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The Bethe-ansatz equations of the chiral-invariant Gross-Neveu model are reduced to a simple 
fo]'m in which the parameters of the vacuum solution have been eliminated. The resulting system 
of equations involves only the rapidities of physical particles and a minimal set of complex 
parameters needed to distinguish the various internal symmetry states of these particles. The 
analysis is performed without invoking the time-honored assumption that the solutions of the 
Bethe-ansatz equations, in the infinite-volume limit, are comprised entirely of strings ( "bound  
states"). Surprisingly, it is found that the correct description of the n-particle states involves no 
strings of length greater than two (except for special values of the momenta).  

1. Introduction 

The problem of diagonalizing the hamiltonian of the SU(2)  chiral-invariant 
Gross -Neveu  mode l  has been shown [1-3]  to be equivalent to finding the self-con- 
sistent solutions X~,. ,XM and "holes" h h • . X l . . . .  , X i h  of the system of coupled 
equations 

Ill:( = - IIM i ( x , - x ) + .  , 
~=l /~=li(x~ X) - r r  

X E { X r : y = I  . . . . .  M} U {X~:8=l  . . . . .  Mh}, (1.1) 
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where a I = rr,/c = --ct 2. Here c is a bare coupling parameter, which vanishes loga- 
rithmically when the ultraviolet cut-off K is removed, and 

N = N  1 + N  2, Q S = N  1 - N  2 

are the bare charge and chiral charge, respectively. 
In ref. [1], the vacuum state (with all real Xy and no real holes) and low-lying 

excited states were studied. It was found that a state describing n particles of 
color-spin one-half, non-zero mass m, and rapidities 01 . . . . .  0 n corresponds to a 
solution of (1.1) possessing precisely n real holes, located at X =  0i, i =  1 . . . . .  n, 
provided that the limit of infinite K is taken with fixed 

m = ( 4 K / ~ r ) e x p (  - ~ r / c ) .  

The interparticle interactions are reflected in departures of the particle momenta 
from integer multiples of 2 ~ r / L ,  where L is the length of the re-entrant line segment 
traversed by the particles. In fact, by studying the O ( 1 / L )  momentum shifts of the 
two-body states, it has been possible to calculate [4] the factorizable S-matrix of the 
model. 

Prior to the present investigation, it has been assumed that the generalization of 
the results of [1] to describe the scattering states of arbitrarily many massive particles 
would be completely straightforward, thanks to the so-called string hypothesis, 
according to which the solutions of (1.1) (and the closely related equations which 
arise in some models of one-dimensional magnetic systems) consist, in the limit of 
infinite N or infinite L, solely of strings, i.e. families 

+ + i k T r ,  k = - ½ ( r - 1 ) , - ½ ( r - 1 ) + l  . . . . .  ½ ( r -  1), +real .  

This conjecture has a long history, going back fifty years to Bethe's treatment [5] of 
the one-dimensional Heisenberg spin chain. Although the hypothesis has never been 
rigorously proven, there do exist highly plausible consistency checks [6-11]. In 
addition, the string conjecture has been applied so many times (we shall not attempt 
to make a list), never encountering contradictions or physically implausible results, 
that few question its validity. 

The main purpose of the present article is to study systematically the n-particle 
scattering states of the chiral-invariant Gross-Neveu model without assuming from 
the beginning the string hypothesis. One of our principal results is that strings of 
length greater than two are not typical of the solutions of (1.1) (although they may 
occur accidentally for special choices of the particle rapidities). They become a good 
approximation only when n tends to infinity. The latter assumption is appropriate to 
the calculations of thermodynamic quantities at non-zero temperature in magnetic 
systems (so that the use of the hypothesis in such cases remains valid), but not to the 
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study of particle physics, nor to the strictly zero-temperature states of an antiferro- 
magnetic magnetic system. 

The paper is organized as follows. In sect. 2, it will be shown that in the infinite 
cut-off limit, states of n massive particles with given rapidities 01 . . . . .  0,, and total 
color spin ½n - 3;/may be parametrized by 3;/complex parameters Xv which satisfy 
a system of coupled equations formally identical to those which arise in the model 
[12, 13] of a one-dimensional gas of non-relativistic fermions with a delta-function 
interaction. The simplest non-string solutions will be discussed in sect. 3. Then, in 
sect. 4, we shall show that the momentum shifts due to the interaction of pairs of 
particles, as well as the equations for £~ derived in sect. 2, may be elegantly 
summarized in a simple eigenvalue problem involving the 2-body S-matrix. At the 
end of sect. 4, we shall interpret our results in terms of a higher-level x-space Bethe 
ansatz. 

