(rr/c ~ ' - - T - -  . 7 , - - - - T - -  

or, taking the logarithm, 

M l 
= -arJ1 Li(x~ -x~)  - ,rJ ' 

4g 
C=l_g2,y=1 ..... M, (2.1) 

M 

\ ~ ' r r  / ~ \ ~ ' r r  / B = I  \ ' r r  / 

(2.2) 

where J(xv) is an integer (half odd integer) if N - M  is odd (even). Each set of 
quantum numbers {_n±,_X} corresponds to a multiplet of states of color spin 
½(N - 2M).  

The ground state, which becomes the physical vacuum in the infinite cut-off limit, 
corresponds to a filled Dirac sea with 

-4- 
n 7 = no] = -I-noi, 

2KL 
n o j = - ½ N o + i - 1 ,  ] = 1 , 2  . . . . .  N o ~  

l r r  

It is a color singlet, with M = ½No. All Xv are real, and the quantities J(X~) in (2.2) 
are consecutive integers (half odd integers) for M odd (even). 

All other  states havestr ict ly positive energy (there is a mass gap), and may have 
N :~ # ½No or M # XNo. In addition, some of the X~, may not be real, and interspersed 
among the real X, there may be "holes",  i.e. solutions X~ of (2.2) such that 
Z h '~ {X1 • • • XM}. The task of classifying, in general, the solutions of (2.1) is simplified 
considerably by the standard assumption, whose consistency has been thoroughly 
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checked [8], that all Xv in a solution set are members of strings. An n-string is 
defined as a family of n X~'s with the same real part, of the form 

n - 1  n - 1  
X s+ ilcr, l = 2 '" 2 (X s real). (2.3) 

There is a further simplification if the number of 1-strings is macroscopic (i.e. 
~L) ,  as is the case for physical states in our model. Then one may introduce a 
density (rl(X) such that for all 1-strings Xt 

I'(i+l dxtrl(X) = 1. 
t 

Introducing as well a hole density Crl.h(X), which will be merely a sum of delta 
functions if the number of holes is fixed for L ~ oo, one sees that, in general, 

~(x) = ~r,(x) + ~,,h(x) 
is a smooth, positive function. 

We now rewrite (2.2), making use of the string hypothesis and the density (r,(X): 

2N+ tan- '  ( ~ )  - 2N_ tan-t  ( ~  x ) 

. . . .  ,rings[ [ Xn]--X ~ [ Xni--X ~] 
= 2 E E t an - '  ,=2 j \½(n + 1)it] + t a n - '  \ } (n  - 1)~vJ 

f 
+ 2  . dx'Orl(X') -2~'J(X), (2.4) 

d - -  c o  

where 

J(x) = dx'~(x'),  (2.5) 
o 

with xo chosen so that 

2 rrJ (-oo) = - ( N  - M 1 -  2 ~ M . )  ~r = - 2  ~rJ ( +oo) , 

where M.  is the number of n-strings. The 1-strings and 1-string holes will then be 
located at the points where J(x)  takes on the (half) integral values J(-oo)+½, 
](-~o) +~ . . . . .  j(+oo)-~, I (+oo) -~  

Differentiating (2.4) with respect to X now gives the integral equation 

! N ! N 2 + 2 - 

° ~ ( x ) + ° ~ . ( x ) = ( ½ ~ . ) 2 + ( x _ ~ r / c ) 2 +  , 2 (~=) + (x +,r /c )  2 

1 
- oo dx'trl(X') zrR+(x-X')  2 

+ ~ ~- +1) ½(n-l) 
' I  .=2 ; (~(n + l)~r)2+(X-X.;) 2 ~-(½(n- l)zr)2+ (X-X.j) 2 ' (2.6) 
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which may be solved algebraically for the Fourier transform 

P +oo 

o ; l ( p ) = [  dx e - i p x o . l  (X  ) , 
d_ oo 

in terms of ~l,h(P) and string positions: 

N +  e -ipÈ/c + N _  e ip~r/c &l,h(p) ~ M 

~l(p) = 2 cosh (½rrp) i ~ - , , = 2 " "  i=IX e -('-I)('/2))pI e -'px" (2.7) 

For the vacuum, we have N± = ½No and only 1-strings, so that the density is given 
by 

No cos plr/c 
&0(P) = 2  cosh (½¢rp) " (2.8) 

Once a solution of (2.1) has been found in a self-consistent way, the momentum 
and energy, relative to the vacuum, may be computed simply, as 

where n is 
(No~L) tan -1 
become 

2¢r Mh No. -1[ sinhx~\ 
P =  n- -~+i~  1 -~--tan kc-o-~sh ~ c )  ' (2.9a) 

2 .  No , ( cosh 
E = Inl T+j  - -tan \ s i - ~ r - ~ c ]  ' (2.9b) 

(Mh = O;1,h(0)), 

an integer. In the limit K ~ o o ,  c--)0 with the quantity 
(1/sinh[rr/c]) held fixed at m, the renormalized mass, eqs. (2.9) 

2~r Mh 
P=n--E+X '- m s in .  (2.10a) 

E=lnl2~'+ M" ~ rn coshx~.  (2.10b) 
L i = 1  

We observe that there are two types of terms in the energy-momentum spectrum, 
corresponding to the sets of quantum numbers n ~: and Xv, respectively. The former 
corresponds to a spectrum of massless, colorless, non-interacting particles and 
antiparticles of charge +1 and chirality +1. The second class of terms provides a 
natural interpretation of the hole position X h: it is the rapidity of a particle of mass 
m and color spin one-half. The non-real X~ do not contribute directly to the 
energy-momentum [the r.h.s, of (2.10) depends only on the hole positions], although 
there is an indirect O(1/L)  contribution, coming from the influence on hole positions 
the "string" terms in (2.7). The non-real Xv label the various states (degenerate in 

1 the limit L ~ oo) corresponding to the different ways in which Mh color spins ~ can 
be combined to yield total color spin ~(N - 2M). Henceforth we shall identify Mh 
with ,/¢', the number of massive particles. 
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To illustrate the above concepts and formulas, consider a state without massless 
excitations (in particular, N÷ = N_ = ½N0) containing two mass-m particles. The 
color spins can add to form either a singlet or a triplet state. Both are characterized 
by two holes, X h and X2 h, but are distinguished by the fact that in the triplet state, 
all Xv are real, whereas in the singlet state, there is a 2-string at X s= 1, h . h, 2~,X1 t X 2 ) .  

From (2.7) we have for the triplet and singlet densities tr] and o-), 
--i h - i  h 

.t Nocos(rrp/c) e PX'+e px~ 
trl (p )=  2cosh(~zrp) l+e_,,ip I , (2.11a) 

R~ (p) = t~ (p) - e - ( ~ r / 2 ) l  pl e-ip(x~;÷x~)/2. (2.1 lb) 

Substitution into (2.4) then yields [1, 7], for K ~ oo, 

rn s inhx  h = ~ ] ( X  h) 6~ 
L '  

i ¢ j = 1 , 2 ,  K = t , s ,  

_ 6t f d p  sinC~ h-X2h)p 
8 ~ 2 - - - -  21 = ? l + e , , L o l  , 

h h -8 1 =8' ( \ l -x2) = 12 - 2 t a n  - 1  \ - - - - ~ - - - / .  

(2.12) 

If, say, No is twice an odd integer before cutoff removal, then in the singlet state 
(with No = 2 M ) J ( x  h) is an integer while in the triplet state (with No = 2(M + 1)) 
Y(x h) is a half odd integer. 

The terms in (2.12) which involve the rapidity difference X~-X~ represent a 
shift in momentum of each particle away from its non-interacting value (a multiple 
of 2~r/L). In refs. [1, 7] this momentum shift was interpreted as the two-particle 
scattering phase shift. Our main interest in this term is in its contribution to the 
energy of the two-particle state, as a clue to what we may expect when we put 
together aV" particles in a state of finite density. 

We calculate in the c.m. frame (which eliminates, in order L -~, the spurious zr/L 
momentum shifts due to the fact that J0¢ h) is a half-odd-integer in the triplet 
state). Then, to order L -1, 

E = 2 x / ~ +  2p6p 
4b_r7.  , (2.13) 

where p is an integer multiple of 2¢r/L (the same for both triplet and singlet states) 
and, assuming X~ > 0, 

f L-16 t , (triplet), - -  12 / 

8p = _L_16t12 + 2L_1 tan- 1 (2~¢ h , 
k q'/" / 

(singlet). 
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We see that the singlet energy is higher than that of the triplet. The two-body 
interaction between massive physical particles is  color ferromagnetic, in contrast 
to the color antiferromagnetic bare interaction between pseudoparticles in the 
Bethe ansatz construction [1, 7]. Combining this result with the absence of n-body 
interaction for ,A/'> 2 (the S-matrix is in fact factorizable, i.e. it may be written as 
a product of 2-body S-matrices), we are led to expect that for a finite density 
system, lim ( N / L )  = P > 0, the ground state will have all color spins aligned. 

3. Finite density states at zero temperature 

The results of the preceding section suggest that the ground state of a system of 
N massive Gross-Neveu particles is one (more precisely, a multiplet) in which the 
color spin is maximal, i.e. ~N. We now turn to the problem of constructing such a 
state and showing that it indeed minimizes the energy. 