2. Eliminating the vacuum parameters from the Bethe-ansatz equations 

In order to study the solutions of (1.1) in detail, it is convenient to distinguish 
three main categories of Xv: 

real Xv: Xk, k = 1 ,2 , . . . ,M  r, 

close pair: ~t --+ i~/l, l =  1 . . . . .  Mop, 0 <Bt<~r ,  

wide pair: ~r+~iCOr, r =  1 . . . . .  Mwp, %~>~r. (2.1) 

With this notation (which we shall employ consistently throughout the following), 
eq. (1.1) assumes the form 

2 i(@j ~k)~-½Cr N; Mr i(Xk__X)~_7 r i(~ __X)__~I_~ ~ 
1I - - - [ I  

j 1 k = l  = 

Mwp 
X i(~/--2k) +~h+rr ry[! i ( ; , - - 2 ~ ) - - % + ¢ r  i(~'r--2~) + % + r r  

i(~,--2~)+~/,--¢r = i(~'~--2k) % vr i(~" ;k)+w,.--qr 

2 ( i(aj-- o) + T + ½7r 
I-I o) 

j = l  

mcp 

× I I  
/ = 1  

Mwp 

×l-I  
r=l 

U/ M, i(2~k_ O) +,r  + ~. 
= -  II 

k = l  

i (~ , - -  O) + ¢ - -  ~1,+¢r i (~ / - -  O) + ~ +  ~l~+ff~ 

i ( ~ , - - o )  + T - - ~ l , - - T r  i ( ~ , - - o )  + 'r  +~l t - -vr  

i ( ~r -- O ) -h "r - O~r q- rr i ( ~r - o ) + "r q- wr + vr 

i ( ~ r - O ) ÷ T  fOr--q't" i ( ~ r - - O ) q - T + O ~ r - - c r  

(2.2) 

(2.3) 
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where o -- i r  denotes either a close pair ~ +- i~/or a wide pair f ÷ i¢o, and X denotes a 
real Xy or hole 0. 

Our first task is to obtain an expression for the density of real Xy (that such a 
density is meaningful is due to the fact that, after the ultraviolet cut-off has been 
removed, the separation between real Xv is of order 1/mL). This can be done by 
taking the logarithm of (2.2): 

2 

2 Nflan ' - -  -- Y~ tan -I  
j = l  1'/7" k = l  

- Y ,  tan 1 + t a n  1 
l=1 ~ ' -  ~//! 

- ~  tan ' X-~'r  X - ~ r  r=l ~ - t a n  ' --%-7r =~rJ (h ) ,  (2.4) 

where J(•) takes on integer (or half-odd-integer) values as one runs through the 
successive Xv and holes on the real axis. Thus dJ/dX provides a reasonable 
definition for a smoothed out density of real Xv and holes: 

d J  
~ - X ( X ) = o ( X ) +  ~ 6(X-Oj), (2.5) 

/ =  1 

where o(X) is the density of Xj alone. If we differentiate (2.4), insert (2.5) and make 
the replacement 

Mr 

E F(Xi)~fdXo(X)F(X), (2.6) 
i = 1  

we obtain the following integral equation for o(),): 

2 

o ( X ) +  ~ 3 ( X - 0 j )  = • NiK~/2(X--c~,)--fdX'o(X')K~(X--X') 
j = l  i=1 

mcp 

1=1 

mwp 

E [K.~+c~(~k--~r)--K.~-cr(~k--~r)], 
r = l  

(2.7) 
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where 

K a ( ~ t )  = ( a / ~ ) ( a 2 + ~ k 2 )  1 

Eq. (2.7) may be solved by the method of Fourier transformation: 

o(?~) = f-~dP e'~X6 (p), 

2 Njexp(-ia, p) exp(½~r[p[) ~ exp(_iOkp) 
° ( P ) =  ~ ~ 2ch(½7rp) k=l / = 1 

m~p chrl,p exp(_½~r]pl_i~tp ) 
- ,=E, ch(l~rp) 

mwp 

-- ~, [exp(--%lpl)--exp(--(% rr)lPl)]exp(--i~,.p). 
r = l  

(2.8) 