The states of maximal color spin are particularly simple, since in them all rapidity 
parameters gv are 1-strings. This can be seen from the normalization condition for 
the density trl(x) (see (2.7)), 

+oo 

M = J"_ d X O ' I ( X )  + E nM. 
oo n;g:2 

=½N-~Mh+ Z ( n - 1 ) M . .  (3.1) 

Expression (3.1) is a minimum for M,  --0, n > 1. In addition, the energy (in the 
absence of massless excitations) 

M h ~ N  
E ----" ~,, E h ( x h )  , Eh(J() = m cosh X, 

i = l  

will obviously be minimized by choosing a density of holes (i.e. of particle rapidities) 
of bounded support: 

= t o, I x l  > b, (3.2) 

where b, the rapidity bound, is related to the Fermi momentum and particle number 
density (in the c.m. frame) by 

PF = m sinh b 
+co r b # 

pL  = N =  I dx~l.h(X)---- I dxtr(X). (3.3) 
J . -  oo .S_b 
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The density tr0() of solutions and lioles must satisfy, according to (2.6), the integral 
equation 

~ [ 1 1 ] I ;  boo rr2+(Xtr0(') o'(x)=~No (½~)+(~_~r/c)~+ 1 2 (~r) +(X+~'/c) 2 - dx' _X,)2 

f f  ~(x') 
- dx' ¢r2+ (X_X,)2 • (3.4) 

By Fourier transformation, eq. (3.4) is easily transformed into the alternative form 

b P 

tr(g) = (to(X) + |  dx 'K(x -X')tr(X'), (3.5) 
J - -  b 

where 

I 
+~ dp e ipx 

K(X)= oo 2¢r l + e - ~ '  (3.6) 

and 

=No[ _1 1 ] 
~,o(x) 4,r tcosh (x-~/c)+cosh ( x + ~ / c )  " 2 ~  coshx 

is the vacuum distribution [see (2.8)]. 
The integral equation (3.4) is very similar to that which arose in the treatment 

by Yang and Yang of the Heisenberg model [9]. Unfortunately, methods of exact 
solution have not been found for such equations, but approximation methods are 
possible for asymptotically large or small Fermi momenta. We shall postpone these 
calculations until sect. 5. 

Let us now turn to the question of whether the color ferromagnetic state of 
lowest energy is in fact the ground state of the finite density system. We shall 
examine this question from two points of view. First, we shall show immediately 
that small perturbations of the alleged ground state (i.e. introduction of arbitrary, 
but non-macroscopic, numbers of non-real X~) always raise the energy. Then, in 
sect. 4, we shall examine thermodynamic states with macroscopic distributions of 
non-real Xv. We shall see that the temperature-T equilibrium state approaches the 
proposed ground state in the limit T ~ 0. 

Directly from eq. (2.7), we obtain as a generalization of (2.12) 

. 1 j~ s n (X -Xj )P 2¢ry~(x)=mslnhx+_~l~,_ "+~dp i h 
-~- .= ~ P l+e,~l.i - f ( x ) ,  (3.7) 

2strlngs { X-X~.~" .~ 
f(x) = 2  ~ tan-' k½(nj- 1)w]" 

For a fixed number of strings and L-* co, the last term in (3.7) is O(L-X), and we 
may use (3.7) to calculate the first order shifts e()~i) in hole positions when our 
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proposed ground state (with holes Xohl between - b  and b) is perturbed slightly. 
Assuming that the (half-) integers h h Y,(x  t, ), x~oi h + e (Xoi), in sequence (other- gti = are 
wise they could be relocated with decrease of energy), we have, to first order in L -1, 

Jf(x + e (X)) -Jo(X) = (half) integer. 

Inserting (3.7) for both Je and J0, and simplifying with the aid of (3.5), (3.6), we 
obtain for - b  ~< X ~< b, 

4, (x) = f ~ dx'K(x - x')4~(X') +f(x) + (half) integer, ( 3 . 8 )  

where 

~(x) = ~(x)e (x) 
mL ' tr(X) = solution of (3.5). 

In terms of ~bO(), the energy difference (to order L °) relative to our proposed 
ground state is 

b 

6E = m f_ dx  sinh xcr(x)e (X) 
b 

b 

= 2mZL So dx sinh Xea(×), (3.9) 

where ~ba(X)= ½14~(X)- &(-X)], the antisymmetric part of 4~ 0(), satisfies 

~ a(,~)= f_~ dx 'K(x -X ' ) t k ' (X ' )+ f f (X)  

= fobdX'[K(x-x')-K(x+x')]4""(x')+f(x) (3.10) 

where 

f ( x )  = l [ l ( x ) - f ( - x ) ] .  

Now since f(X) is monotonically increasing, we have 

if(X) > 0,  for X > 0,  
and since 

K ( X - X ' ) - K ( x  +X') > 0,  forx, x , > 0  ' 

we also have 

b 

fo dx'[K(x-X')-K(x+X')]ff(X')>O, f o r x > 0 ,  
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and, by iteration, 
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~ba(X) > 0 ,. for X > 0 .  

This establishes the positivity of dE. 

(3.11) 

4. The zero-temperature Hmit 

To further explore the color ferromagnetism of a gas of massive Gross-Neveu 
particles, we consider the behavior of the rapidity distribution as the temperature 
approaches zero. To relieve the anticipated vacuum degeneracy, we assume the 
presence of a constant color-magnetic field H, pointing in the z-direction in color 
space and having a non-zero, but arbitrarily small magnitude. The techniques for 
setting up the finite-temperature formalism are standard [6, 8, 10], so that we shall 
omit details except where special features of the model appear. 

For non-zero temperatures, the state of the system will be a statistical one labeled 
by densities o', (X), tr,.h(X) of strings of rank n and their holes (in contrast to zero 
temperature, the numbers of such strings and holes will typically be ocL). These 
satisfy resursive equations derived from (2.2), 

Orn +O'.,h = G(orn-l.h + O'.+l.h) , n = I, 2 ..... (4.1) 

where G is the convolution operator 

with kernel 

4-0O 

(Gf)(x) = ~_ d x ' G ( x - x ' ) / ( x ' )  , 
oO 

and 

G ( X )  = 1/2~r cosh X, (4.2) 

= ~ ' o ( X )  • 

The equilibrium distributions at temperature T can then be obtained by minimizing 
the thermodynamic functional 

= E - T $  - la.Ac + ½ H ( N  - 2 M ) ,  (4.3) 

where 

+ o o  

E = I_ dxcrl,h(X)Eh(X) 
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is the energy functional and 
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+ao 

s= X I_ 
n = l  oo 

-o'~ (X)In o'. (X)-  O'~,h(X)In O'.,h(X)] 

entropy. The chemical potential ~ has been introduced as 

(4.4) 

a Lagrange 

1 
~bl ----- ~ ( ~  - - E h )  + G In (1 + 172), (4.6a) 

¢ ,  = O In (1 + ft,-a)(1 + 7"/n+l) , (4.6b) 

together with the boundary condition for n -* oo, 

2 H  
lira [D, In (1 + r t , + l ) - D , + l  In (1 + 7/,)] = T ' 
n -,~oD 

with 
1 ~n 

Dn(x) = 1 2 2. (4.7) 
(~n~r) + x  

We observe that the equilibrium free energy F = E - 7S - / ~ c  may be calculated 
by making use of (4.6). In the limit of infinite ultraviolet cutoff, we obtain the 
simple and suggestive result, 

r +oO 

F-= - T " ' - "  J_ d;¢ cosh g In (1 + r/l(X)) 
2zr oo 
/ -  / *  +oo 

= - T  --~ [ dk In (l+e61(k)), (4.8) 
2~" J_~o 

where 4~a(m sinh X) = ~b1(X). If the second term on the r.h.s, of (4.6a) were absent, 
the expression (4.8) would be precisely the free energy of a system of free, spinless, 
relativistic particles of mass m in one dimension. 

We are unable to solve eqs. (4.6) exactly. However, we are here only interested 
in the limit T ~ 0, and for this purpose we can satisfy ourselves with some general 
properties of the solutions of (4.6): 

(4.5) 

(4.6c) 

namely, 

~b. (X)---- In n.(X) ~ l n  ~ ,  

is the 
multiplier, and is to be fixed by the constraint that the mean particle number 
(integral of O'l.h) is N. In varying ~, the o-., O'.,h are to be constrained by the linear 
relations (4.1). The result (see [8, 10]) is a set of recursion relations for 
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(i) ~b,(X) = tb,(-X) for all n, since G, D ,  and Eh are all symmetric. 
(ii) ~b~ 0()/> 0 for n ~> 2, since G is positive definite. 
(iii) 4~,(X), for all n, is a monotonically decreasing function of [Xl, since --Eh is 

such a function, d G / d x  < 0 for h: > 0 and property (i) is satisfied. 
Now, when IX[ --> o% T-~(/x - Eh) "-) - -~,  rh(X) --) 0 and all higher r/, approach finite 
asymptotic values. Since the operators D ,  and 2 G  behave like the identity on 
constant functions, the asymptotic values of ,/,, ,/n(0o), satisfy the algebraic system 

m(oo)  = 0 ,  

n ~. (~ )  = (1 + n.+~(~))(1 + n ._ , (oo) ) ,  

(4.9a) 

(4.9b) 

whose solution is 

1 + 7/. (oo) -2n/T 
lim = e (4.9c) 
._.~ 1 + n.+l(oo) 

[sinh ( n i l / T ) ]  2 

n .  = L  ThTTSJ - 1 

~ e  2(n-1)H/T, for T -*0 ,  n 1>2. (4.10) 

From property (iii) we have 

for all T, and so 

n .  (x) ~ n .  (oo) 

~7.(X)-~o ~ ,  n>~2,  (4.1.1) 

if H ~ 0. Comparing with (4.5), we find 

o',(g) • 0 ,  n 1>2, (4.12) 
T ~ 0  

i.e. all complex Xv disappear in the limit, leaving the gas in a state of maximal color 
spin. 