This formula will be of key importance in what follows. 
From the value of 6(p) at the origin, we obtain the following normalization 

conditions: 

2 

M r = d ( 0 )  = ½ ' ~  N i - - ½ ? / - - m c p  , 

2 

M = M r + 2Mcp + 2Mwp = ½ ~] N, - ½n + Mcp + 2Mwp. (2.9) 
i=1 

Moreover, from the behavior of 6 (p)  at infinity, we see that o(?t) will have negative 
delta-function singularities at the hole positions [as is obvious from (2.5)]. There are 
no other singular points, except in the special case of a wide pair ~" -+ i~z, where there 
is a positive delta function at X = ~'. There would then be an "extra" real Xr at that 
location: in other words there would be a 3-string at ~'. As we shall soon verify, this 
is a borderline case which arises only for special values of the particle rapidities (i.e. 
holes), or in the limit of infinitely many holes. 

We now turn our attention to the wide-pair version of (2.3). We evaluate the 
product over X k by writing 

Mr i(Xk -- ~') + ~0 + rr _ e x p f d X  o()t)ln --~') + ~0+~r 
1I +,o , , '  
k 

(2.10) 
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computing the integral by means of the formula 

J rdXf(2~)lni(2~-~)+a ~d - i(X ~')+b-L ¢ f(p)e'~p(e bP-e ~p)' (2.11) 

which is valid for real-valued f(X) and a, b > O. Substituting (2.8) into (2.10), we 
obtain 

i ( X k - - f ) + ~ ° + ~ r = e x  p £ ii + ~h+  2 I[ p+ wp , 

where 
l i = L ° ~ ( e - (  ~ ~r/2)P-- e (w+rr/2)P)ei(~-aDp ' 

lh = f0°° 7 (e- ,~p-  e (~-~r)P)ei(~-Oj)P ' 

~ d  i c p = f  clP(e-(,o-nt+~)p-a-e-(,o+m+~)p-e-(,o n~)p- e (,o+nDp)ei(~" f0p, 
l J0 p t 

dp -(~,+,o +¢t)p (oa+oa --2~r)p 
/wP=f0 -7-- (e r + e  " 

- - e - ( ' + ° ~ r ) P  - -  e-( '~+,~r ~)p)ei(g L)p. (2.12) 

Applying (2.11) once more (with f set equal to one) to evaluate the integrals in (2.12), 
and then inserting the result in (2.3), we get 

rI - -  - - - -  M~p i ( ~ _ ~ . ) + a ) _ ~ l  ' i (~ , - -~ ' )+oa+~ ,  

Mwp 

× II r=l i(¢r ~')+~0--oa~--g i ( g Z ~ 7 ~ Z g Z - 2 w "  

(2.13) 

Note that this expression involves only quantities which remain finite in the infinite 
cut-off limit, K ~ oo, L --, oo. 

The corresponding reduction of the close-pair version of (2.3) is not quite as tidy. 
We can again apply (2.10) to evaluate the product over Xk, but now we must apply 

fax/(X)In~x X-- ~j) + a ~ 5 ) < ,  <~-~ ---b--L (f(_p)e-hp i~p_f(p)e-<,p+i@) _ i~rf(O). 

(2.14) 
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This gives 

where 

4 = J / + J / ' ,  

M r  i()~k--~)-k-~q-qr_(_l).XN_, M~ 
II i()t k ~)+~ ¢r 

k=l  

× exp  J~ -1- E 4 "h + E j/cp + wp , 
i 1 j =  1 l =  I r 

(2.15) 

7] ~½7r,  

< 1 ~ ,  

[ _ Ni fo °~ d p pch(½~rp) 

Ji" = _Nifom dp 
pch(½rrp) 

sh(~r - rt - i ( a  i - ~ ) ) p ,  71 >½~r, 

sh(~+i(ai-~))p,  ~<½7r, 

(2.16) 