Result (4.11) allows us to scale out of ~b, a trivial temperature dependence. 
Writing 4~, = q/,/T, eqs. (4.6) are transformed into 

~01 = p. - Eh -I- Gq/2, 

~02 = G(~0~ +~ +¢3), 

~O,, = G(¢.+I + t#.-1), n~>3, 
(4.13) 

lim (D.$.+I  - D . + N , . )  = 2 H ,  
rl -.i.o0 
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where 

(+) f ~/I(X) , if $1(X)>0,  
4,1 ( x ) = / 0  ' otherwise 

These may be solved by Fourier transformation: 

~n = ~ + )  e -(n-1)~rlvL/2 + 4rrnHS(p), n >I 2,  
(4.14) 

~1 ---~ 2 7F(/./, + H)8(p) -F-,h + (1 + e ~'1Pl)-I 4~+). 

Going back to X-space, and using property (iii) for a last time, we obtain for ~hl(X) 

b / *  

~hl(X) =/.t + H  --Eh(×) + | dx'KO(-X')~bI(x'), (4.15) 
3-  b 

where I -b ,  b] is the interval over which 01 is positive. Notice that if tz + H < Eh(0) = 
m, the solution of (4.15) is 

01(X) =/z + H - E h ( X ) < O ,  

for all X. Then limr-.0 trl.h(X)= 0, i.e. there are no massive particles present, 
inconsistent with hypothesis. Thus, t* + H >  m. Substituting (4.12) into (4.1), one 
easily finds 

~n,h = ~rl,h e -(n-1)Trlpf/2 , n >~ 2 , 
-,fpl/2 (4.16) 

O~l,h + 0~1 = 0~0 + GO~2 h = G~l"h e 
2 cosh ½zrp " 

From (4.15) we have 

o-l,,(X) = 0,, f o r x 2 > b  2 , 

crl(X) = O, f o r x2<b  2 , 

and so in X-space, (4.16) may be written as an integral equation for o-= 0" 1 + O ' l , h :  

b t '  

o'(x) = croO() + [ dx'KO(-X')orO('), (4.17) 
J _  b 

which we recognize as nothing but (3.5). 

5. Asymptotic freedom at high density 

Eq. (3.5) is a Fredholm equation of the second kind with symmetric kernel; since 
K(X) is positive and 

co 

I_ d x K ( x ) = ½ < l ,  
o o  
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there exists a unique solution which may be computed by interation (for b << 1, this 
gives a perturbative series in increasing powers of b). In this section we shall instead 
be interested in the high density regime (where p >> m and asymptotic freedom is 
expected to set in), and there b >> 1. In this case it is possible to obtain an asymptotic 
expansion by adapting to our needs a method developed by Yang and Yang [9]. 

A direct application of the method of ref. [9] is not possible, because of the 
large-g growth of the inhomogeneous term (for K ~ oe) 

m L  
O'o(X) = ~ cosh X. 

We therefore rewrite (3.5) as an equation for 

so that 

2q'g 
O(X) ~- ~-~ tr(X) - cosh X, 

Setting 

dx'/ (x - x') cosh x '  + • 

= / ~bOt'), x Z < b  z , 

~bi,(X) tO,  xZ > b z ; 

0 ,  x 2 < b  2 , 

O°~'(x) = ¢ (x ) ,  x2>b 2" 

/ c o s h x ,  x 2 < b  2, 

h(x) = t O ,  X 2>b  2 • 

(5A) 

(5.2) 

as well as 

t,(x) = ~O(x + b) ,  (5.5) 

/ o f x ) ,  x > O ,  
° ÷ ( x ) = t o ,  x < o ,  

0 ,  X > 0 ,  
P-(X)= P0() ,  X < 0 ,  (5.6) 

We now introduce the translated function 

and Fourier transforming, (5.2) becomes 

q~in(P) = e -~'E vlt~(p) - (1 + e-~lPl)q~out(p), (5.3) 

or, back in X-space [using qt(X) = O(-X)], 

~0(x) = dx '  2+ - dx'~0(x') x,)2 . b ~r (X-X')  2 ~-2+(X- ~" ~r2 + (X +X') 2 

(5.4) 
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so that 

JlO”dX) = (;:I”-,“b; X'O, 

, /y<o. (5.7) 

Since 4in, by (5.3), may be written in terms of tlout, we see that only p+(x) need 
be cafculated. ‘Ihe function p(x) satisfies 

I 
co 

P(X)= dx’ 
h(jy’+b) OD I dx’ 

dx’) 
9r2+(x-xry- () 

+ O” 
dx’ 

P (x7 
--a3 ~2+(X-X’~2 0 I 7r2+(X+X’+2b)*’ 

It is to (5.8) that we apply the Yang-Yang approach, writing 

p =Po+Pl+P2+"', 

dx’ 
POCX’) 

r2+(x-x’)2’ 

FZZ=l, 

(5.9) 

with 

Pn+19.+_0 ; . 

Pn.+ 0 

In appendix A, the Wiener-Hopf factorization technique [ll] is used to solve the 
system (5.9), (5.10). We find, collecting (5.3),‘(5.7) and (A.9a, b), 

where 

Fw=“goF,(P) 9 

(5.12a) ~~(p> = -f Jomdt sin trt~_(it) e+-$, 

,,,)=;jomd t sin 7rt [K_(it) ewbr12 
F”_l( - it) 

p-it ’ 
nsl, (5.12b) 

and K+ are defined,in appendix A. 
One can check explicitly that the nth approximation in (5.11) produces a function 

I&’ which vanishes outside of [-6,6] such that 

d:’ 
-$$= Ow’“+l’), x*>b*. 
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Further progress in evaluating (5.11) can be obtained by throwing away a piece 
of e-btl~(it) which vanishes like e -b and hence is completely negligible for b >> 1. In 
particular, 

e-bth(it) = ½ eb(1-~t +e-2b"/ TL-T~ + O(e -b) (5.13) 

Inserting (5.13) in (5.12) and using some tricks explained in appendix B, one 
obtains, finally, 

mL b2 
~ ( x ) = ~ g ( x ) ,  x ~< , 

(5.14) 
e b foo 

g(x) = ~ e  dt sin ¢rtr_(it) e -bt cosh xt L Z,(t) ,  
Jo n=O 

1 
Zo(t) = 1 - t ' (5.15a) 

oo 

Zn(t) =---Trl I0 dt' sin rtt' [K_(it') e-b"] 2 Z,-l(t')t+t, n ~> 1, (5.15b) 

We are now in a position to calculate explicitly the asymptotic expansions, in 
powers of b -1 and In b, of the density and energy, 

P = L  L J--b 
b 

E = m f_ dxtr(X) cosh X. 
b 

(5.16) 

Fortunately each of the integrals which we need to evaluate for b >> 1 is either (a) 
a Laplace transform whose asymptotic behavior may be determined by expanding 
the integrand near t = 0, or (b) an integral which may be calculated exactly by 
contour integration, as illustrated in appendix B. The resursive structure (5.15) 
makes the bookkeeping of all corrections quite transparent. Our results are: 

p = ~  e b 1 4b 32b 2 8b 2 

E=--ff-~-\--~-/m2L(2~r~e2b{ 1 +~b2 + O(b-3)} (5.18) 

To obtain the relation between energy and density, we may solve (5.17) for b, 

b =½in 27r+½+ln 0_~ 1 
m 4 In (o/m) 

In 27r In In (o/m) . ~ / l n  2 In (p/m)\ 
8 In 2 (p/m) 8 In 2 (p/m) "~uk 1-'~(p~) ) '  

(5.19) 
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and substitute into (5.18) to obtain 

1 2 , [ ~ +  1 5 - 2 1 n 2 ¢ r  ln ln(p /m)  ~[InEln(p/m) \]  
E = zlrp L, / 1 4 In (5.20) (p/m) + 8 In 2 (p/m) 4 8 In 2 (p/m) t- o [  -~nTpT-~ } [ .  

Recalling that for large b, the Fermi momentum p~ is proportional to e b, we note 
that in (5.17) the density p is proportional, asymptotically, to pF, whereas in (5.18) 
E is quadratic in Pv. These relations suggest an approach to a system of non- 
interacting particles. In addition, there appears to be a renormalization of the 
effective mass, from m to m',/2zr/e, which is reminiscent of the relation between 
low and high magnetic field dimensional scales in the Kondo model [6]. 

One must be careful to interpret properly the asymptotic freedom which is 
incorporated in (5.17), (5.18) and (5.20). For example, one would not expect to 
find nearly free protons and neutrons in hadronic matter of sufficiently high density; 
rather one would look for the asymptotically free quark and gluon constituents of 
the nucleons. By the same token, we should not expect that the massive composite 
particles of the CGN model behave for high densities like free particles. And in 
fact they do not: the distribution of rapidities tr(X) given by (5.14) may be investi- 
gated using asymptotic analysis for g << b and g ~- b, and numerical integration for 
all X ~ I -b ,  b], and one finds little resemblance of this function (even near the Fermi 
surface) to the free-particle distribution proportional to cosh X, One consequence 
of this is that the numerical coefficient in the expressions (5.18) and (5.20) is only 
one-half what it should be for a gas of N = pL free relativistic fermions, all with 
the same color. 

In fact, what one is seeing in the formulas for tr(X), E(p), etc. is evidence for 
the pseudoparticle structure of the massive CGN particles; i.e. the system behaves, 
for asymptotically large densities, as if it consisted of Neff massless fermions, in a 
state of total color spin ½pL, interacting via the bare CGN interaction with an 
effective coupling parameter c~fr, which vanishes proportional to the inverse off the 
rapidity bound b. More precisely, we may set 

Tr 
- - = h b ,  
Ceff 

with A > 1. The value of A is not crucial; once it is fixed, however, the number of 
pseudoparticles is determined by the renormalization relation 

Neff = ½mLe ~/c°" . 