@h __ h, j . h t ,  --~ + (2.17) =j , 

~ d  h ,  - -  c l p  ~P  __ 

dp 
@hit = - - f o  pch(½qrp)[Ch(~-½7r+i(Oj-~))p-ch(½ezp)cos(Oj-~)p], 

J[P =J[P' + J[P", (2.18) 

dp i(,~ / l~)p --(~/+'r/t+er)p (7] ~t+~')p 1 ) ,  J[P'--fo 7 e [e + e  --2e ~" ] -2 , t an  ( ~ ' ~  

j [p , ,  = _ 2  [ °c dpe -'~p • fo p -~(T~p) [ch~ ,pch(~-  ½~" + i(t-~))p-ch(~,~p)cos(t-.~)p], 

dp [e i(t g;)p (~+~or+~r)P__ei(L-~)p (oa, •+vr)p JTP -- fo 7- 

+e i(L ~)P-('" ')P--e ,(t ~)p ~o,r~,)p]. (2.19) 
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These integrals may be evaluated with the aid of  (2.11) and (2.14). After  inserting the 
results into (2.3), we obtain 

where 

~(~-})+~ 
j = l  

= -  II 
~: ,  i(~,-~)+(n-~,-~) i(~,-~) +(n+~,-~) 

M~Pi(~r--~)+(B--COr+~r) i (~r- -~)+(B+W')  exp J " (~ ,  "q), 

r = l  

2 M~p M~7 p 

J"(~,~)= 2 (4"+~i~N,4~-½~1) + 2 Sih" + 2 #P"+ 2 4 Wp'' 
i=1 j = l  /=1 r = l  

(2.20) 

=J"(~, ~-n)*. 

Now for K--* ~ ,  L--* ~ ,  

Re J " (~ ,  71) - - m L c h  ~sin ~, 

which forces ~ + B l - 7  to vanish [with corrections of order exp( - -mL) ]  for some I. 
There are two ways this can occur: either the close pair ~ -+ i~/is a 2-string 

= ~l, ~ = ~t = ½7, 

or else it has a partner  ~t ± iBt such that 

In the latter case, we have a quartet (no relation to a 4-string?) of complex Xr with 
the same real part. Whichever is the case, ~ and ~ may be determined by calculating 

F(}, n)/F(,::;, ~ -  n)*, 
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where F(~, 7) is defined by (2.20). The result is 

i(oj-~)+~ Mop i(~,_~) +~+~, i(~,-~)+~-,1, 
. . . . .  z - -  1 - I  

Mwp /(~._~)+n+,~ i(~_~)+n_,~+_~ 
× 1"I i(~. r -  ~) + ~ + wr-- 2~r ~ +---7-~-- ~ =  Tr' r= l  

(2.21) 

which is the exact analogue of (2.13). 
As a final step in the analysis of this section, we re-express the product of 

close-pair factors in (2.13) and (2.21) in terms of 2-strings and quartets: 

i (Oj-- ~) + 7/ Mz 
. . . . . . . .  1-I i (~ , - -  ~) + ~/ + ½rr 

i I i(Oj--~)+~l--rr I=1 i(~l',--~)+~l--~rr 

M. i(~-~)+n+,Ts i (~-~)+,7-,7s+~ 
× 1"I i ( ~ - ~ 7 - ~ - 7 ~ 2 ~  r i ( ~ s _ ~ ) + ~ _ ~ s - - -  s = l  "/7" 

~" i(~r-~) +~ +,o i(f - ~ ) + n - ~ r + ~  
)< r=, ]-[ i(~'TZ----~+~/+Wr -2~r  ~ +----47~--~ ~ '  

(2.22) 

where 

@/-+½ivr = lth two-string, l =  1,2 . . . . .  M 2 ;  

~s + i~/, = top member of sth quartet, s =  1,2 . . . . .  Mq; 

+ iT = any complex X~ with ~ > O. 

If we now define new quantities )(l . . . . .  ~(ag, 3,:/= M 2 + 2Mq + 2Mwp, so that 

{)(, . . . . .  5~}  = {~,: l =  1 . . . . .  M2} U {~s+-i(~,--½~r)'s = 1 . . . . .  Mq} 

U { ~ ± i ( w - - ½ r r ) ' r = l  . . . . .  mwp}, 
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then eq. (2.22) assumes the particularly simple form 

j=l  i(Oj--~y) lrr /~:1 i(5Q~-- 5(v) ~'" 
(2.23) 

We note that these equations are formally the same as those of the non-relativistic 
gas of fermions with repulsive delta-function interaction [12, 13]. In the latter 
equations, the particle momenta (divided by the strength of the potential) played the 
role of our rapidities. 