One can now compute tr(X) using (3.5) and (3.6), replacing No and c with Nea 
and cett, respectively. The analysis leading to (5.14) is now repeated, except that 
h(x) in (5.2) is replaced, for IX[ < b, by 

2mL cosh (X--- ~r/cefr) + cosh (X + ~/cee~) " 
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The replacement simply leads to additional correction terms in (5.13) of order 
e -~x-1)b, which are negligible for sufficiently large b. Hence, expression (5.14) for 
o'(x), as well as (5.17)-(5.20) for p and E, will be unchanged. 

As an extra check of the initial term in (5.20), we may use the simpler language 
of many-body theory for N~n non-interacting massless fermions. The color-singlet 
ground state of the system will have right- and left-moving Dirac seas of doubly 
occupied levels, extending in energy from zero down to -Ken =-~'N~n/2L,  with 
the separation between successive levels exactly equal to 2~r/L. The lowest energy 
state of color spin ½pL can then be obtained by converting, for each sign of the 
chirality, ¼pL negative color spin pseudoparticles below sea level into an equal 
number of positive color spin pseudoparticles above sea level, with a net increase 
of energy 

, 1 r \  2¢r 1 2 r  
E = 4 ( I  +2+.  . .~-~pL)--~=~p L ,  

in agreement with (5.20). 

Appendix A 

SOLUTION OF EQS. (5.9) AND (5.10) 

Fourier transformation of (5.9), (5.10) yields 

(1 + e-~LPL)tSo,+(p) +tgo.-(p) = e/pb e-~lPl/~(p), 

(1 + e-"tPl)tS,.+(p) +fi~,_(p) = - - e  2ipb e-"lPltS._l.+(-p), n ~ l  . 

(A.la)  

(A.lb)  

By definition, t;n,+(p) (¢;..-(p)) is analytic in the half-plane Im p < 0 ( Imp > 0). In 
addition, we do not expect pn,±(X) to become singular for any real X, and hence 
we assume t~n,~:(p)-', 0 for Ipl-~oo on the real axis. 

Guided by the formula 

e_<p I 1 ~ d t s i n z r t  
zr p + it p 

we write 

tS..±(p) = ~ dt sin ~rt6.,±(p, t),  (A.2) 

where ¢ . , .  (not uniquely defined yet) may be assumed to have the same analyticity 
properties in p as tS..+. Eqs. (A.la,  b) are satisfied by t~.,± if ~b.,~: satisfies 

(l+e-~'P')~bo,+(p,t)+~bo._(p,t)=[ i i ] e'Pb/~(p) (A.3a) 
p + i t  p - i t  
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(1 + e-"lvl)~b.,+(p, t )+ck ._(p ,  t) , [ i  i#] fo 
- - e 2ipb dt sin ~rtd~._l,+(-p, t ) .  (A.3b) 

• r p + i t  p -  ~o 

Following the Wiener -Hopf  technique [1 1] we factorize the kernel 1 + e-"lP[: 

1 + e  - ' l ° l  = K+(p) K _ ( p )  (A.4) 

1 .  1 .  
K+(p) = 2x/~ exp {-~tp[1 +~t~r- ln  (_lp +i0)]} 

1 1 .  ( A . 5 )  F(~ + ~p) 

1 
K _ ( p  ) = r+(-p----~ " (A.6) 

The function K+(p) (K_(p ) )  is analytic and free of zeros for I m p  < 0  (Ira p >0 )  
and both tend to constants for Jpl-" oo. We also use the following decompositions: 

r,h.s, of (A.3a)= qo.+(p, t )+ qo,-(p, t) , 

r.h.s, of (A,3b) = q,,+(p, t) + q ,_ (p ,  t ) ,  n >I 1 ,  

where 

qo,+(P, t) = - i K - ( i t )  e-b'l~(it) 1 
p - i t  ' 

1 
qo,-(P, t) = iK_(p)  e~Pbh(p) - ~ - ~ -  i [K_(p)  e~Pbh(p)- K_(i t )  e-b'h (it)] 1 

p - i t  ' 

- 2 b t  - , q..+(p, t) = iK_(it) e p . -1 ,+(- i t )  
p - i t '  

q ._ (p ,  t) " 21vb- = - t K _ ( p ) e  P . -L+ ( -P)  

+ i [ K _ ( p )  2ipb. e_2b t . . . . . .  1 e P . - L + ( - P ) - K - ( i t )  p. -1 ,+t - t t ) l  
p - i t  

By construction, all q.,+(p, t) (q._(p, t)) are analytic in the half-plane I m p  < 0 
( Imp > 0) and q.,+(p, t) ~ 0 for IPl ~ oo along the real axis. Eqs. (A.3a, b) can now 
be written, for all n, as 

K+(p)qb..+(p, t ) -q . ,+(p ,  t )=  - K - ( p ) c k . , - ( p ,  t )+q. ,_(p ,  t) . (A.7) 

The complementary analyticity domains and behavior for ]p]--. ~ imply that both 
sides of (A.7) vanish• Thus 

q.,+(p, t) 
~b..:~(p, t )=  K ± ( p ~ '  (A.8) 
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and so for p+(p) = Y~ =0 P~.+(P), 

Po,+(P) = ¢r/~(p)  dt sin rrtK_(it) e -b' ft(it) 
p - i t '  

Io = dt sin ~rtK_(it) e -2b' pn-L÷(- i t ) .  &,+(p) 
¢rg-+( p ) p - it 

(A.9a) 

(A.9b) 

A p p e n d i x  B 

DERIVATION OF EQ. (5.14) 

In (5.11), we must evaluate the integral 

i ~oo e -  ipb 
I(t ,  X) = oo dp cos PX K + ( - p )  P _ i-----~ (B.1) 

for t > 0  and Ix[<b.  The integrand, as an analytic function of p, has a pole at it, a 
cut (say) along the negative imaginary axis, and exponential fall-off in the lower 
half-plane. Deforming the integration contour so that it comes from and goes to 
infinity along opposite sides of the cut, we have 

oo 
I(t ,  X) = Io dx e - b x  cOShx+tXx [K+(ix - e) + K+(ix + e)] 

oo 
= ~ / ~  So dx e -bx cosh Xx .  e (x+i'~)/2 (e_X/2 i, (~/2+i~)_ e-~/2 i, (~/2-i~)) 

x + t r(½ + ½x ) 

i0oO ex/2(1--1n x/2) = 2i dx e -bx cosh Xx • 1 1 1 sin ~'h'x 
x +t  /"(~+~x) 

= i ~ Jo dx e - b x  cosh Xx ~/2(~-1n ~/2),-,A_ ~ , - -  e ~ t ~ - ~ x / s i n  7rx 
x + t  

f ~  K_( ix )  
= 2i dx sin ,rx e -b~ cosh Xx (B.2) 

x + t  

Using this result, eq. (5.11) can be transformed into 

f )  "/'/'2 + (X -- X')2 -- ~ cosh X' 2 I ) -  e_bt 0i.(2) = dx '  dt sin zrt cosh x t  K- ( i t )  ~ _ Q . ( t )  , 
b n=O 

where (B.3) 
1 

/ .  fi ( it') 
Oo(t) = - -  | dt' sin lrt' K_(it ')  e-bt' 

¢r Jo t + t '  ' 

I )  e_bt,]2 On-l( t ' )  On(t) = _ _1 dt' sin ~rt' [K-(i t ' )  
"rr ~ t +" ff ' 

(B.4) 

n > ~ l .  
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It is now convenient to define new functions Z ,  (t) and W, (t) by 

1 
Z0 = ~  

1 - t '  

if? Z,(t) = - ~  dt '  sin ¢rt' [K_(it') e-b"] z Z,-l(t') t+t' ' n ~ l ,  

W o ( t )  = - -  
K+(-it) 1 

1 - t (1 - t)K_(it)' 

W,(t) = - ~  dt' sin 7rt' [K-(it') e-b"] 2 W,_l(t') n.>~ 1 
t+t'  ' 

We now evaluate Qo(t) using approximation (5A3). 

e b f ~  K_fit) 1 e -2bt' 
O0(t)=~---~ ./o dt' sin z r , ' - - ( 1 - - ~ + ~ - - - ~ )  t+t' 
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(B.5) 

(B.6) 

But now the contour can be closed in the upper half-plane giving us two pole 
contributions: 

(B.8) = - ~  (K+(-it) -K÷(- i ) )  = 7r Wo(t)- Zo(t) . (B.9) 

Comparing (B.7), (B.9) and (B.6), we now get 

Qo(t)=~eb[ Wo(t)- W l ( t ) - ~ e Z o ( t )  ] (B.10) 

and, since Q,, W, and Z ,  all have the same recursive definition, 

O,(t) =½eb[ W,( t ) -  W,+l(t)- ~ Z , ( t ) ] .  (B.11) 

Therefore 

~=oQ,(t) [ ~ e , ~ o l , ( t ) ]  (B.12) =½e b Wo(t)- lr °° 

For large b, the finite integral over X' in (B.3) can be approximated by 

I 1Io f b cosh X' = 
dx '  dt sin ~rt dx '  e -Ix-~'l' cosh X' b lr2 q- (X -X' )  2 b 

e-~I: coshxt+O(e-b). -cosh  X + dt sin ~rt  e - b t  1 - t 

For the first of the two terms in (B.7), we can perform the converse of the contour 
deformation that led to (B.2), to obtain 

f :  K_(it') 1 t +~ K+(-p) 
dts in  ~rt' ( t + t,) ( l + t,) = 2--~t J_o~ dp -( p - i ~ l  + ip ) . (B.8) 

(B.7) 
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Inserting this and (B.12) into (B.3), one finally gets 

e b ~ oo e -b t  
~kin(X) ----- - cosh  X + ~ cosh Xt K_(it) z., Zn (t) x/~e Jo dt sin ~rt n~o 

which, together with definition (5.1), reproduces the result (5.14). 
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