3. Illustrative examples 

In this section, we present some simple examples of solutions of eqs. (2.23). 
Specifically, we discuss the simplest cases (4- and 6-particle singlet states) in which a 
wide pair or quartet of complex Xv arises. 

3.1. FOUR-PARTICLE SINGLET STATES 

With n = 4 and 34 = 2, we expect two distinct solutions of the equations. If we 
choose reflection-symmetric rapidities, 

01 = ½ a : r  = -03 ,  02 = ½ a : r  = --04, 

the solutions (if they exist) will also possess this symmetry, i.e. 

where z satisfies 

2 ( z + i ) 2 _ a ~  z + i  
1-I - ( 3 . 1 )  
i=1 ( z - - i ) 2 - - a  2 z - - i  

This equation can be written more simply as a quadratic equation for z2: 

so that 

3z 4+  ( 2 - a  2 - a 2 ) z  2 -  (1 + a 2 ) ( 1  + a 2) = 0 ,  (3.2) 

z2=~(a~+a22--2) +![:,4-6~1 -~- 14a~a2 + a~+ 8a2+8a2+16)  lie . (3.3) 

We see that, regardless of what rapidities are selected, there will always be one 
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positive root  z2+ ~> ½, corresponding to 2-strings 

~-+½i~r, - ~ ± ½ i T r ,  ~ > T r / 2 V ~ ,  

379 

and one negative root, z~ ~< - 1, corresponding to a wide pair  

F r o m  (3.3) we see that  o: is always greater  than Tr, except in the limiting case where 
two of the particles are at rest (a~ = 0 or a 2 = 0). In that  limit, the wide pair  becomes 

a 3-string. 

3.2. SIX PARTICLE SINGLET STATES 

Here,  with n --- 6 and 37/= 3, we must  find 

6 ) = 5  

solutions of (2.23) to establish completeness  of the basis in this subspace.  As in the 
previous example,  the prob lem simplifies considerably if we choose symmetr ical ly  
placed rapidities 

Oi= l aiqT"= --03+i, i---- 1 ,2 ,3 .  

We would expect that  at least some of the five solutions will be reflection symmetric ,  
i.e. of  the fo rm 

X1 =12"77"= - - 2 3 ,  22 = 0 ,  

with z a solution of 

3 
I-I z - a i + i  z + a i + i - - z + 2 i  z + i  (3.4) 

i=l z - a , - - i  z + a , - i  z - 2 i  z i"  

Eq. (3.4) may  be writ ten as 

ze(z  2) = o, (3.5) 

where 

P(y) = 3y 3 + By 2 + Cy + D, 

and B, C, D are polynomials  in a~, a~, a 2, with integer coefficients. In addi t ion to 
the trivial solution z = 0, eq. (3.5) may  be solved in closed form for z2; here we shall 
content  ourselves with a qualitative discussion. 
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First of all, we observe that P(y) = 0 has at least one positive root. To see this, we 
consider (3.4) restricted to real z. Taking the logarithm gives 

3 

~rJ(z)=~ [tan ' ( z - a i ) + t a n - ] ( z + a i ) ] - t a n  1 ( ½ z ) - t a n  lz 
i ~ l  

= ~ × integer. (3.6) 

We see immediately that since J (z )  is a continuous function on the entire real line 
with 

lim J(z)= ++-2, 
Z ~  O(3 

there will always be at least one solution with z > 0, IJI = 1. 
The existence of a negative root is even easier to establish. Since by direct 

evaluation 

3 

P ( - 4 ) =  3 l I  (1 + a ~ ) ,  P ( - o c ) =  - o c ,  
i = 1  

we conclude that P(y) must vanish for some y < - 4 .  Moreover, since P(y) is a 
cubic polynomial with real coefficients, there must also be a third root, whose sign is 
just the sign of 

P ( 0 ) : D : i : , I - [  ( l + a ~  3 - 4  l+a--~l+l+a~+l+a--~3 . (3.7) 

If any one of the a~ is sufficiently small, the sign will be negative and we will have, in 
addition to the two-string -+ ½i~r already present, a quartet of complex Xv, 

(or a 3-string if some ai vanishes). Note that the possibility of a second wide pair 
-+ i~0 is eliminated by the inequality 

3 

P ( - - I )  = 3  l-I a ~ O .  
i = l  

If none of the a i is sufficiently small, we will have P ( 0 ) >  0 and there will be a 
second solution consisting of three 2-strings. Such a solution satisfies (3.6) with 
J (z )  = 0 for z = 0 and for z = -+ + =# 0. 
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We have thus succeeded in finding three six-particle color singlet states. For 
values of the rapidities in the vicinity of ± ½7, ÷ 3 + 5~ - ~ , - 2  , we have solved the 
equations numerically and have found two additional solutions (mirror images of 
one another), each containing a wide pair and a 2-string. Thus far we have not been 
able to find a general existence proof for this type of solution. 

4. Equations for the rapidities and indications of a higher level Bethe ansatz 

The remarkable equations (2.23) do not exhaust the useful information which can 
be extracted from the original system (1.1). In particular, we must still obtain 
equations for determining the quantized values of the particle momenta, Pi - msh 0i 
to an accuracy of order 1/L.  Such knowledge is crucial for obtaining the S-matrix 
and densities of states in the continuum limit. The relevant equations are derived 
from (2.2) by evaluating the product over ?'k with the aid of the density o(X), whose 
Fourier transform may now be written 

2 Njexp(_iajp ) 
e(p)-- E j=,  2 ch(l~ 'p)  

exp(½7rlpl) ~ exp(--iO,,p) 
2ch(½~rp) k 1 

M2 

E 
/ = 1  

exp( -- ½~r Ip I)exp(-i4,,p) 

¾ 

E 
s l 

[ e x p ( - n ,  lpl) + e x p ( -  (~ r -  ns)lPl)]exp(-i~,p) 

mwp 

E 
r 1 

[exp(-~orlpl)-exp(-(~or-~r)[pl)]exp(-i~rp ) . (4.1) 

Thus, from (2.14) 

Mr i ( X k _ X ) + T  r =(--1)Mrexp e-~P[e(--p)e-'XP--O(p)e 'xp] (4.2) II ;(xk 
k = l  

where 

2 

M~= ½ E Nj-- ½n- M z -  2 Mq. 
j = l  
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With the aid of (2.14) and formulas 3.411(28) and 4.111(7) of [14], the integral in 
(4.2) is readily evaluated. The result may be substituted into (2.2) to yield 

i(x-X,) +1" exp(iLmshX)=±k=,[I St'(X-Ok)v=, i(X (4.3) 

where the overall sign is positive (our choice from now on) or negative depending on 
whether one-half the sum of the bare charge and chiral charge is odd or even, and 

S t ( 0 )  = i r ( 1  + iO/2~r)F(" -i0/27r) 
r ( 1  - iO/2 r)r(½ + iO/2~r) " 

The quantity St(0) may be interpreted as the eigenvalue of the S-matrix in the 
color-triplet scattering state of two particles with rapidity difference 0. To see this, 
consider a color-triplet state of particles with rapidities 01 = 0 > 0 and 02 = 0 (rest 
frame of the second particle). An " in"  state 10,0, triplet) in will be described by a 
wave function exp(ixlmshO ) for x I large and negative, and by exp(i~{ t + ixlmshO ) 
for x I large and positive. Periodicity now requires 

exp(i~ t + imLshO)= 1. (4.4) 

On the other hand, eq. (4.3) with 3)/= 0, together with (4.4), gives 

exp(iLmshO)= S(-'(O)=exp(--igt(O)). (4.5) 

The scattering phase for the singlet state (which has a 2-string with real part 
½(01 + 02), may be calculated in similar fashion [4]. The full two-particle S-matrix 
can then be written in the compact form [3] 

i (  O 1 - -  02) + 7rPi2 
S,2 ---- S,(0, -- 02) 7 ( 0 ~ - - ~ ) T g  ' (4.6) 

where PI2 is the color-exchange operator. Not that the S-matrix has a form 
analogous to that of the pseudoparticle S-matrix which arose in the construction of 
the model [ 1]: 

/ ( a t  -- a2 )  + ~rP12 
812 = St(o/, - a2)  / ~ 1 - ~  ~22 j T ~ , og, ~- ± ~ / c ,  

St(a ) = e x p ( -  ½ia~l(c)), (4.7) 

where ~/is independent of a. 
We shall presently exploit the formal similarity of (4.6) and (4.7). Before doing so, 

it is worthwhile to point out a significant physical difference between the two 
scattering matrices: for the pseudoparticles, the triplet interaction is repulsive 
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(•t<0) and the singlet is attractive (Ss>0), whereas for the massive physical 
particles the signs are reversed. Thus, whereas the ground state of a large collection 
of pseudoparticles has a minimum possible total color spin (i.e. is antiferromagnetic), 
that of a large collection of massive particles is ferromagnetic. And so, whereas the 
physical vacuum, consisting of right- and left-moving Dirac seas of pseudoparticles, 
is a color singlet, the lowest-energy state of n physical particles has all of the color 
spins aligned (see [15]). 

Observing the formal similarity of (4.6) and (4.7), we are led to ask the following: 
given that eqs. (1.1), together with the formula for the pseudoparticle momenta k j, 

N M i ( ~ j - x ~ )  + ~,~ (4.8) 
e '~'~= ~=,II st '(~j-~)~=,II i(~j x ~ ) - ' ~ '  

arise [1] from a discrete eigenvalue problem of the form 

a j t ~  E S ( j +  l ) j .  . . S N j S I j .  . . S(j. l)j¢~) = exp( ikjL ) ~ ,  (4.9) 

might it not be possible to write down an analogous eigenvalue problem which 
would lead to (2.23) and (4.3)? 

To answer this question, we have reviewed the modified Bethe-ansatz solution of 
the discrete eigenvalue problem, and we find neither dependence on the precise 
functional form of St(c 0, nor on the number of allowed values of a~. We may 
therefore write down immediately that the eigenvalue problem 

2,dp=exp( ip jL  )+,  

Z j =  S(j+,,j. . . SNjSu. . . S(,_,)j,  j =  1,2 . . . . .  n, (4.10) 

has the solution 

where 2 ~ 

+ =  X +(y, ..... y++)+,,...%%, 
1 ~ . ) , ]  < ) ' 2 <  - • - < ) , ' ~ ) ~ <  n 

1), ') "(o ' i '°=(0 , 

,, =,,®~2® ... ®(0 0) ®---®L 
1 0 ~, ' 

/O 

+(y, ..... y~) y. A. 1I ?(S~.., y.), 
p~S~t  y= I 

? ( ~ ,  y )  . . . . . . . . . . .  , 
i(g+,-~)-,~ 

must satisfy (2.23) and the eigenvalue is given by (4.3). 

(4.11) 
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Eq. (4.10) thus summarizes in a convenient form the equations derived in this and 
previous sections. It is tempting to interpret (4.10) in terms of a higher level x-space 
Bethe ansatz. In particular, without assuming a strictly local interaction between 
particles, one might associate with each of our n-particle energy eigenstates a set of 
asymptotic wave functions 

exp[i(p~x,  + . . .  +p,  xn)]~Q.. .a , ,  (4.12) 

describing, for each permutation Q of 123 - - - n, free propagation in the region 

XQ1 < < X Q 2 < <  . . . < < X Q n .  

The spinorial tensors ~Q for neighboring regions Q and Q' [with Q'i = Q(i + 1), Qi 
= Q'(i + 1)] would then be linked by the two-particle S-matrix, 

+Q' = Si(/+,)+Q- (4.13) 

Single valuedness on our "ring" of length L would then require 

exp(ipjL)+lz. . . (:  l ) ( j +  I)- - "n)  = i ~ ) j 1 2 - - - ( j - - I ) ( j +  1) . . . . .  (4.14) 

From (4.13) it follows, 

i~) j12--  - ( j  l ) ( j + l ) . - . n  = ~ l j l ~ l j 2 . . . < j - - l ) ( j + l ) . . . n  

^ ^ . ~ ~D12 • • "n 
. . . . .  S l Jg2J"  " ~iJ-- l ) j  

(~12- - - ( j  1) ( j+ l ) . . . n j  ^--1 ^--1 ^ ^ . = s,n_ l j s & '  . . . .  (4.15) 

Identifying + with ~12-- "n, we are led to (4.10). 
From the above discussion, we see that the notion of a higher-level x-space Bethe 

ansatz (which still must be placed on a more solid footing) provides a simple and 
satisfying interpretation of our principal results. 

One of us (J.H.L.) would like to thank N. Andrei, L. Faddeev, M. Furuya, M. 
Gaudin and V. Korepin for stimulating discussions. 
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